• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4604948)   Today's Articles (2100)   Subscriber (49372)
For: Mousavi SJ, Avril S. Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory. Biomech Model Mechanobiol 2017;16:1765-77. [DOI: 10.1007/s10237-017-0918-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 05/06/2017] [Indexed: 12/18/2022]
Number Cited by Other Article(s)
1
Schwarz EL, Pfaller MR, Szafron JM, Latorre M, Lindsey SE, Breuer CK, Humphrey JD, Marsden AL. A Fluid-Solid-Growth Solver for Cardiovascular Modeling. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2023;417:116312. [PMID: 38044957 PMCID: PMC10691594 DOI: 10.1016/j.cma.2023.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
2
Gebauer AM, Pfaller MR, Braeu FA, Cyron CJ, Wall WA. A homogenized constrained mixture model of cardiac growth and remodeling: analyzing mechanobiological stability and reversal. Biomech Model Mechanobiol 2023;22:1983-2002. [PMID: 37482576 PMCID: PMC10613155 DOI: 10.1007/s10237-023-01747-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
3
Navarrete Á, Utrera A, Rivera E, Latorre M, Celentano DJ, García-Herrera CM. An inverse fitting strategy to determine the constrained mixture model parameters: application in patient-specific aorta. Front Bioeng Biotechnol 2023;11:1301988. [PMID: 38053847 PMCID: PMC10694237 DOI: 10.3389/fbioe.2023.1301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]  Open
4
Bazzi MS, Balouchzadeh R, Pavey SN, Quirk JD, Yanagisawa H, Vedula V, Wagenseil JE, Barocas VH. Experimental and Mouse-Specific Computational Models of the Fbln4SMKO Mouse to Identify Potential Biomarkers for Ascending Thoracic Aortic Aneurysm. Cardiovasc Eng Technol 2022;13:558-572. [PMID: 35064559 PMCID: PMC9304450 DOI: 10.1007/s13239-021-00600-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2021] [Indexed: 11/02/2022]
5
Laubrie JD, Mousavi SJ, Avril S. About prestretch in homogenized constrained mixture models simulating growth and remodeling in patient-specific aortic geometries. Biomech Model Mechanobiol 2022;21:455-469. [PMID: 35067825 PMCID: PMC8940846 DOI: 10.1007/s10237-021-01544-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/01/2021] [Indexed: 11/10/2022]
6
Ghadie NM, St-Pierre JP, Labrosse MR. Intramural Distributions of GAGs and Collagen vs. Opening Angle of the Intact Porcine Aortic Wall. Ann Biomed Eng 2022;50:157-168. [PMID: 35028784 DOI: 10.1007/s10439-022-02901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
7
Vastmans J, Maes L, Peirlinck M, Vanderveken E, Rega F, Kuhl E, Famaey N. Growth and remodeling in the pulmonary autograft: Computational evaluation using kinematic growth models and constrained mixture theory. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022;38:e3545. [PMID: 34724357 DOI: 10.1002/cnm.3545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
8
Howe D, Dixit NN, Saul KR, Fisher MB. A Direct Comparison of Node and Element-Based Finite Element Modeling Approaches to Study Tissue Growth. J Biomech Eng 2022;144:011001. [PMID: 34227653 PMCID: PMC8420794 DOI: 10.1115/1.4051661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 06/25/2021] [Indexed: 01/03/2023]
9
Sharifi H, Mann CK, Rockward AL, Mehri M, Mojumder J, Lee LC, Campbell KS, Wenk JF. Multiscale simulations of left ventricular growth and remodeling. Biophys Rev 2021;13:729-746. [PMID: 34777616 PMCID: PMC8555068 DOI: 10.1007/s12551-021-00826-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]  Open
10
Humphrey JD. Constrained Mixture Models of Soft Tissue Growth and Remodeling - Twenty Years After. JOURNAL OF ELASTICITY 2021;145:49-75. [PMID: 34483462 PMCID: PMC8415366 DOI: 10.1007/s10659-020-09809-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 05/06/2023]
11
Jamaleddin Mousavi S, Jayendiran R, Farzaneh S, Campisi S, Viallon M, Croisille P, Avril S. Coupling hemodynamics with mechanobiology in patient-specific computational models of ascending thoracic aortic aneurysms. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021;205:106107. [PMID: 33933713 DOI: 10.1016/j.cmpb.2021.106107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
12
Ghadie NM, St-Pierre JP, Labrosse MR. The Contribution of Glycosaminoglycans/Proteoglycans to Aortic Mechanics in Health and Disease: A Critical Review. IEEE Trans Biomed Eng 2021;68:3491-3500. [PMID: 33872141 DOI: 10.1109/tbme.2021.3074053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
13
Di Giuseppe M, Farzaneh S, Zingales M, Pasta S, Avril S. Patient-specific computational evaluation of stiffness distribution in ascending thoracic aortic aneurysm. J Biomech 2021;119:110321. [PMID: 33662747 DOI: 10.1016/j.jbiomech.2021.110321] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022]
14
Maes L, Vastmans J, Avril S, Famaey N. A Chemomechanobiological Model of the Long-Term Healing Response of Arterial Tissue to a Clamping Injury. Front Bioeng Biotechnol 2021;8:589889. [PMID: 33575250 PMCID: PMC7870691 DOI: 10.3389/fbioe.2020.589889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022]  Open
15
Ghavamian A, Mousavi SJ, Avril S. Computational Study of Growth and Remodeling in Ascending Thoracic Aortic Aneurysms Considering Variations of Smooth Muscle Cell Basal Tone. Front Bioeng Biotechnol 2020;8:587376. [PMID: 33224937 PMCID: PMC7670047 DOI: 10.3389/fbioe.2020.587376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022]  Open
16
Wu J, Augustin CM, Shadden SC. Reconstructing vascular homeostasis by growth-based prestretch and optimal fiber deposition. J Mech Behav Biomed Mater 2020;114:104161. [PMID: 33229142 DOI: 10.1016/j.jmbbm.2020.104161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
17
Geometrically nonlinear modelling of pre-stressed viscoelastic fibre-reinforced composites with application to arteries. Biomech Model Mechanobiol 2020;20:323-337. [PMID: 33011868 DOI: 10.1007/s10237-020-01388-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
18
Díaz C, Peña JA, Martínez MA, Peña E. Unraveling the multilayer mechanical response of aorta using layer-specific residual stresses and experimental properties. J Mech Behav Biomed Mater 2020;113:104070. [PMID: 33007727 DOI: 10.1016/j.jmbbm.2020.104070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
19
Latorre M, Humphrey JD. Fast, Rate-Independent, Finite Element Implementation of a 3D Constrained Mixture Model of Soft Tissue Growth and Remodeling. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2020;368:113156. [PMID: 32655195 PMCID: PMC7351114 DOI: 10.1016/j.cma.2020.113156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
20
Niestrawska JA, Augustin CM, Plank G. Computational modeling of cardiac growth and remodeling in pressure overloaded hearts-Linking microstructure to organ phenotype. Acta Biomater 2020;106:34-53. [PMID: 32058078 PMCID: PMC7311197 DOI: 10.1016/j.actbio.2020.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/25/2022]
21
Laubrie JD, Mousavi JS, Avril S. A new finite-element shell model for arterial growth and remodeling after stent implantation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020;36:e3282. [PMID: 31773919 DOI: 10.1002/cnm.3282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/05/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
22
Hosseini HS, Taylor JS, Wood LS, Dunn JC. Biomechanics of small intestine during distraction enterogenesis with an intraluminal spring. J Mech Behav Biomed Mater 2020;101:103413. [DOI: 10.1016/j.jmbbm.2019.103413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/13/2019] [Accepted: 08/31/2019] [Indexed: 12/25/2022]
23
Ahmadzadeh H, Rausch MK, Humphrey JD. Modeling lamellar disruption within the aortic wall using a particle-based approach. Sci Rep 2019;9:15320. [PMID: 31653875 PMCID: PMC6814784 DOI: 10.1038/s41598-019-51558-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022]  Open
24
Hebbar UU, Banerjee RK. Influence of coupled hemodynamics-arterial wall interaction on compliance in a realistic pulmonary artery with variable intravascular wall properties. Med Image Anal 2019;57:56-71. [PMID: 31279216 DOI: 10.1016/j.media.2019.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/01/2019] [Accepted: 06/19/2019] [Indexed: 11/15/2022]
25
Maes L, Fehervary H, Vastmans J, Mousavi SJ, Avril S, Famaey N. Constrained mixture modeling affects material parameter identification from planar biaxial tests. J Mech Behav Biomed Mater 2019;95:124-135. [DOI: 10.1016/j.jmbbm.2019.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/07/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
26
Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model. Biomech Model Mechanobiol 2019;18:1895-1913. [DOI: 10.1007/s10237-019-01184-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022]
27
Campobasso R, Condemi F, Viallon M, Croisille P, Campisi S, Avril S. Evaluation of Peak Wall Stress in an Ascending Thoracic Aortic Aneurysm Using FSI Simulations: Effects of Aortic Stiffness and Peripheral Resistance. Cardiovasc Eng Technol 2018;9:707-722. [DOI: 10.1007/s13239-018-00385-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022]
28
Farzaneh S, Trabelsi O, Avril S. Inverse identification of local stiffness across ascending thoracic aortic aneurysms. Biomech Model Mechanobiol 2018;18:137-153. [DOI: 10.1007/s10237-018-1073-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023]
29
Mousavi SJ, Farzaneh S, Avril S. Computational predictions of damage propagation preceding dissection of ascending thoracic aortic aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018;34:e2944. [PMID: 29171175 DOI: 10.1002/cnm.2944] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA