1
|
Zhao J, He ZR, Fang SL, Han XK, Jiang LY, Hu YP, Yu H, Zhang LB, Zhou XM. Phylogenomic data resolved the deep relationships of Gymnogynoideae (Selaginellaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1405253. [PMID: 39081519 PMCID: PMC11287774 DOI: 10.3389/fpls.2024.1405253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
The unresolved phylogenetic framework within the Selaginellaceae subfamily Gymnogynoideae (ca. 130 species) has hindered our comprehension of the diversification and evolution of Selaginellaceae, one of the most important lineages in land plant evolution. Here, based on plastid and nuclear data extracted from genomic sequencing of more than 90% species of all genera except two in Gymnogynoideae, a phylogenomic study focusing on the contentious relationships among the genera in Gymnogynoideae was conducted. Our major results included the following: (1) Only single-copy region (named NR) and only one ribosomal operon was firstly found in Afroselaginella among vascular plants, the plastome structure of Gymnogynoideae is diverse among the six genera, and the direct repeats (DR) type is inferred as the ancestral state in the subfamily; (2) The first strong evidence was found to support Afroselaginella as a sister to Megaloselaginella. Alternative placements of Ericetorum and Gymnogynum were detected, and their relationships were investigated by analyzing the variation of phylogenetic signals; and (3) The most likely genus-level relationships in Gymnogynoideae might be: ((Bryodesma, Lepidoselaginella), (((Megaloselaginella, Afroselaginella), Ericetorum), Gymnogynum)), which was supported by maximum likelihood phylogeny based on plastid datasets, maximum likelihood, and Bayesian inference based on SCG dataset and concatenated nuclear and plastid datasets and the highest proportion of phylogenetic signals of plastid genes.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Shao-Li Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Xu-Ke Han
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Lu-Yao Jiang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Yu-Ping Hu
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Li-Bing Zhang
- Missouri Botanical Garden, St. Louis, MO, United States
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Kwok van der Giezen FM, Viljoen A, Campbell-Clause L, Dao NT, Colas des Francs-Small C, Small I. Insights into U-to-C RNA editing from the lycophyte Phylloglossum drummondii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:445-459. [PMID: 38652016 DOI: 10.1111/tpj.16775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
The lycophyte Phylloglossum drummondii is the sole inhabitant of its genus in the Huperzioideae group and one of a small minority of plants which perform uridine to cytidine RNA editing. We assembled the P. drummondii chloroplast and mitochondrial genomes and used RNA sequence data to build a comprehensive profile of organellar RNA editing events. In addition to many C-to-U editing events in both organelles, we found just four U-to-C editing events in the mitochondrial transcripts cob, nad1, nad5 and rpl2. These events are conserved in related lycophytes in the genera Huperzia and Phlegmariurus. De novo transcriptomes for three of these lycophytes were assembled to search for putative U-to-C RNA editing enzymes. Four putative U-to-C editing factors could be matched to the four mitochondrial U-to-C editing sites. Due to the unusually few numbers of U-to-C RNA editing sites, P. drummondii and related lycophytes are useful models for studying this poorly understood mechanism.
Collapse
Affiliation(s)
- Farley M Kwok van der Giezen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Amy Viljoen
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Leni Campbell-Clause
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nhan Trong Dao
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Krämer C, Boehm CR, Liu J, Ting MKY, Hertle AP, Forner J, Ruf S, Schöttler MA, Zoschke R, Bock R. Removal of the large inverted repeat from the plastid genome reveals gene dosage effects and leads to increased genome copy number. NATURE PLANTS 2024; 10:923-935. [PMID: 38802561 PMCID: PMC11208156 DOI: 10.1038/s41477-024-01709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
The chloroplast genomes of most plants and algae contain a large inverted repeat (IR) region that separates two single-copy regions and harbours the ribosomal RNA operon. We have addressed the functional importance of the IR region by removing an entire copy of the 25.3-kb IR from the tobacco plastid genome. Using plastid transformation and subsequent selectable marker gene elimination, we precisely excised the IR, thus generating plants with a substantially reduced plastid genome size. We show that the lack of the IR results in a mildly reduced plastid ribosome number, suggesting a gene dosage benefit from the duplicated presence of the ribosomal RNA operon. Moreover, the IR deletion plants contain an increased number of plastid genomes, suggesting that genome copy number is regulated by measuring total plastid DNA content rather than by counting genomes. Together, our findings (1) demonstrate that the IR can enhance the translation capacity of the plastid, (2) reveal the relationship between genome size and genome copy number, and (3) provide a simplified plastid genome structure that will facilitate future synthetic biology applications.
Collapse
Affiliation(s)
- Carolin Krämer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Christian R Boehm
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Jinghan Liu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | | - Alexander P Hertle
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Reimo Zoschke
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| |
Collapse
|
4
|
Lubna, Asaf S, Jan R, Asif S, Bilal S, Khan AL, Kim KM, Lee IJ, Al-Harrasi A. Plastome diversity and evolution in mosses: Insights from structural characterization, comparative genomics, and phylogenetic analysis. Int J Biol Macromol 2024; 257:128608. [PMID: 38065441 DOI: 10.1016/j.ijbiomac.2023.128608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024]
Abstract
Mosses play a significant role in ecology, evolution, and the economy. They belong to the nonvascular plant kingdom and are considered the closest living relatives of the first terrestrial plants. The circular chloroplast DNA molecules (plastomes) of mosses contain all the genetic information essential for chloroplast functions and represent the source of the evolutionary history of these organisms. This study comprehensively analyzed the plastomes of 47 moss species belonging to 14 orders, focusing on their size, GC content, gene loss, gene content, synteny, and evolution. The findings revealed great differences among plastome sizes, with Takakia lepidozioides (Takakiopsida) and Funaria hygrometrica (Funariales) having the largest and smallest plastomes, respectively. Moss plastomes included 69 to 89 protein-coding genes, 8 rRNA genes, and 34 to 42 tRNA genes, resulting in the total number of genes in a plastome ranging between 115 and 138. Various genes have been lost from the plastomes of different moss species, with Atrichum angustatum lacking the highest number of genes. This study also examined plastome synteny and moss evolution using comparative genomics and repeat sequence analysis. The results demonstrated that synteny and similarity levels varied across the 47 moss examined species, with some exhibiting structure similarity and others displaying structural inversions. Maximum likelihood and Bayesian approaches were used to construct a phylogenetic tree using 36 concatenated protein-coding genes, and the results revealed that the genera Sphagnum and Takakia are sister groups to the other mosses. Additionally, it was found that Tetraphidales, Polytrichales, Buxbaumiales, and Diphysciales are closely related. This research describes the evolutionary diversity of mosses and offers guidelines for future studies in this field. The findings also highlight the need for more investigations into the factors regulating plastome size variation in these plants.
Collapse
Affiliation(s)
- Lubna
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman.
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, 77479, USA
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, 616 Nizwa, Oman.
| |
Collapse
|
5
|
Zhou XM, Zhang LB. Phylogeny, character evolution, and classification of Selaginellaceae (lycophytes). PLANT DIVERSITY 2023; 45:630-684. [PMID: 38197007 PMCID: PMC10772194 DOI: 10.1016/j.pld.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 01/11/2024]
Abstract
Selaginella is the largest and most taxonomically complex genus in lycophytes. The fact that over 750 species are currently treated in a single genus makes Selaginellales/Selaginellaceae unique in pteridophytes. Here we assembled a dataset of six existing and newly sampled plastid and nuclear loci with a total of 684 accessions (74% increase of the earlier largest sampling) representing ca. 300 species to infer a new phylogeny. The evolution of 10 morphological characters is studied in the new phylogenetic context. Our major results include: (1) the nuclear and plastid phylogenies are congruent with each other and combined analysis well resolved and strongly supported the relationships of all but two major clades; (2) the Sinensis group is resolved as sister to S. subg. Pulviniella with strong support in two of the three analyses; (3) most morphological characters are highly homoplasious but some characters alone or combinations of characters well define the major clades in the family; and (4) an infrafamilial classification of Selaginellaceae is proposed and the currently defined Selaginella s.l. is split into seven subfamilies (corresponding to the current six subgenera + the Sinensis group) and 19 genera (the major diagnosable clades) with nine new species-poor genera. We support the conservation of Selaginella with a new type, S. flabellata, to minimize nomenclatural instability. We provide a key to subfamilies and genera, images illustrating their morphology, their morphological and geographical synopses, a list of constituent species, and necessary new combinations. This new classification will hopefully facilitate communication, promote further studies, and help conservation.
Collapse
Affiliation(s)
- Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Li-Bing Zhang
- Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, Missouri 63110, USA; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Xiang QP, Tang JY, Yu JG, Smith DR, Zhu YM, Wang YR, Kang JS, Yang J, Zhang XC. The evolution of extremely diverged plastomes in Selaginellaceae (lycophyte) is driven by repeat patterns and the underlying DNA maintenance machinery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:768-784. [PMID: 35648423 DOI: 10.1111/tpj.15851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Two factors are proposed to account for the unusual features of organellar genomes: the disruptions of organelle-targeted DNA replication, repair, and recombination (DNA-RRR) systems in the nuclear genome and repetitive elements in organellar genomes. Little is known about how these factors affect organellar genome evolution. The deep-branching vascular plant family Selaginellaceae is known to have a deficient DNA-RRR system and convergently evolved organellar genomes. However, we found that the plastid genome (plastome) of Selaginella sinensis has extremely accelerated substitution rates, a low GC content, pervasive repeat elements, a dynamic network structure, and it lacks direct or inverted repeats. Unexpectedly, its organelle DNA-RRR system is short of a plastid-targeted Recombinase A1 (RecA1) and a mitochondrion-targeted RecA3, in line with other explored Selaginella species. The plastome contains a large collection of short- and medium-sized repeats. Given the absence of RecA1 surveillance, we propose that these repeats trigger illegitimate recombination, accelerated mutation rates, and structural instability. The correlations between repeat quantity and architectural complexity in the Selaginella plastomes support these conclusions. We, therefore, hypothesize that the interplay of the deficient DNA-RRR system and the high repeat content has led to the extraordinary divergence of the S. sinensis plastome. Our study not only sheds new light on the mechanism of plastome divergence by emphasizing the power of cytonuclear integration, but it also reconciles the longstanding contradiction on the effects of DNA-RRR system disruption on genome structure evolution.
Collapse
Affiliation(s)
- Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jun-Yong Tang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Gao Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, N6A 5B7, Ontario, Canada
| | - Yan-Mei Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Ya-Rong Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jong-Soo Kang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
7
|
Plastid phylogenomic analyses of the Selaginella sanguinolenta group (Selaginellaceae) reveal conflict signatures resulting from sequence types, outlier genes, and pervasive RNA editing. Mol Phylogenet Evol 2022; 173:107507. [PMID: 35589053 DOI: 10.1016/j.ympev.2022.107507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/11/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
Different from the generally conserved plastomes (plastid genomes) of most land plants, the Selaginellaceae plastomes exhibit dynamic structure, high GC content and high substitution rates. Previous plastome analyses identified strong conflict on several clades in Selaginella, however the factors causing the conflictions and the impact on the phylogenetic inference have not been sufficiently investigated. Here, we dissect the distribution of phylogenetic signals and conflicts in Selaginella sanguinolenta group, the plastome of which is DR (direct repeats) structure and with genome-wide RNA editing. We analyzed the data sets including 22 plastomes representing all species of the S. sanguinolenta group, covering the entire geographical distribution from the Himalayas to Siberia and the Russian Far East regions. We recovered four different topologies by applying multispecies coalescent (ASTRAL) and concatenation methods (IQ-TREE and RAxML) on four data sets of PC (protein-coding genes), NC (non-coding sequences), PCN (the concatenated PC and NC), and RC (predicted RNA editing sites "C" were corrected by "T"), respectively. Six monophyletic clades, S. nummularifolia clade, S. rossii clade, S. sajanensis clade, S. sanguinolenta I clade, S. sanguinolenta II clade, and S. sanguinolenta III clade, were consistently resolved and supported by the characteristics of GC content, RNA editing frequency, and gene content. However, the relationships among these clades varied across the four topologies. To explore the underlying causes of the uncertainty, we compared the phylogenetic signals of the four topologies. We identified that the sequence types (coding versus non-coding), outlier genes (genes with extremely high |ΔGLS| values), and C-to-U RNA editing frequency in the protein-coding genes were responsible for the unstable phylogenomic relationship. We further revealed a significant positive correlation between the |ΔGLS| values and the variation coefficient of the RNA editing number. Our results demonstrated that the coalescent method performed better than the concatenation method in overcoming the problems caused by outlier genes and extreme RNA editing events. Our study particularly focused on the importance of exploring the plastid phylogenomic conflicts and suggested conducting concatenated analyses cautiously when adopting organelle genome data.
Collapse
|
8
|
Anatomical and Biochemical Traits Related to Blue Leaf Coloration of Selaginella uncinata. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1005449. [PMID: 35251556 PMCID: PMC8894045 DOI: 10.1155/2022/1005449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
Abstract
Selaginella uncinata shows particularly rare blue leaves. Previous research has shown that structural interference by the cell wall of adaxial epidermal cells imparts blue coloration in leaves of S. uncinata; the objective of this study was to see whether anthocyanins might additionally contribute to this color, as changes in pH, and conjugation with metals and other flavonoids is also known to result in blue coloration in plants. We compared anatomical and biochemical traits of shade-grown (blue) S. uncinata leaves to high light (red) leaves of the same species and also to a non-blue (green) leaves of a congeneric S. kraussiana. By examining the anatomical structure, we found that the shape of adaxial epidermis of S. uncinata leaves was convex or lens-shaped on the lateral view and irregular circles with smooth embossment on the top view. These features were different from those of the abaxial and adaxial epidermis of S. kraussiana. We suspect that these structures increase the proportion of incident light entering the cell, deepening the leaf color, and therefore may be related to blue leaf color in S. uncinata. By examining biochemical traits, we found little difference in leaf pH value among the leaf types; all leaves contained several metal ions such as Mg, Fe, Mn, and copigments such as flavones. However, because there was no anthocyanin in blue S. uncinata leaves, we concluded that blue coloration in S. uncinata leaves is not caused by the three hypotheses of blue coloration: alkalization of the vacuole pH, metal chelation, or copigmentation with anthocyanins, but it may be related to the shape of the leaf adaxial epidermis.
Collapse
|
9
|
Zhou XM, Zhao J, Yang JJ, Le Péchon T, Zhang L, He ZR, Zhang LB. Plastome structure, evolution, and phylogeny of Selaginella. Mol Phylogenet Evol 2022; 169:107410. [PMID: 35031459 DOI: 10.1016/j.ympev.2022.107410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
As one of the earliest land plant lineages, Selaginella is important for studying land plant evolution. It is the largest genus of lycophytes containing 700-800 species. Some unique characters of Selaginella plastomes have been reported, but based only on 20 species. There have been no plastome phylogenies of Selaginella based on a relatively large sampling, and no efforts have been made to resolve the phylogeny of the enigmatic Sinensis group whose relationships have been unclear based on small datasets. Here we investigated the structures of 59 plastomes representing 51 species covering all six subgenera and 18 sections of Selaginella except two sections and including the intriguing Sinensis group for the first time. Our major results include: (1) the plastome size of Selaginella ranges tremendously from 78,492 bp to 187,632 bp; (2) there are numerous gene losses in Selaginella comparing with other lycophytes, Isoëtaceae and Lycopodiaceae; (3) the gene contents and plastome structures in Selaginella vary lineage-specifically and all infrageneric taxa are well supported in the plastome phylogeny; (4) the ndh gene family tends to lose or pseudogenize in those species with DR structure and without other short or medium repeats; (5) the short and medium repeat regions in SC mediate many conformations causing diverse and complex plastome structures, and six new conformations are discovered; (6) forty-eight species sampled have high GC content (>50%) but three species in the Sinensis group have ∼30% GC content in plastomes, similar to most vascular plants; (7) the Sinensis group is monophyletic, includes at least two subgroups, and has the smallest plastomes in land plants except some parasitic plants, and their plastomes do not contain any tRNAs; (8) the younger lineages in Selaginella tend to have higher GC content, whereas the older lineages tend to have lower GC content; and (9) because of incomplete genomic data and abnormal structures or some unknown reasons, even the concatenated plastomes could not well resolve the phylogenetic relationships in Selaginella with confidence, highlighting the difficulty in resolving the phylogeny and evolution of this particularly important land plant lineage.
Collapse
Affiliation(s)
- Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650091, China
| | - Jing Zhao
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China
| | - Jian-Jun Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650091, China
| | | | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Li-Bing Zhang
- Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Ren Q, Wang YC, Lin Y, Zhen Z, Cui Y, Qin S. The extremely large chloroplast genome of the green alga Haematococcus pluvialis: Genome structure, and comparative analysis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Fan R, Ma W, Liu S, Huang Q. Integrated analysis of three newly sequenced fern chloroplast genomes: Genome structure and comparative analysis. Ecol Evol 2021; 11:4550-4563. [PMID: 33976830 PMCID: PMC8093657 DOI: 10.1002/ece3.7350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Some ferns have medicinal properties and are used in therapeutic interventions. However, the classification and phylogenetic relationships of ferns remain incompletely reported. Considering that chloroplast genomes provide ideal information for species identification and evolution, in this study, three unpublished and one published ferns were sequenced and compared with other ferns to obtain comprehensive information on their classification and evolution. MATERIALS AND METHODS The complete chloroplast genomes of Dryopteris goeringiana (Kunze) Koidz, D. crassirhizoma Nakai, Athyrium brevifrons Nakai ex Kitagawa, and Polystichum tripteron (Kunze) Presl were sequenced using the Illumina HiSeq 4,000 platform. Simple sequence repeats (SSRs), nucleotide diversity analysis, and RNA editing were investigated in all four species. Genome comparison and inverted repeats (IR) boundary expansion and contraction analyses were also performed. The relationships among the ferns were studied by phylogenetic analysis based on the whole chloroplast genomes. RESULTS The whole chloroplast genomes ranged from 148,539 to 151,341 bp in size and exhibited typical quadripartite structures. Ten highly variable loci with parsimony informative (Pi) values of > 0.02 were identified. A total of 75-108 SSRs were identified, and only six SSRs were present in all four ferns. The SSRs contained a higher number of A + T than G + C bases. C-to-U conversion was the most common type of RNA editing event. Genome comparison analysis revealed that single-copy regions were more highly conserved than IR regions. IR boundary expansion and contraction varied among the four ferns. Phylogenetic analysis showed that species in the same genus tended to cluster together with and had relatively close relationships. CONCLUSION The results provide valuable information on fern chloroplast genomes that will be useful to identify and classify ferns, and study their phylogenetic relationships and evolution.
Collapse
Affiliation(s)
- Ruifeng Fan
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Wei Ma
- School of PharmacyHeilongjiang University of Chinese MedicineHarbinChina
| | - Shilei Liu
- Experimental Teaching & Practical Training CenterHeilongjiang University of Chinese MedicineHarbinChina
| | - Qingyang Huang
- Department of EcologyInstitute of Natural Resources and EcologyHeilongjiang Academy of ScienceHarbinChina
| |
Collapse
|
12
|
Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers. Int J Mol Sci 2021; 22:ijms22020641. [PMID: 33440692 PMCID: PMC7827865 DOI: 10.3390/ijms22020641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/20/2023] Open
Abstract
The early vascular plants in the genus Selaginella, which is the sole genus of the Selaginellaceae family, have an important place in evolutionary history, along with ferns, as such plants are valuable resources for deciphering plant evolution. In this study, we sequenced and assembled the plastid genome (plastome) sequences of two Selaginella tamariscina individuals, as well as Selaginella stauntoniana and Selaginella involvens. Unlike the inverted repeat (IR) structures typically found in plant plastomes, Selaginella species had direct repeat (DR) structures, which were confirmed by Oxford Nanopore long-read sequence assembly. Comparative analyses of 19 lycophytes, including two Huperzia and one Isoetes species, revealed unique phylogenetic relationships between Selaginella species and related lycophytes, reflected by structural rearrangements involving two rounds of large inversions that resulted in dynamic changes between IR and DR blocks in the plastome sequence. Furthermore, we present other uncommon characteristics, including a small genome size, drastic reductions in gene and intron numbers, a high GC content, and extensive RNA editing. Although the 16 Selaginella species examined may not fully represent the genus, our findings suggest that Selaginella plastomes have undergone unique evolutionary events yielding genomic features unparalleled in other lycophytes, ferns, or seed plants.
Collapse
|
13
|
Kang JS, Zhang HR, Wang YR, Liang SQ, Mao ZY, Zhang XC, Xiang QP. Distinctive evolutionary pattern of organelle genomes linked to the nuclear genome in Selaginellaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1657-1672. [PMID: 33073395 DOI: 10.1111/tpj.15028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/21/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Plastids and mitochondria are endosymbiotic organelles that store genetic information. The genomes of these organelles generally exhibit contrasting patterns regarding genome architecture and genetic content. However, they have similar genetic features in Selaginellaceae, and little is known about what causes parallel evolution. Here, we document the multipartite plastid genomes (plastomes) and the highly divergent mitochondrial genomes (mitogenomes) from spikemoss obtained by combining short- and long-reads. The 188-kb multipartite plastome has three ribosomal operon copies in the master genomic conformation, creating the alternative subgenomic conformation composed of 110- and 78-kb subgenomes. The long-read data indicated that the two different genomic conformations were present in almost equal proportions in the plastomes of Selaginella nipponica. The mitogenome of S. nipponica was assembled into 27 contigs with a total size of 110 kb. All contigs contained directly arranged repeats at both ends, which introduced multiple conformations. Our results showed that plastomes and mitogenomes share high tRNA losses, GC-biased nucleotides, elevated substitution rates and complicated organization. The exploration of nuclear-encoded organelle DNA replication, recombination and repair proteins indicated that, several single-targeted proteins, particularly plastid-targeted recombinase A1, have been lost in Selaginellaceae; conversely, the dual-targeted proteins remain intact. According to the reported function of recombinase A1, we propose that the plastomes of spikemoss often fail to pair homologous sequences during recombination, and the dual-targeted proteins play a key role in the convergent genetic features of plastomes and mitogenomes. Our results provide a distinctive evolutionary pattern of the organelle genomes in Selaginellaceae and evidence of their convergent evolution.
Collapse
Affiliation(s)
- Jong-Soo Kang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ya-Rong Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Si-Qi Liang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Yuan Mao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
14
|
Du XY, Lu JM, Li DZ. Extreme plastid RNA editing may confound phylogenetic reconstruction: A case study of Selaginella (lycophytes). PLANT DIVERSITY 2020; 42:356-361. [PMID: 33134619 PMCID: PMC7584784 DOI: 10.1016/j.pld.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 05/22/2023]
Abstract
Cytidine-to-uridine (C-to-U) RNA editing is common in coding regions of organellar genomes throughout land plants. In most cases RNA editing alters translated amino acids or creates new start codons, potentially confounds phylogenetic reconstructions. In this study, we used the spike moss genus Selaginella (lycophytes), which has the highest frequency of RNA editing, as a model to test the effects of extreme RNA editing on phylogenetic reconstruction. We predicted the C-to-U RNA editing sites in coding regions of 18 Selaginella plastomes, and reconstructed the phylogenetic relationships within Selaginella based on three data set pairs consisted of plastome or RNA-edited coding sequences, first and second codon positions, and translated amino acid sequences, respectively. We predicted between 400 and 3100 RNA editing sites of 18 Selaginella plastomes. The numbers of RNA editing sites in plastomes were highly correlated with the GC content of first and second codon positions, but not correlated with the GC content of plastomes as a whole. Contrast phylogenetic analyses showed that there were substantial differences (e.g., the placement of clade B in Selaginella) between the phylogenies generated by the plastome and RNA-edited data sets. This empirical study provides evidence that extreme C-to-U RNA editing in the coding regions of organellar genomes alters the sequences used for phylogenetic reconstruction, and might even confound phylogenetic reconstruction. Therefore, RNA editing sites should be corrected when plastid or mitochondrial genes are used for phylogenetic studies, particularly in those lineages with abundant organellar RNA editing sites, such as hornworts, quillworts, spike mosses, and some seed plants.
Collapse
Affiliation(s)
- Xin-Yu Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Road, Kunming, Yunnan 650201, China
| | - Jin-Mei Lu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 19 Qingsong Road, Kunming, Yunnan 650201, China
| |
Collapse
|
15
|
Liu L, Du Y, Shen C, Li R, Lee J, Li P. The complete chloroplast genome of Papaver setigerum and comparative analyses in Papaveraceae. Genet Mol Biol 2020; 43:e20190272. [PMID: 32808964 PMCID: PMC7433754 DOI: 10.1590/1678-4685-gmb-2019-0272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 05/08/2020] [Indexed: 11/22/2022] Open
Abstract
Papaver setigerum is an annual herb that is closely related to the opium poppy, P. somniferum. Genetic resources for P. setigerum are scarce. In the present study, we assembled the complete chloroplast (cp) genome of P. setigerum based on genome skimming data, and we conducted comparative cp genome analyses to study the evolutionary pattern in Papaveraceae. The cp genome of P. setigerum is 152,862 bp in length with a typical quadripartite structure. Comparative analyses revealed no gene rearrangement in the Papaveraceae family, although differences were evident in genome size, gene losses, as well as inverted repeats (IR) region expansion and contraction. The rps15 gene has been lost from the genomes of Meconopsis racemosa, Coreanomecon hylomeconoides, P. orientale, P. somniferum, and P. setigerum, and the ycf15 gene is found only in C. hylomeconoides. Moreover, 13 cpDNA markers, including psbA-trnH, rps16-trnQ, trnS-trnG, trnC-petN, trnE-trnT, trnL-trnF, trnF-ndhJ, petA-psbJ, ndhF-rpl32, rpl32-trnL, ccsA-ndhD, ndhE-ndhG, and rps15-ycf1, were identified with relatively high levels of variation within Papaver, which will be useful for species identification in this genus. Among those markers, psbA-trnH is the best one to distinguish P. somniferum and P. setigerum.
Collapse
Affiliation(s)
- Luxian Liu
- Henan University, School of Life Sciences, Key Laboratory of
Plant Stress Biology, Kaifeng, China
| | - Yingxue Du
- Henan University, School of Life Sciences, Key Laboratory of
Plant Stress Biology, Kaifeng, China
| | - Cheng Shen
- Zhejiang University, College of Life Sciences, The Key
Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of
Education, Hangzhou, China
| | - Rui Li
- Food inspection and Testing Institute of Henan Province,
Physical and Chemical Laboratory, Zhengzhou, China
| | - Joongku Lee
- Chungnam National University, Department of Environment and
Forest Resources, Daejeon, South Korea
| | - Pan Li
- Zhejiang University, College of Life Sciences, The Key
Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of
Education, Hangzhou, China
| |
Collapse
|
16
|
Wood D, Besnard G, Beerling DJ, Osborne CP, Christin PA. Phylogenomics indicates the "living fossil" Isoetes diversified in the Cenozoic. PLoS One 2020; 15:e0227525. [PMID: 32555586 PMCID: PMC7302493 DOI: 10.1371/journal.pone.0227525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
The fossil record provides an invaluable insight into the temporal origins of extant lineages of organisms. However, establishing the relationships between fossils and extant lineages can be difficult in groups with low rates of morphological change over time. Molecular dating can potentially circumvent this issue by allowing distant fossils to act as calibration points, but rate variation across large evolutionary scales can bias such analyses. In this study, we apply multiple dating methods to genome-wide datasets to infer the origin of extant species of Isoetes, a group of mostly aquatic and semi-aquatic isoetalean lycopsids, which closely resemble fossil forms dating back to the Triassic. Rate variation observed in chloroplast genomes hampers accurate dating, but genome-wide nuclear markers place the origin of extant diversity within this group in the mid-Paleogene, 45-60 million years ago. Our genomic analyses coupled with a careful evaluation of the fossil record indicate that despite resembling forms from the Triassic, extant Isoetes species do not represent the remnants of an ancient and widespread group, but instead have spread around the globe in the relatively recent past.
Collapse
Affiliation(s)
- Daniel Wood
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Guillaume Besnard
- CNRS, Université de Toulouse, IRD, UMR 5174, EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - David J. Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Colin P. Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
17
|
Park J, Kim Y, Lee GH, Park CH. The complete chloroplast genome of Selaginella tamariscina (Beauv.) Spring (Selaginellaceae) isolated in Korea. Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1715885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Jongsun Park
- Infoboss Co. Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Yongsung Kim
- Infoboss Co. Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Gi-Hun Lee
- National Institute of Biological Resources, Incheon, Korea
| | - Chan-Ho Park
- National Institute of Biological Resources, Incheon, Korea
| |
Collapse
|
18
|
Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns. Genes Genomics 2020; 42:553-570. [PMID: 32200544 DOI: 10.1007/s13258-020-00923-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chloroplasts are a common character in plants. The chloroplasts in each plant lineage have shaped their own genomes, plastomes, by structural changes and transferring many genes to nuclear genomes during plant evolution. Some plastid genes have introns that are mostly group II introns. OBJECTIVE This study aimed to get genomic and evolutionary insights on the plastomes from green algae to flowering plants. METHODS Plastomes of 115 species from green algae, bryophytes, pteridophytes (spore bearing vascular plants), gymnosperms, and angiosperms were mined from NCBI organelle genome database. Plastome structure, gene contents and GC contents were analyzed by the in-house developed Phyton code. Intronic features including presence/absence, length, intron phases were analyzed by manually in the annotated information in NCBI. RESULTS The canonical quadripartite structures were retained in most plastomes except of a few plastomes that had lost an invert repeat (IR). Expansion or reduction or deletion of IRs resulted in the length variation of the plastomes. The number of protein coding genes ranged from 40 to 92 with an average 79.43 ± 5.84 per plastome and gene losses were apparent in specific lineages. The number of trn genes ranged from 13 to 33 with an average 21.19 ± 2.42 per plastome. Ribosomal RNA genes, rrn, were located in the IRs so that they were present in a duplicate except of the species that had lost one of the IR. GC contents were variable from 24.9 to 51.0% with an average 38.21 ± 3.27%, indicating bias to high AT contents. Plastid introns were present in 18 protein coding genes, six trn genes, and one rrn gene. Intron losses occurred among the orthologous genes in different plant lineages. The plastid introns were long compared with the nuclear introns, which might be related with the spliceosome nuclear introns and self-splicing group II plastid introns. The trnK-UUU intron contained the maturase encoding matK gene except in the chlorophyte algae and monilophyte ferns in which the trnK-UUU was lost, but matK retained. There were many annotation artefacts in the intron positions in the NCBI database. In the analysis of intron phases, phase 0 introns were more frequent than those of phase 2 and 3 introns. Phase polymorphism was observed in the introns of clpP which was derived from nucleotide insertion. Plastid trn introns were long compared to the archaeal or eukaryotic nuclear tRNA introns. Of the six plastid trn introns, one was at the D loop and other five were at the anticodon loop. The insertion sites were conserved among the trn genes in archaea, eukaryotic nuclear and plastid tRNA genes. CONCLUSIONS Current study refurbrished the previous findings of structural variations, gene contents, and GC contents of the chloroplast genomes from green algae to flowering plants. The study also included some noble findings and discussions on the plastome introns including their length variations and phase variation. We also presented and corrected some false annotations on the introns in protein coding and tRNA genes in the genome database, which might be confirmed by the chloroplast transcriptome analysis in the future.
Collapse
|
19
|
Plastome-based phylogenomics resolves the placement of the sanguinolenta group in the spikemoss of lycophyte (Selaginellaceae). Mol Phylogenet Evol 2020; 147:106788. [PMID: 32173413 DOI: 10.1016/j.ympev.2020.106788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/10/2020] [Accepted: 03/09/2020] [Indexed: 11/27/2022]
Abstract
Selaginellaceae have been shown to be monophyletic in previous studies, and include only the single genus Selaginella. However, the two most recent classifications of the genus disagree in terms of the number of subgenera recognized, and the position of problematic clades such as the "sanguinolenta" group, which has been resolved in quite different positions in different studies. Here, we performed a plastid-genome based phylogenomic analysis of Selaginellaceae to address this problem. The sanguinolenta group, represented here by three species, was resolved as sister to the remaining members of subg. Stachygynandrum. Additionally, subg. Exaltatae, subg. Ericetorum, and subg. Gymnogynum in clade A clustered into a well supported monophyletic clade but with conflicting topology between subgenera inside, which is possibly attributed to the early divergence among them. We uncovered substantial variation in both synonymous (dS) and nonsynonymous (dN) substitution rate, and GC content in plastomes of Selaginellaceae. The values of dS, dN, and GC content were significantly higher than those of other lycophytes (Isoetaceae and Lycopodiaceae). We observed a significant positive correlation between the high GC content, and the elevated dS and dN rates. In addition, the dS and dN values inferred among branches of Selaginellaceae were extremely variable. Our data indicate that this unevenly distributed substitution rate likely reflected relaxed or intensified selection among different lineages, which is possibly related to the inconsistency of the subgeneric phylogenetic topologies of Selaginellaceae.
Collapse
|
20
|
Lee K, Park SJ, Colas des Francs-Small C, Whitby M, Small I, Kang H. The coordinated action of PPR4 and EMB2654 on each intron half mediates trans-splicing of rps12 transcripts in plant chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1193-1207. [PMID: 31442349 DOI: 10.1111/tpj.14509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 05/21/2023]
Abstract
The pentatricopeptide repeat proteins PPR4 and EMB2654 have been shown to be required for the trans-splicing of plastid rps12 transcripts in Zea mays (maize) and Arabidopsis, respectively, but their roles in this process are not well understood. We investigated the functions of the Arabidopsis and Oryza sativa (rice) orthologs of PPR4, designated AtPPR4 (At5g04810) and OsPPR4 (Os4g58780). Arabidopsis atppr4 and rice osppr4 mutants are embryo-lethal and seedling-lethal 3 weeks after germination, respectively, showing that PPR4 is essential in the development of both dicot and monocot plants. Artificial microRNA-mediated mutants of AtPPR4 displayed a specific defect in rps12 trans-splicing, with pale-green, yellowish or albino phenotypes, according to the degree of knock-down of AtPPR4 expression. Comparison of RNA footprints in atppr4 and emb2654 mutants showed a similar concordant loss of extensive footprints at the 3' end of intron 1a and at the 5' end of intron 1b in both cases. EMB2654 is known to bind within the footprint region in intron 1a and we show that AtPPR4 binds to the footprint region in intron 1b, via its PPR motifs. Binding of both PPR4 and EMB2654 is essential to juxtapose the two intron halves and to maintain the RNAs in a splicing-competent structure for the efficient trans-splicing of rps12 intron 1, which is crucial for chloroplast biogenesis and plant development. The similarity of EMB2654 and PPR4 orthologs and their respective binding sites across land plant phylogeny indicates that their coordinate function in rps12 trans-splicing has probably been conserved for 500 million years.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Catherine Colas des Francs-Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael Whitby
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
- AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
21
|
Zhang HR, Zhang XC, Xiang QP. Directed Repeats Co-occur with Few Short-Dispersed Repeats in Plastid Genome of a Spikemoss, Selaginella vardei (Selaginellaceae, Lycopodiopsida). BMC Genomics 2019; 20:484. [PMID: 31185895 PMCID: PMC6560725 DOI: 10.1186/s12864-019-5843-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/24/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND It is hypothesized that the highly conserved inverted repeats (IR) structure of land plant plastid genomes (plastomes) is beneficial for stabilizing plastome organization, whereas the mechanism of the occurrence and stability maintenance of the recently reported direct repeats (DR) structure is yet awaiting further exploration. Here we describe the DR structure of the Selaginella vardei (Selaginellaceae) plastome, to elucidate the mechanism of DR occurrence and stability maintenance. RESULTS The plastome of S. vardei is 121,254 bp in length and encodes 76 genes, of which 62 encode proteins, 10 encode tRNAs, and four encode rRNAs. Unexpectedly, the two identical rRNA gene regions (13,893 bp) are arranged in a direct orientation (DR), rather than inverted. Comparing to the IR organization in Isoetes flaccida (Isoetaceae, Lycopodiopsida) plastome, a ca. 50-kb trnN-trnF inversion that spans one DR copy was found in the plastome of S. vardei, which might cause the orientation change. In addition, we find extremely rare short dispersed repeats (SDRs) in the plastomes of S. vardei and its closely related species S. indica. CONCLUSIONS We suggest that the ca. 50-kb inversion resulted in the DR structure, and the reduction in SDRs plays a key role in maintaining the stability of plastomes with DR structure by avoiding potential secondary recombination. We further confirmed the presence of homologous recombination between DR regions, which are able to generate subgenomes and form diverse multimers. Our study deepens the understanding of Selaginella plastomes and provides new insights into the diverse plastome structures in land plants.
Collapse
Affiliation(s)
- Hong-Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| | - Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
22
|
Zhang HR, Xiang QP, Zhang XC. The Unique Evolutionary Trajectory and Dynamic Conformations of DR and IR/DR-Coexisting Plastomes of the Early Vascular Plant Selaginellaceae (Lycophyte). Genome Biol Evol 2019; 11:1258-1274. [PMID: 30937434 PMCID: PMC6486807 DOI: 10.1093/gbe/evz073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2019] [Indexed: 12/23/2022] Open
Abstract
Both direct repeats (DR) and inverted repeats (IR) are documented in the published plastomes of Selaginella species indicating the unusual and diverse plastome structure in the family Selaginellaceae. In this study, we newly sequenced complete plastomes of seven species from five main lineages of Selaginellaceae and also resequenced three species (Selaginella tamariscina, Selaginella uncinata, and Selaginella moellendorffii) to explore the evolutionary trajectory of Selaginellaceae plastomes. Our results showed that the plastomes of Selaginellaceae vary remarkably in size, gene contents, gene order, and GC contents. Notably, both DR and IR structures existed in the plastomes of Selaginellaceae with DR structure being an ancestral state. The occurrence of DR structure was at ∼257 Ma and remained in most subgenera of Selaginellaceae, whereas IR structure only reoccurred in Selaginella sect. Lepidophyllae (∼143 Ma) and Selaginella subg. Heterostachys (∼19 Ma). The presence of a pair of large repeats psbK-trnQ, together with DR/IR region in Selaginella bisulcata, Selaginella pennata, S. uncinata, and Selaginella hainanensis, could frequently mediate diverse homologous recombination and create approximately equal stoichiometric isomers (IR/DR-coexisting) and subgenomes. High proportion of repeats is presumably responsible for the dynamic IR/DR-coexisting plastomes, which possess a lower synonymous substitution rate (dS) compared with DR-possessing and IR-possessing plastomes. We propose that the occurrence of DR structure, together with few repeats, is possibly selected to keep the stability of plastomes and the IR/DR-coexisting plastomes also reached an equilibrium in plastome organization through highly efficient homologous recombination to maintain stability.
Collapse
Affiliation(s)
- Hong-Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Mower JP, Ma P, Grewe F, Taylor A, Michael TP, VanBuren R, Qiu Y. Lycophyte plastid genomics: extreme variation in GC, gene and intron content and multiple inversions between a direct and inverted orientation of the rRNA repeat. THE NEW PHYTOLOGIST 2019; 222:1061-1075. [PMID: 30556907 PMCID: PMC6590440 DOI: 10.1111/nph.15650] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Lycophytes are a key group for understanding vascular plant evolution. Lycophyte plastomes are highly distinct, indicating a dynamic evolutionary history, but detailed evaluation is hindered by the limited availability of sequences. Eight diverse plastomes were sequenced to assess variation in structure and functional content across lycophytes. Lycopodiaceae plastomes have remained largely unchanged compared with the common ancestor of land plants, whereas plastome evolution in Isoetes and especially Selaginella is highly dynamic. Selaginella plastomes have the highest GC content and fewest genes and introns of any photosynthetic land plant. Uniquely, the canonical inverted repeat was converted into a direct repeat (DR) via large-scale inversion in some Selaginella species. Ancestral reconstruction identified additional putative transitions between an inverted and DR orientation in Selaginella and Isoetes plastomes. A DR orientation does not disrupt the activity of copy-dependent repair to suppress substitution rates within repeats. Lycophyte plastomes include the most archaic examples among vascular plants and the most reconfigured among land plants. These evolutionary trends correlate with the mitochondrial genome, suggesting shared underlying mechanisms. Copy-dependent repair for DR-localized genes indicates that recombination and gene conversion are not inhibited by the DR orientation. Gene relocation in lycophyte plastomes occurs via overlapping inversions rather than transposase/recombinase-mediated processes.
Collapse
Affiliation(s)
- Jeffrey P. Mower
- Center for Plant Science InnovationUniversity of NebraskaLincolnNE68588USA
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNE68583USA
| | - Peng‐Fei Ma
- Center for Plant Science InnovationUniversity of NebraskaLincolnNE68588USA
- Germplasm Bank of Wild SpeciesKunming Institute of BotanyChinese Academy of SciencesKunmingYunnan650201China
| | - Felix Grewe
- Grainger Bioinformatics Center, Science and EducationField Museum of Natural HistoryChicagoIL60605USA
| | - Alex Taylor
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| | | | - Robert VanBuren
- Department of HorticultureMichigan State UniversityEast LansingMI48824USA
| | - Yin‐Long Qiu
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
24
|
Ruiz-Ruano FJ, Navarro-Domínguez B, Camacho JPM, Garrido-Ramos MA. Full plastome sequence of the fern Vandenboschia speciosa (Hymenophyllales): structural singularities and evolutionary insights. JOURNAL OF PLANT RESEARCH 2019; 132:3-17. [PMID: 30552526 DOI: 10.1007/s10265-018-1077-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 05/14/2023]
Abstract
We provide here the first full chloroplast genome sequence, i.e., the plastome, for a species belonging to the fern order Hymenophyllales. The phylogenetic position of this order within leptosporangiate ferns, together with the general scarcity of information about fern plastomes, places this research as a valuable study on the analysis of the diversity of plastomes throughout fern evolution. Gene content of V. speciosa plastome was similar to that in most ferns, although there were some characteristic gene losses and lineage-specific differences. In addition, an important number of genes required U to C RNA editing for proper protein translation and two genes showed start codons alternative to the canonical AUG (AUA). Concerning gene order, V. speciosa shared the specific 30-kb inversion of euphyllophytes plastomes and the 3.3-kb inversion of fern plastomes, keeping the ancestral gene order shared by eusporangiate and early leptosporangiate ferns. Conversely, V. speciosa has expanded IR regions comprising the rps7, rps12, ndhB and trnL genes in addition to rRNA and other tRNA genes, a condition shared with several eusporangiate ferns, lycophytes and hornworts, as well as most seed plants.
Collapse
Affiliation(s)
- F J Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - B Navarro-Domínguez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - J P M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
25
|
Lin N, Moore MJ, Deng T, Sun H, Yang L, Sun Y, Wang H. Complete plastome sequencing from Toona (Meliaceae) and phylogenomic analyses within Sapindales. APPLICATIONS IN PLANT SCIENCES 2018; 6:e1040. [PMID: 30131882 PMCID: PMC5947613 DOI: 10.1002/aps3.1040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/29/2017] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Toona (Meliaceae, Sapindales) is a small genus of five species of trees native from southern and eastern Asia to New Guinea and Australia. Complete plastomes were sequenced for three Toona species to provide a basis for future plastome genetic studies in threatened species of Toona. In addition, plastome structural evolution and phylogenetic relationships across Sapindales were explored with a larger data set of 29 Sapindales plastomes (including members of six out of nine families). METHODS The plastomes were determined using the Illumina sequencing platform; the phylogenetic analyses were conducted using maximum likelihood by RAxML. RESULTS The lengths of three Toona plastomes range from 159,185 to 158,196 bp. A total of 113 unique genes were found in each plastome. Across Sapindales, plastome gene structure and content were largely conserved, with the exception of the contraction of the inverted repeat region to exclude ycf1 in some species of Rutaceae and Sapindaceae, and the movement of trnI-GAU and trnA-UGC to a position outside the inverted repeat region in some Rutaceae species. DISCUSSION The three Toona plastomes possess the typical structure of angiosperm plastomes. Phylogenomic analysis of Sapindales recovered a mostly strongly supported phylogeny of Sapindales, including most of the backbone relationships, with some improvements compared to previous targeted-gene analyses.
Collapse
Affiliation(s)
- Nan Lin
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenChinese Academy of SciencesWuhanHubeiChina
- University of the Chinese Academy of SciencesBeijingChina
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | | | - Tao Deng
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East AsiaKunming Institute of BotanyChinese Academy of SciencesKunmingYunnanChina
| | - Lin‐sen Yang
- Hubei Key Laboratory of Shennongjia Golden Monkey Conservation BiologyAdministration of Shennongjia National ParkShennongjiaHubeiChina
| | - Yan‐xia Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenChinese Academy of SciencesWuhanHubeiChina
| | - Heng‐chang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenChinese Academy of SciencesWuhanHubeiChina
| |
Collapse
|
26
|
Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species. PLoS One 2018; 13:e0192966. [PMID: 29596414 PMCID: PMC5875761 DOI: 10.1371/journal.pone.0192966] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Pinaceae, the largest family of conifers, has a diversified organization of chloroplast (cp) genomes with two typical highly reduced inverted repeats (IRs). In the current study, we determined the complete sequence of the cp genome of an economically and ecologically important conifer tree, the loblolly pine (Pinus taeda L.), using Illumina paired-end sequencing and compared the sequence with those of other pine species. The results revealed a genome size of 121,531 base pairs (bp) containing a pair of 830-bp IR regions, distinguished by a small single copy (42,258 bp) and large single copy (77,614 bp) region. The chloroplast genome of P. taeda encodes 120 genes, comprising 81 protein-coding genes, four ribosomal RNA genes, and 35 tRNA genes, with 151 randomly distributed microsatellites. Approximately 6 palindromic, 34 forward, and 22 tandem repeats were found in the P. taeda cp genome. Whole cp genome comparison with those of other Pinus species exhibited an overall high degree of sequence similarity, with some divergence in intergenic spacers. Higher and lower numbers of indels and single-nucleotide polymorphism substitutions were observed relative to P. contorta and P. monophylla, respectively. Phylogenomic analyses based on the complete genome sequence revealed that 60 shared genes generated trees with the same topologies, and P. taeda was closely related to P. contorta in the subgenus Pinus. Thus, the complete P. taeda genome provided valuable resources for population and evolutionary studies of gymnosperms and can be used to identify related species.
Collapse
|
27
|
Wu YD, Zhang HR, Zhang XC. Selaginella guihaia (Selaginellaceae): A new spikemoss species from southern China and northern Vietnam around the Gulf of Tonkin. PHYTOKEYS 2017; 80:41-52. [PMID: 28781557 PMCID: PMC5543269 DOI: 10.3897/phytokeys.80.11126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Selaginella guihaiasp. nov. (Selaginellaceae), a new species of spikemoss from southern China and northern Vietnam around the Gulf of Tonkin (Beibu Gulf), is described and illustrated. Morphological and molecular comparisons of the new species with other similar species (S. doederleinii, S. ornata and S. trachyphylla) are provided. The morphological and molecular evidence clearly indicates S. guihaia is a distinct species. Morphologically S. guihaia differs from other species by its obviously white-margined leaves, the ventral leaves scabrous on upper surfaces throughout the basiscopic or also rarely present on upper halves, and the ovate axillary leaves.
Collapse
Affiliation(s)
- Yu-Dong Wu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
28
|
Yu B, Cai W, Zhang HH, Zhong YS, Fang J, Zhang WY, Mo L, Wang LC, Yu CH. Selaginella uncinata flavonoids ameliorated ovalbumin-induced airway inflammation in a rat model of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:71-80. [PMID: 27916586 DOI: 10.1016/j.jep.2016.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/06/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Selaginella uncinata (Desv.) Spring, known as "Cuiyuncao", is a perennial herb widely distributed in the Southeast Asian countries. In the folk medicine, the local minority commonly use it to treat cough and asthma for centuries. AIM OF THE STUDY This study was carried out to investigate the protective mechanisms of total flavonoids from S. uncinata (SUF) on airway hyperresponsiveness, cytokine release and bitter taste receptors (T2Rs) signaling with emphasis on inflammatory responses in a rat model of ovalbumin (OVA)-induced asthma. MATERIALS AND METHODS Rats were sensitized and challenged with OVA to induce typical asthmatic reactions. Pathological changes of lung tissue were examined by HE staining. The serum levels of T cell-associated cytokines (IFN-γ, IL-4, IL-5 and IL-13), total IgE and OVA-specific IgE were determined by enzyme-linked immunosorbent assay (ELISA). Gene expressions of T2R10, IP3R1 and Orai1 in lung tissue were assayed by fluorescence quantitative real-time polymerase chain reaction (FQ-PCR) while protein expressions of NFAT1 and c-Myc were assayed by western blot analysis. The activation of SUF was investigated on tansgentic T2R10-GFP HEK293 cells. RESULTS SUF treatment attenuated airway hyperresponsiveness and goblet cell hyperplasia compared with OVA-challenged asthmatic rats. The serum levels of IL-4, IL-5 and IL-13 as well as total and OVA-specific IgE were decreased while serum IFN-γ was increased in SUF-treated rats. SUF treatment significantly up-regulated T2R10 gene expression, down-regulated IP3R1 and Orai1 gene expression. SUF further suppressed eotaxin, NFAT1 and c-Myc protein expression in lung tissues of OVA-challenged rats. CONCLUSIONS These results imply that SUF exerts anti-inflammatory function through the T2R10/IP3R1/NFAT1 dependent signaling pathway, and may warrant further evaluation as a possible agent for the treatment of asthma.
Collapse
Affiliation(s)
- Bing Yu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wei Cai
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo 315100, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Yu-Sen Zhong
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Wen-You Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Li Mo
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Lu-Chen Wang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China.
| |
Collapse
|
29
|
Guo ZY, Zhang HR, Shrestha N, Zhang XC. Complete chloroplast genome of a valuable medicinal plant, Huperzia serrata (Lycopodiaceae), and comparison with its congener. APPLICATIONS IN PLANT SCIENCES 2016; 4:apps1600071. [PMID: 27843724 PMCID: PMC5104525 DOI: 10.3732/apps.1600071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/11/2016] [Indexed: 05/12/2023]
Abstract
PREMISE OF THE STUDY Here we report the complete chloroplast genome of the important medicinal species Huperzia serrata (Lycopodiaceae) and compare it to the chloroplast genome of the congeneric species H. lucidula. METHODS AND RESULTS The whole chloroplast genome of H. serrata was sequenced using an Illumina platform and assembled with Geneious version R9.0.5. The genome size of H. serrata was 154,176 bp, with 36.3% GC content. The complete chloroplast genome contained 120 unique genes, including 86 coding genes, four rRNA genes, and 30 tRNA genes. Comparison with the chloroplast genome of H. lucidula revealed three highly variable regions (rps16-chlB, ycf12-trnR, and ycf1) between these two species and 252 mutation events including 27 insertion/deletion polymorphisms and 225 single-nucleotide polymorphisms (SNPs). Ninety-two SNPs were identified in the gene-coding regions. In addition, 18 microsatellite sites were found, which can potentially be used in phylogeographic studies. CONCLUSIONS The complete chloroplast genome of H. serrata is reported here, and will be a valuable genome resource for further phylogenetic, evolutionary, and medical studies of medicinal plants in the genus Huperzia.
Collapse
Affiliation(s)
- Zhi-You Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People’s Republic of China
- College of Biological Sciences and Agriculture, Qiannan Normal University for Nationalities, Guizhou 558000, People’s Republic of China
| | - Hong-Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Nawal Shrestha
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People’s Republic of China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People’s Republic of China
- Author for correspondence:
| |
Collapse
|
30
|
Oldenkott B, Yamaguchi K, Tsuji-Tsukinoki S, Knie N, Knoop V. Chloroplast RNA editing going extreme: more than 3400 events of C-to-U editing in the chloroplast transcriptome of the lycophyte Selaginella uncinata. RNA (NEW YORK, N.Y.) 2014; 20:1499-506. [PMID: 25142065 PMCID: PMC4174432 DOI: 10.1261/rna.045575.114] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
RNA editing in chloroplasts and mitochondria of land plants differs significantly in abundance. For example, some 200-500 sites of cytidine-to-uridine RNA editing exist in flowering plant mitochondria as opposed to only 30-50 such C-to-U editing events in their chloroplasts. In contrast, we predicted significantly more chloroplast RNA editing for the protein-coding genes in the available complete plastome sequences of two species of the spike moss genus Selaginella (Lycopodiophyta). To evaluate these predictions we investigated the Selaginella uncinata chloroplast transcriptome. Our exhaustive cDNA studies identified the extraordinary number of 3415 RNA-editing events, exclusively of the C-to-U type, in the 74 mRNAs encoding intact reading frames in the S. uncinata chloroplast. We find the overwhelming majority (61%) of the 428 silent editing events leaving codon meanings unaltered directly neighboring other editing events, possibly suggesting a sterically more flexible RNA-editing deaminase activity in Selaginella. No evidence of RNA editing was found for tRNAs or rRNAs but we identified a total of 74 editing sites in cDNA sequences of four group II introns (petBi6g2, petDi8g2, ycf3i124g2, and ycf3i354g2) retained in partially matured transcripts, which strongly contribute to improved base-pairing in the intron secondary structures as a likely prerequisite for their splicing.
Collapse
Affiliation(s)
- Bastian Oldenkott
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Kazuo Yamaguchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | - Sumika Tsuji-Tsukinoki
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa 920-0934, Japan
| | - Nils Knie
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Volker Knoop
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| |
Collapse
|
31
|
Smith DR. Updating our view of organelle genome nucleotide landscape. Front Genet 2012; 3:175. [PMID: 22973299 PMCID: PMC3438683 DOI: 10.3389/fgene.2012.00175] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/20/2012] [Indexed: 01/25/2023] Open
Abstract
Organelle genomes show remarkable variation in architecture and coding content, yet their nucleotide composition is relatively unvarying across the eukaryotic domain, with most having a high adenine and thymine (AT) content. Recent studies, however, have uncovered guanine and cytosine (GC)-rich mitochondrial and plastid genomes. These sequences come from a small but eclectic list of species, including certain green plants and animals. Here, I review GC-rich organelle DNAs and the insights they have provided into the evolution of nucleotide landscape. I emphasize that GC-biased mitochondrial and plastid DNAs are more widespread than once thought, sometimes occurring together in the same species, and suggest that the forces biasing their nucleotide content can differ both among and within lineages, and may be associated with specific genome architectural features and life history traits.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
|
33
|
Bennert HW, Horn K, Kauth M, Fuchs J, Jakobsen ISB, Ollgaard B, Schnittler M, Steinberg M, Viane R. Flow cytometry confirms reticulate evolution and reveals triploidy in Central European Diphasiastrum taxa (Lycopodiaceae, Lycophyta). ANNALS OF BOTANY 2011; 108:867-76. [PMID: 21835817 PMCID: PMC3177684 DOI: 10.1093/aob/mcr208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Interspecific Diphasiastrum hybrids have been assumed to be homoploid and to produce well-formed spores serving sexual reproduction. If this were the case, forms intermediate between hybrids and parents or hybrid swarms should be expected. The purpose of this study was: (1) to check whether homoploidy consistently applies to the three hybrids throughout their Central European range; (2) to examine whether their genome sizes confirm their parentage as assumed by morphology; and (3) to perform a screening for detection of ploidy levels other than diploid and variation in DNA content due to backcrossing. METHODS Flow cytometry was used first to measure the relative DNA values [with 4',6-diamidino-2-phenylindole (DAPI) staining] and ploidy level as a general screening, and secondly to determine the absolute DNA 2C values [with propidium iodide (PI) staining] in a number of selected samples with the main focus on the hybrids. KEY RESULTS A considerable variation of DNA 2C values (5·26-7·52 pg) was detected between the three European Diphasiastrum species. The values of the diploid hybrids are highly constant without significant variation between regions. They are also intermediate between their assumed parents and agree closely with those calculated from their putative parents. This confirms their hybrid origin, assumed parentage and homoploid status. Considerably higher DNA amounts (9·48-10·30 pg) were obtained for three populations, suggesting that these represent triploid hybrids, an interpretation that is strongly supported by their morphology. CONCLUSIONS Diploid hybrids have retained their genetic and morphological identites throughout their Central European range, and thus no indications for diploid backcrossing were found. The triploid hybrids have probably originated from backcrossing between a diploid gametophyte of a hybrid (derived from a diplospore) and a haploid gametophyte of a diploid parental species. By repeated crossing events, reticulate evolution patterns arise that are similar to those known for a number of ferns.
Collapse
Affiliation(s)
- H Wilfried Bennert
- Lehrstuhl für Evolution und Biodiversität der Pflanzen, Ruhr-Universität Bochum, Bochum, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Smith DR, Burki F, Yamada T, Grimwood J, Grigoriev IV, Van Etten JL, Keeling PJ. The GC-rich mitochondrial and plastid genomes of the green alga Coccomyxa give insight into the evolution of organelle DNA nucleotide landscape. PLoS One 2011; 6:e23624. [PMID: 21887287 PMCID: PMC3162594 DOI: 10.1371/journal.pone.0023624] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/21/2011] [Indexed: 11/19/2022] Open
Abstract
Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kuang DY, Wu H, Wang YL, Gao LM, Zhang SZ, Lu L. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome 2011; 54:663-73. [PMID: 21793699 DOI: 10.1139/g11-026] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here, we report a completely sequenced plastome using Illumina/Solexa sequencing-by-synthesis (SBS) technology. The plastome of Magnolia kwangsiensis Figlar & Noot. is 159 667 bp in length with a typical quadripartite structure: 88 030 bp large single-copy (LSC) and 18 669 bp small single-copy (SSC) regions, separated by two 26 484 bp inverted repeat (IR) regions. The overall predicted gene number is 129, among which 17 genes are duplicated in IR regions. The plastome of M. kwangsiensis is identical in its gene order to previously published plastomes of magnoliids. Furthermore, the C-to-U type RNA editing frequency of 114 seed plants is positively correlated with plastome GC content and plastome length, whereas plastome length is not correlated with GC content. A total of 16 potential putative barcoding or low taxonomic level phylogenetic study markers in Magnoliaceae were detected by comparing the coding and noncoding regions of the plastome of M. kwangsiensis with that of Liriodendron tulipifera L. At least eight markers might be applied not only to Magnoliaceae but also to other taxa. The 86 mononucleotide cpSSRs that distributed in single-copy noncoding regions are highly valuable to study population genetics and conservation genetics of this endangered rare species.
Collapse
Affiliation(s)
- Dai-Yong Kuang
- Shenzhen Fairy Lake Botanical Garden, Guangdong, P.R. China
| | | | | | | | | | | |
Collapse
|
36
|
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. PLANT MOLECULAR BIOLOGY 2011; 76:273-97. [PMID: 21424877 PMCID: PMC3104136 DOI: 10.1007/s11103-011-9762-4] [Citation(s) in RCA: 845] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
Abstract
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.
Collapse
Affiliation(s)
- Susann Wicke
- Department of Biogeography and Botanical Garden, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
37
|
Kuo LY, Li FW, Chiou WL, Wang CN. First insights into fern matK phylogeny. Mol Phylogenet Evol 2011; 59:556-66. [DOI: 10.1016/j.ympev.2011.03.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 02/19/2011] [Accepted: 03/05/2011] [Indexed: 10/18/2022]
|
38
|
Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, dePamphilis C, Albert VA, Aono N, Aoyama T, Ambrose BA, Ashton NW, Axtell MJ, Barker E, Barker MS, Bennetzen JL, Bonawitz ND, Chapple C, Cheng C, Correa LGG, Dacre M, DeBarry J, Dreyer I, Elias M, Engstrom EM, Estelle M, Feng L, Finet C, Floyd SK, Frommer WB, Fujita T, Gramzow L, Gutensohn M, Harholt J, Hattori M, Heyl A, Hirai T, Hiwatashi Y, Ishikawa M, Iwata M, Karol KG, Koehler B, Kolukisaoglu U, Kubo M, Kurata T, Lalonde S, Li K, Li Y, Litt A, Lyons E, Manning G, Maruyama T, Michael TP, Mikami K, Miyazaki S, Morinaga SI, Murata T, Mueller-Roeber B, Nelson DR, Obara M, Oguri Y, Olmstead RG, Onodera N, Petersen BL, Pils B, Prigge M, Rensing SA, Riaño-Pachón DM, Roberts AW, Sato Y, Scheller HV, Schulz B, Schulz C, Shakirov EV, Shibagaki N, Shinohara N, Shippen DE, Sørensen I, Sotooka R, Sugimoto N, Sugita M, Sumikawa N, Tanurdzic M, Theissen G, Ulvskov P, Wakazuki S, Weng JK, Willats WWGT, Wipf D, Wolf PG, Yang L, Zimmer AD, Zhu Q, Mitros T, Hellsten U, Loqué D, Otillar R, Salamov A, Schmutz J, Shapiro H, Lindquist E, Lucas S, Rokhsar D, Grigoriev IV. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 2011; 332:960-3. [PMID: 21551031 PMCID: PMC3166216 DOI: 10.1126/science.1203810] [Citation(s) in RCA: 594] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.
Collapse
Affiliation(s)
- Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gao L, Zhou Y, Wang ZW, Su YJ, Wang T. Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers. BMC PLANT BIOLOGY 2011; 11:64. [PMID: 21486489 PMCID: PMC3098776 DOI: 10.1186/1471-2229-11-64] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/13/2011] [Indexed: 05/12/2023]
Abstract
BACKGROUND The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. RESULTS A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. CONCLUSIONS Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS.
Collapse
Affiliation(s)
- Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yuan Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhi-Wei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ying-Juan Su
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ting Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
40
|
Green BR. Chloroplast genomes of photosynthetic eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:34-44. [PMID: 21443621 DOI: 10.1111/j.1365-313x.2011.04541.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chloroplast genomes have retained a core set of genes from their cyanobacterial ancestor, most of them required for the light reactions of photosynthesis or functions connected with transcription and translation. Other genes have been transferred to the nucleus or were lost in a lineage-specific manner. The genomes are distinguished by the selection of genes retained, whether or not transcripts are edited, presence/absence of introns and small repeats and their physical organization. Plants and green algae have kept fewer plastid genes than either the red algae or the chromistan algae, which obtained their plastids from red algae by secondary endosymbiosis. Photosynthetic dinoflagellates have the fewest (fewer than 20), but still grow photoautotrophically. All chloroplast genomes map as a circle, but there have been extensive rearrangements of gene order even between related species. Genome sizes vary much more than gene content, depending on the extent of gene duplication and small repeats and the size of intergenic spacers.
Collapse
Affiliation(s)
- Beverley R Green
- Botany Department, University of British Columbia, #3529-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
41
|
Karol KG, Arumuganathan K, Boore JL, Duffy AM, Everett KDE, Hall JD, Hansen SK, Kuehl JV, Mandoli DF, Mishler BD, Olmstead RG, Renzaglia KS, Wolf PG. Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evol Biol 2010; 10:321. [PMID: 20969798 PMCID: PMC3087542 DOI: 10.1186/1471-2148-10-321] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 10/23/2010] [Indexed: 11/17/2022] Open
Abstract
Background Despite considerable progress in our understanding of land plant phylogeny, several nodes in the green tree of life remain poorly resolved. Furthermore, the bulk of currently available data come from only a subset of major land plant clades. Here we examine early land plant evolution using complete plastome sequences including two previously unexamined and phylogenetically critical lineages. To better understand the evolution of land plants and their plastomes, we examined aligned nucleotide sequences, indels, gene and nucleotide composition, inversions, and gene order at the boundaries of the inverted repeats. Results We present the plastome sequences of Equisetum arvense, a horsetail, and of Isoetes flaccida, a heterosporous lycophyte. Phylogenetic analysis of aligned nucleotides from 49 plastome genes from 43 taxa supported monophyly for the following clades: embryophytes (land plants), lycophytes, monilophytes (leptosporangiate ferns + Angiopteris evecta + Psilotum nudum + Equisetum arvense), and seed plants. Resolution among the four monilophyte lineages remained moderate, although nucleotide analyses suggested that P. nudum and E. arvense form a clade sister to A. evecta + leptosporangiate ferns. Results from phylogenetic analyses of nucleotides were consistent with the distribution of plastome gene rearrangements and with analysis of sequence gaps resulting from insertions and deletions (indels). We found one new indel and an inversion of a block of genes that unites the monilophytes. Conclusions Monophyly of monilophytes has been disputed on the basis of morphological and fossil evidence. In the context of a broad sampling of land plant data we find several new pieces of evidence for monilophyte monophyly. Results from this study demonstrate resolution among the four monilophytes lineages, albeit with moderate support; we posit a clade consisting of Equisetaceae and Psilotaceae that is sister to the "true ferns," including Marattiaceae.
Collapse
Affiliation(s)
- Kenneth G Karol
- The Lewis B, and Dorothy Cullman Program for Molecular Systematics Studies, The New York Botanical Garden, Bronx, NY 10458, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rai HS, Graham SW. Utility of a large, multigene plastid data set in inferring higher-order relationships in ferns and relatives (monilophytes). AMERICAN JOURNAL OF BOTANY 2010; 97:1444-56. [PMID: 21616899 DOI: 10.3732/ajb.0900305] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PREMISE OF THE STUDY The monilophytes (ferns and relatives)-the third largest group of land plants-exhibit a diverse array of vegetative and reproductive morphologies. Investigations into their early ecological and life-history diversification require accurate, well-corroborated phylogenetic estimates. We examined the utility of a large plastid-based data set in inferring backbone relationships for monilophytes. • METHODS We recovered 17 plastid genes for exemplar taxa using published and new primers. We compared results from maximum-likelihood and parsimony analyses, assessed the effects of removing rapidly evolving characters, and examined the extent to which our data corroborate or contradict the results of other studies, or resolve current ambiguities. • KEY RESULTS Considering multifamily clades, we found bootstrap support comparable to or better than that in published studies that used fewer genes from fewer or more taxa. We firmly establish filmy ferns (Hymenophyllales) as the sister group of all leptosporangiates except Osmundaceae, resolving the second deepest split in leptosporangiate-fern phylogeny. A clade comprising Ophioglossaceae and Psilotaceae is currently accepted as the sister group of other monilophytes, but we recover Equisetum in this position. We also recover marattioid and leptosporangiate ferns as sister groups. Maximum-likelihood rate-class estimates are somewhat skewed when a long-branch lineage (Selaginella) is included, negatively affecting bootstrap support for early branches. • CONCLUSIONS Our findings support the utility of this gene set in corroborating relationships found in previous studies, improving support, and resolving uncertainties in monilophyte phylogeny. Despite these advances, our results also underline the need for continued work on resolving the very earliest splits in monilophyte phylogeny.
Collapse
Affiliation(s)
- Hardeep S Rai
- UBC Botanical Garden & Centre for Plant Research (Faculty of Land & Food Systems), 2357 Main Mall, and Department of Botany, 6270 University Boulevard, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | |
Collapse
|
43
|
Guisinger MM, Kuehl JV, Boore JL, Jansen RK. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 2010; 28:583-600. [PMID: 20805190 DOI: 10.1093/molbev/msq229] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Geraniaceae plastid genomes (plastomes) have experienced a remarkable number of genomic changes. The plastomes of Erodium texanum, Geranium palmatum, and Monsonia speciosa were sequenced and compared with other rosids and the previously published Pelargonium hortorum plastome. Geraniaceae plastomes were found to be highly variable in size, gene content and order, repetitive DNA, and codon usage. Several unique plastome rearrangements include the disruption of two highly conserved operons (S10 and rps2-atpA), and the inverted repeat (IR) region in M. speciosa does not contain all genes in the ribosomal RNA operon. The sequence of M. speciosa is unusually small (128,787 bp); among angiosperm plastomes sequenced to date, only those of nonphotosynthetic species and those that have lost one IR copy are smaller. In contrast, the plastome of P. hortorum is the largest, at 217,942 bp. These genomes have experienced numerous gene and intron losses and partial and complete gene duplications. Some of the losses are shared throughout the family (e.g., trnT-GGU and the introns of rps16 and rpl16); however, other losses are homoplasious (e.g., trnG-UCC intron in G. palmatum and M. speciosa). IR length is also highly variable. The IR in P. hortorum was previously shown to be greatly expanded to 76 kb, and the IR is lost in E. texanum and reduced in G. palmatum (11 kb) and M. speciosa (7 kb). Geraniaceae plastomes contain a high frequency of large repeats (>100 bp) relative to other rosids. Within each plastome, repeats are often located at rearrangement end points and many repeats shared among the four Geraniaceae flank rearrangement end points. GC content is elevated in the genomes and also in coding regions relative to other rosids. Codon usage per amino acid and GC content at third position sites are significantly different for Geraniaceae protein-coding sequences relative to other rosids. Our findings suggest that relaxed selection and/or mutational biases lead to increased GC content, and this in turn altered codon usage. We propose that increases in genomic rearrangements, repetitive DNA, nucleotide substitutions, and GC content may be caused by relaxed selection resulting from improper DNA repair.
Collapse
Affiliation(s)
- Mary M Guisinger
- Section of Integrative Biology, University of Texas, Austin, USA.
| | | | | | | |
Collapse
|
44
|
Smith DR. Unparalleled GC content in the plastid DNA of Selaginella. PLANT MOLECULAR BIOLOGY 2009; 71:627-639. [PMID: 19774466 DOI: 10.1007/s11103-009-9545-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/21/2009] [Indexed: 05/26/2023]
Abstract
One of the more conspicuous features of plastid DNA (ptDNA) is its low guanine and cytosine (GC) content. As of February 2009, all completely-sequenced plastid genomes have a GC content below 43% except for the ptDNA of the lycophyte Selaginella uncinata, which is 55% GC. The forces driving the S. uncinata ptDNA towards G and C are undetermined, and it is unknown if other Selaginella species have GC-biased plastid genomes. This study presents the complete ptDNA sequence of Selaginella moellendorffii and compares it with the previously reported S. uncinata plastid genome. Partial ptDNA sequences from 103 different Selaginella species are also described as well as a significant proportion of the S. moellendorffii mitochondrial genome. Moreover, S. moellendorffii express sequence tags are data-mined to estimate levels of plastid and mitochondrial RNA editing. Overall, these data are used to show that: (1) there is a genus-wide GC bias in Selaginella ptDNA, which is most pronounced in South American articulate species; (2) within the Lycopsida class (and among plants in general), GC-biased ptDNA is restricted to the Selaginella genus; (3) the cause of this GC bias is arguably a combination of reduced AT-mutation pressure relative to other plastid genomes and a large number of C-to-U RNA editing sites; and (4) the mitochondrial DNA (mtDNA) of S. moellendorffii is also GC biased (even more so than the ptDNA) and is arguably the most GC-rich organelle genome observed to date-the high GC content of the mtDNA also appears to be influenced by RNA editing. Ultimately, these findings provide convincing support for the earlier proposed theory that the GC content of land-plant organelle DNA is positively correlated and directly connected to levels of organelle RNA editing.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
45
|
Zuccarello GC, Price N, Verbruggen H, Leliaert F. ANALYSIS OF A PLASTID MULTIGENE DATA SET AND THE PHYLOGENETIC POSITION OF THE MARINE MACROALGA CAULERPA FILIFORMIS (CHLOROPHYTA)(1). JOURNAL OF PHYCOLOGY 2009; 45:1206-1212. [PMID: 27032364 DOI: 10.1111/j.1529-8817.2009.00731.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular phylogenetic relationships within the Chlorophyta have relied heavily on rRNA data. These data have revolutionized our insight in green algal evolution, yet some class relationships have never been well resolved. A commonly used class within the Chlorophyta is the Ulvophyceae, although there is not much support for its monophyly. The relationships among the Ulvophyceae, Trebouxiophyceae, and Chlorophyceae are also contentious. In recent years, chloroplast genome data have shown their utility in resolving relationships between the main green algal clades, but such studies have never included marine macroalgae. We provide partial chloroplast genome data (∼30,000 bp, 23 genes) of the ulvophycean macroalga Caulerpa filiformis (Suhr) K. Herig. We show gene order conservation for some gene combinations and rearrangements in other regions compared to closely related taxa. Our data also revealed a pseudogene (ycf62) in Caulerpa species. Our phylogenetic results, based on analyses of a 23-gene alignment, suggest that neither Ulvophyceae nor Trebouxiophyceae are monophyletic, with Caulerpa being more closely related to the trebouxiophyte Chlorella than to Oltmannsiellopsis and Pseudendoclonium.
Collapse
Affiliation(s)
- G C Zuccarello
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New ZealandPhycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
| | - Natalie Price
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New ZealandPhycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
| | - Heroen Verbruggen
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New ZealandPhycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
| | - Frederik Leliaert
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New ZealandPhycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium
| |
Collapse
|
46
|
Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evol Biol 2009; 9:37. [PMID: 19210768 PMCID: PMC2645364 DOI: 10.1186/1471-2148-9-37] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 02/11/2009] [Indexed: 11/19/2022] Open
Abstract
Background Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare. Results Here we describe and demonstrate a modified supermatrix method termed mega-phylogeny that uses databased sequences as well as taxonomic hierarchies to make extremely large trees with denser matrices than supermatrices. The two major challenges facing large-scale supermatrix phylogenetics are assembling large data matrices from databases and reconstructing trees from those datasets. The mega-phylogeny approach addresses the former as the latter is accomplished by employing recently developed methods that have greatly reduced the run time of large phylogeny construction. We present an algorithm that requires relatively little human intervention. The implemented algorithm is demonstrated with a dataset and phylogeny for Asterales (within Campanulidae) containing 4954 species and 12,033 sites and an rbcL matrix for green plants (Viridiplantae) with 13,533 species and 1,401 sites. Conclusion By examining much larger phylogenies, patterns emerge that were otherwise unseen. The phylogeny of Viridiplantae successfully reconstructs major relationships of vascular plants that previously required many more genes. These demonstrations underscore the importance of using large phylogenies to uncover important evolutionary patterns and we present a fast and simple method for constructing these phylogenies.
Collapse
|
47
|
Abstract
Selaginella (spikemoss) is an enigma in the plant kingdom. Although a fascination to botanists at the turn of the twentieth century, members of this genus are unremarkable in appearance, never flower, and are of no agronomic value. However, members of this genus are relicts from ancient times, and one has to marvel at how this genus has survived virtually unchanged in appearance for hundreds of millions of years. In light of the recent completion of the Selaginella moellendorffii genome sequence, this review is intended to survey what is known about Selaginella, with a special emphasis on recent inquiries into its unique biology and importance in understanding the early evolution of vascular plants.
Collapse
Affiliation(s)
- Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
48
|
Jobson RW, Qiu YL. Did RNA editing in plant organellar genomes originate under natural selection or through genetic drift? Biol Direct 2008; 3:43. [PMID: 18939975 PMCID: PMC2584032 DOI: 10.1186/1745-6150-3-43] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 10/21/2008] [Indexed: 11/15/2022] Open
Abstract
Background The C↔U substitution types of RNA editing have been observed frequently in organellar genomes of land plants. Although various attempts have been made to explain why such a seemingly inefficient genetic mechanism would have evolved, no satisfactory explanation exists in our view. In this study, we examined editing patterns in chloroplast genomes of the hornwort Anthoceros formosae and the fern Adiantum capillus-veneris and in mitochondrial genomes of the angiosperms Arabidopsis thaliana, Beta vulgaris and Oryza sativa, to gain an understanding of the question of how RNA editing originated. Results We found that 1) most editing sites were distributed at the 2nd and 1st codon positions, 2) editing affected codons that resulted in larger hydrophobicity and molecular size changes much more frequently than those with little change involved, 3) editing uniformly increased protein hydrophobicity, 4) editing occurred more frequently in ancestrally T-rich sequences, which were more abundant in genes encoding membrane-bound proteins with many hydrophobic amino acids than in genes encoding soluble proteins, and 5) editing occurred most often in genes found to be under strong selective constraint. Conclusion These analyses show that editing mostly affects functionally important and evolutionarily conserved codon positions, codons and genes encoding membrane-bound proteins. In particular, abundance of RNA editing in plant organellar genomes may be associated with disproportionately large percentages of genes in these two genomes that encode membrane-bound proteins, which are rich in hydrophobic amino acids and selectively constrained. These data support a hypothesis that natural selection imposed by protein functional constraints has contributed to selective fixation of certain editing sites and maintenance of the editing activity in plant organelles over a period of more than four hundred millions years. The retention of genes encoding RNA editing activity may be driven by forces that shape nucleotide composition equilibrium in two organellar genomes of these plants. Nevertheless, the causes of lineage-specific occurrence of a large portion of RNA editing sites remain to be determined. Reviewers This article was reviewed by Michael Gray (nominated by Laurence Hurst), Kirsten Krause (nominated by Martin Lercher), and Jeffery Mower (nominated by David Ardell).
Collapse
Affiliation(s)
- Richard W Jobson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| | | |
Collapse
|
49
|
Hirao T, Watanabe A, Kurita M, Kondo T, Takata K. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC PLANT BIOLOGY 2008; 8:70. [PMID: 18570682 PMCID: PMC2443145 DOI: 10.1186/1471-2229-8-70] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 06/23/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. RESULTS The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. CONCLUSION The observed differences in genomic structure between C. japonica and other land plants, including pines, strongly support the theory that the large IRs stabilize the cp genome. Furthermore, the deleted large IR and the numerous genomic rearrangements that have occurred in the C. japonica cp genome provide new insights into both the evolutionary lineage of coniferous species in gymnosperm and the evolution of the cp genome.
Collapse
Affiliation(s)
- Tomonori Hirao
- Institute of Wood Technology, Akita Prefectural University, 11-1 Kaieisaka, Noshiro, Akita 016-0876, Japan
- Forestry and Forest Products Research Institute, Forest Tree Breeding Center, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| | - Atsushi Watanabe
- Forestry and Forest Products Research Institute, Forest Tree Breeding Center, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| | - Manabu Kurita
- Forestry and Forest Products Research Institute, Forest Tree Breeding Center, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| | - Teiji Kondo
- Forestry and Forest Products Research Institute, Forest Tree Breeding Center, 3809-1 Ishi, Juo, Hitachi, Ibaraki 319-1301, Japan
| | - Katsuhiko Takata
- Institute of Wood Technology, Akita Prefectural University, 11-1 Kaieisaka, Noshiro, Akita 016-0876, Japan
| |
Collapse
|
50
|
Chan AP, Melake-Berhan A, O'Brien K, Buckley S, Quan H, Chen D, Lewis M, Banks JA, Rabinowicz PD. The highest-copy repeats are methylated in the small genome of the early divergent vascular plant Selaginella moellendorffii. BMC Genomics 2008; 9:282. [PMID: 18549478 PMCID: PMC2442089 DOI: 10.1186/1471-2164-9-282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 06/12/2008] [Indexed: 11/28/2022] Open
Abstract
Background The lycophyte Selaginella moellendorffii is a vascular plant that diverged from the fern/seed plant lineage at least 400 million years ago. Although genomic information for S. moellendorffii is starting to be produced, little is known about basic aspects of its molecular biology. In order to provide the first glimpse to the epigenetic landscape of this early divergent vascular plant, we used the methylation filtration technique. Methylation filtration genomic libraries select unmethylated DNA clones due to the presence of the methylation-dependent restriction endonuclease McrBC in the bacterial host. Results We conducted a characterization of the DNA methylation patterns of the S. moellendorffii genome by sequencing a set of S. moellendorffii shotgun genomic clones, along with a set of methylation filtered clones. Chloroplast DNA, which is typically unmethylated, was enriched in the filtered library relative to the shotgun library, showing that there is DNA methylation in the extremely small S. moellendorffii genome. The filtered library also showed enrichment in expressed and gene-like sequences, while the highest-copy repeats were largely under-represented in this library. These results show that genes and repeats are differentially methylated in the S. moellendorffii genome, as occurs in other plants studied. Conclusion Our results shed light on the genome methylation pattern in a member of a relatively unexplored plant lineage. The DNA methylation data reported here will help understanding the involvement of this epigenetic mark in fundamental biological processes, as well as the evolutionary aspects of epigenetics in land plants.
Collapse
Affiliation(s)
- Agnes P Chan
- J. Craig Venter Institute, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|