1
|
Iwaya C, Iwata J. Associations between metabolic disorders and Sjögren's disease. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:232-238. [PMID: 39502167 PMCID: PMC11535258 DOI: 10.1016/j.jdsr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 11/08/2024] Open
Abstract
Sjögren's disease (SjD) is a systemic autoimmune disorder characterized by dry eyes and mouth caused by chronic inflammation and is often accompanied by various extra-glandular manifestations, including fatigue and diffuse pain. Although the pathogenesis of the disease remains elusive, several factors (e.g. environmental, genetic and hormonal factors, abnormal metabolic status) are associated with this condition. Accumulating evidence suggests a potential role of cholesterol metabolism in immune and non-immune modulation in various diseases. In this review, we summarize the current findings on the associations between cholesterol metabolism and SjD.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), School of Dentistry, Houston, Texas 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), School of Dentistry, Houston, Texas 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
2
|
Chen Z, Tian X, Chen C, Chen C. Research on disease diagnosis based on teacher-student network and Raman spectroscopy. Lasers Med Sci 2024; 39:129. [PMID: 38735976 DOI: 10.1007/s10103-024-04078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Diabetic nephropathy is a serious complication of diabetes, and primary Sjögren's syndrome is a disease that poses a major threat to women's health. Therefore, studying these two diseases is of practical significance. In the field of spectral analysis, although common Raman spectral feature selection models can effectively extract features, they have the problem of changing the characteristics of the original data. The teacher-student network combined with Raman spectroscopy can perform feature selection while retaining the original features, and transfer the performance of the complex deep neural network structure to another lightweight network structure model. This study selects five flow learning models as the teacher network, builds a neural network as the student network, uses multi-layer perceptron for classification, and selects the optimal features based on the evaluation indicators accuracy, precision, recall, and F1-score. After five-fold cross-validation, the research results show that in the diagnosis of diabetic nephropathy, the optimal accuracy rate can reach 98.3%, which is 14.02% higher than the existing research; in the diagnosis of primary Sjögren's syndrome, the optimal accuracy rate can be reached 100%, which is 10.48% higher than the existing research. This study proved the feasibility of Raman spectroscopy combined with teacher-student network in the field of disease diagnosis by producing good experimental results in the diagnosis of diabetic nephropathy and primary Sjögren's syndrome.
Collapse
Affiliation(s)
- Zishuo Chen
- College of Software, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Xuecong Tian
- College of Information Science and Engineering, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi, Xinjiang, 830046, China.
| |
Collapse
|
3
|
Yin J, Fu J, Xu J, Chen C, Zhu H, Wang B, Yu C, Yang X, Cai R, Li M, Ji K, Wu W, Zhao Y, Zheng Z, Pu Y, Zheng L. Integrated analysis of m6A regulator-mediated RNA methylation modification patterns and immune characteristics in Sjögren's syndrome. Heliyon 2024; 10:e28645. [PMID: 38596085 PMCID: PMC11002070 DOI: 10.1016/j.heliyon.2024.e28645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
The epigenetic modifier N6-methyladenosine (m6A), recognized as the most prevalent internal modification in messenger RNA (mRNA), has recently emerged as a pivotal player in immune regulation. Its dysregulation has been implicated in the pathogenesis of various autoimmune conditions. However, the implications of m6A modification within the immune microenvironment of Sjögren's syndrome (SS), a chronic autoimmune disorder characterized by exocrine gland dysfunction, remain unexplored. Herein, we leverage an integrative analysis combining public database resources and novel sequencing data to investigate the expression profiles of m6A regulatory genes in SS. Our cohort comprised 220 patients diagnosed with SS and 62 healthy individuals, enabling a comprehensive evaluation of peripheral blood at the transcriptomic level. We report a significant association between SS and altered expression of key m6A regulators, with these changes closely tied to the activation of CD4+ T cells. Employing a random forest (RF) algorithm, we identified crucial genes contributing to the disease phenotype, which facilitated the development of a robust diagnostic model via multivariate logistic regression analysis. Further, unsupervised clustering revealed two distinct m6A modification patterns, which were significantly associated with variations in immunocyte infiltration, immune response activity, and biological function enrichment in SS. Subsequently, we proceeded with a screening process aimed at identifying genes that were differentially expressed (DEGs) between the two groups distinguished by m6A modification. Leveraging these DEGs, we employed weight gene co-expression network analysis (WGCNA) to uncover sets of genes that exhibited strong co-variance and hub genes that were closely linked to m6A modification. Through rigorous analysis, we identified three critical m6A regulators - METTL3, ALKBH5, and YTHDF1 - alongside two m6A-related hub genes, COMMD8 and SRP9. These elements collectively underscore a complex but discernible pattern of m6A modification that appears to be integrally linked with SS's pathogenesis. Our findings not only illuminate the significant correlation between m6A modification and the immune microenvironment in SS but also lay the groundwork for a deeper understanding of m6A regulatory mechanisms. More importantly, the identification of these key regulators and hub genes opens new avenues for the diagnosis and treatment of SS, presenting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Junhao Yin
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Jiabao Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Changyu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Hanyi Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Xiujuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Ruiyu Cai
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Mengyang Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Kaihan Ji
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanning Wu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yijie Zhao
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, 1258 Fuxin Zhong Road, Shanghai 200031, China
| | - Zhanglong Zheng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yiping Pu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology & National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Fu JY, Huang SJ, Wang BL, Yin JH, Chen CY, Xu JB, Chen YL, Xu S, Dong T, Zhou HN, Ma XY, Pu YP, Li H, Yang XJ, Xie LS, Wang ZJ, Luo Q, Shao YX, Ye L, Zong ZR, Wei XD, Xiao WW, Niu ST, Liu YM, Xu HP, Yu CQ, Duan SZ, Zheng LY. Lysine acetyltransferase 6A maintains CD4 + T cell response via epigenetic reprogramming of glucose metabolism in autoimmunity. Cell Metab 2024; 36:557-574.e10. [PMID: 38237601 DOI: 10.1016/j.cmet.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
Augmented CD4+ T cell response in autoimmunity is characterized by extensive metabolic reprogramming. However, the epigenetic molecule that drives the metabolic adaptation of CD4+ T cells remains largely unknown. Here, we show that lysine acetyltransferase 6A (KAT6A), an epigenetic modulator that is clinically associated with autoimmunity, orchestrates the metabolic reprogramming of glucose in CD4+ T cells. KAT6A is required for the proliferation and differentiation of proinflammatory CD4+ T cell subsets in vitro, and mice with KAT6A-deficient CD4+ T cells are less susceptible to experimental autoimmune encephalomyelitis and colitis. Mechanistically, KAT6A orchestrates the abundance of histone acetylation at the chromatin where several glycolytic genes are located, thus affecting glucose metabolic reprogramming and subsequent CD4+ T cell responses. Treatment with KAT6A small-molecule inhibitors in mouse models shows high therapeutic value for targeting KAT6A in autoimmunity. Our study provides novel insights into the epigenetic programming of immunometabolism and suggests potential therapeutic targets for patients with autoimmunity.
Collapse
Affiliation(s)
- Jia-Yao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Shi-Jia Huang
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Bao-Li Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jun-Hao Yin
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Chang-Yu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jia-Bao Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yan-Lin Chen
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Ting Dong
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hao-Nan Zhou
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Xin-Yi Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yi-Ping Pu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hui Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Xiu-Juan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Li-Song Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Zhi-Jun Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Qi Luo
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yan-Xiong Shao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Lei Ye
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Zi-Rui Zong
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Xin-Di Wei
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Wan-Wen Xiao
- College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China
| | - Shu-Tong Niu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yi-Ming Liu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - He-Ping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Science, Westlake University, Hangzhou 310024, China
| | - Chuang-Qi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systematic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| | - Ling-Yan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| |
Collapse
|
5
|
Yin J, Xu J, Chen C, Ma X, Zhu H, Xie L, Wang B, Shao Y, Zhao Y, Wei Y, Hu A, Zheng Z, Yu C, Fu J, Zheng L. HECT, UBA and WWE domain containing 1 represses cholesterol efflux during CD4 + T cell activation in Sjögren's syndrome. Front Pharmacol 2023; 14:1191692. [PMID: 37435494 PMCID: PMC10330700 DOI: 10.3389/fphar.2023.1191692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction: Sjögren's syndrome (SS) is a chronic autoimmune disorder characterized by exocrine gland dysfunction, leading to loss of salivary function. Histological analysis of salivary glands from SS patients reveals a high infiltration of immune cells, particularly activated CD4+ T cells. Thus, interventions targeting abnormal activation of CD4+ T cells may provide promising therapeutic strategies for SS. Here, we demonstrate that Hect, uba, and wwe domain containing 1 (HUWE1), a member of the eukaryotic Hect E3 ubiquitin ligase family, plays a critical role in CD4+ T-cell activation and SS pathophysiology. Methods: In the context of HUWE1 inhibition, we investigated the impact of the HUWE1 inhibitor BI8626 and sh-Huwe1 on CD4+ T cells in mice, focusing on the assessment of activation levels, proliferation capacity, and cholesterol abundance. Furthermore, we examined the therapeutic potential of BI8626 in NOD/ShiLtj mice and evaluated its efficacy as a treatment strategy. Results: Inhibition of HUWE1 reduces ABCA1 ubiquitination and promotes cholesterol efflux, decreasing intracellular cholesterol and reducing the expression of phosphorylated ZAP-70, CD25, and other activation markers, culminating in the suppressed proliferation of CD4+ T cells. Moreover, pharmacological inhibition of HUWE1 significantly reduces CD4+ T-cell infiltration in the submandibular glands and improves salivary flow rate in NOD/ShiLtj mice. Conclusion: These findings suggest that HUWE1 may regulate CD4+ T-cell activation and SS development by modulating ABCA1-mediated cholesterol efflux and presents a promising target for SS treatment.
Collapse
Affiliation(s)
- Junhao Yin
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Jiabao Xu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Changyu Chen
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Xinyi Ma
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Hanyi Zhu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Lisong Xie
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Yanxiong Shao
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Yijie Zhao
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yu Wei
- Department of Oral and Maxillofacial Surgery, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Anni Hu
- Department of Oral and Maxillofacial Surgery, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Zhanglong Zheng
- Department of Oral and Maxillofacial Surgery, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Stomatology, Shanghai, China
| |
Collapse
|
6
|
Wu J, Jia S, Xu B, Yao X, Shao J, Yao J, Cen D, Yao X. Bicyclol attenuates high fat diet-induced non-alcoholic fatty liver disease/non-alcoholic steatohepatitis through modulating multiple pathways in mice. Front Pharmacol 2023; 14:1157200. [PMID: 37007016 PMCID: PMC10063911 DOI: 10.3389/fphar.2023.1157200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: The pathological progression of non-alcoholic fatty liver disease (NAFLD) is driven by multiple factors, and non-alcoholic steatohepatitis (NASH) represents its progressive form. In our previous studies, we found that bicyclol had beneficial effects on NAFLD/ NASH. Here we aim to investigate the underlying molecular mechanisms of the bicyclol effect on NAFLD/NASH induced by high-fat diet (HFD) feeding.Methods: A mice model of NAFLD/NASH induced by HFD-feeding for 8 weeks was used. As a pretreatment, bicyclol (200 mg/kg) was given to mice by oral gavage twice daily. Hematoxylin and eosin (H&E) stains were processed to evaluate hepatic steatosis, and hepatic fibrous hyperplasia was assessed by Masson staining. Biochemistry analyses were used to measure serum aminotransferase, serum lipids, and lipids in liver tissues. Proteomics and bioinformatics analyses were performed to identify the signaling pathways and target proteins. Data are available via Proteome X change with identifier PXD040233. The real-time RT-PCR and Western blot analyses were performed to verify the proteomics data.Results: Bicyclol had a markedly protective effect against NAFLD/NASH by suppressing the increase of serum aminotransferase, hepatic lipid accumulation and alleviating histopathological changes in liver tissues. Proteomics analyses showed that bicyclol remarkably restored major pathways related to immunological responses and metabolic processes altered by HFD feeding. Consistent with our previous results, bicyclol significantly inhibited inflammation and oxidative stress pathway related indexes (SAA1, GSTM1 and GSTA1). Furthermore, the beneficial effects of bicyclol were closely associated with the signaling pathways of bile acid metabolism (NPC1, SLCOLA4 and UGT1A1), cytochrome P450-mediated metabolism (CYP2C54, CYP3A11 and CYP3A25), biological processes such as metal ion metabolism (Ceruloplasmin and Metallothionein-1), angiogenesis (ALDH1A1) and immunological responses (IFI204 and IFIT3).Discussion: These findings suggested that bicyclol is a potential preventive agent for NAFLD/NASH by targeting multiple mechanisms in future clinical investigations.
Collapse
Affiliation(s)
- Jingyi Wu
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China
| | - Shu Jia
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China
| | - Benghong Xu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shengzhen, Guangdong, China
| | - Xiaokun Yao
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China
| | - Jingping Shao
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China
| | - Jianzuo Yao
- Department of Hepatobiliary and Pancreatic Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Danwei Cen
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China
| | - Xiaomin Yao
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China
- *Correspondence: Xiaomin Yao,
| |
Collapse
|