1
|
Zhang W, Qin J, Feng JQ, Dong XM, Hu H, Zhang SB. A mycoheterotrophic orchid uses very limited soil inorganic nitrogen in its natural habitat. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154367. [PMID: 39369620 DOI: 10.1016/j.jplph.2024.154367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Mycoheterotrophic plants acquire nitrogen (N) directly from the soil and through their symbiotic fungi. The fungi-derived N has received considerable attention, but the contribution of soil-derived N has been largely overlooked. We investigated how the leafless, rootless, and almost mycoheterotrophic orchid Cymbidium macrorhizon obtains soil N by applying 15N-labeled ammonium nitrate in its natural habitat, and tracking metabolite accumulation and mycorrhizal fungal association after N application. The decline of N in the rhizome from flowering to fruiting indicated a transfer of N from the rhizome to fruits. At current dose of N application (0.6 g NH4NO3 each plant), only 1.5% of the plant's N was derived from fertilizer, resulting in a low nitrogen use efficiency of 0.27%. The majority of those newly absorbed N (88.89%) was found sank in the rhizome. Amino acids (or their derivatives) and alkaloids were predominant differentially accumulated nitrogenous metabolites after N application, with amino acids occurring in both fruits and the rhizome, and alkaloids primarily in the fruits. The addition of N did not alter the richness of mycorrhizal fungi, but did affect their relative abundance. Our findings suggest that Cymbidium macrorhizon uses very limited soil inorganic nitrogen in its natural habitat, and the root-like rhizome primarily stores N rather than absorbs its inorganic forms, offering new insights into how mycoheterotrophic plants utilize soil N, and the influence of nutrient availability on the orchid-fungi association.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Jiao Qin
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Jing-Qiu Feng
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Southwest Minzu University, Chengdu, 610225, Sichuan, China
| | - Xiu-Mei Dong
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Hong Hu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, Yunnan, China; Engineering Center of Innovation and Exploitation of Wild Ornamental Plants of Yunnan Province, Kunming 650201, Yunnan, China.
| |
Collapse
|
2
|
Li R, Gao X, Wu Y, Wei C, Li MH, Liu DK, Liu ZJ. Identification and Analysis of PEPC Gene Family Reveals Functional Diversification in Orchidaceae and the Regulation of Bacterial-Type PEPC. Int J Mol Sci 2024; 25:2055. [PMID: 38396732 PMCID: PMC10888551 DOI: 10.3390/ijms25042055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) gene family plays a crucial role in both plant growth and response to abiotic stress. Approximately half of the Orchidaceae species are estimated to perform CAM pathway, and the availability of sequenced orchid genomes makes them ideal subjects for investigating the PEPC gene family in CAM plants. In this study, a total of 33 PEPC genes were identified across 15 orchids. Specifically, one PEPC gene was found in Cymbidium goeringii and Platanthera guangdongensis; two in Apostasia shenzhenica, Dendrobium chrysotoxum, D. huoshanense, Gastrodia elata, G. menghaiensis, Phalaenopsis aphrodite, Ph. equestris, and Pl. zijinensis; three in C. ensifolium, C. sinense, D. catenatum, D. nobile, and Vanilla planifolia. These PEPC genes were categorized into four subgroups, namely PEPC-i, PEPC-ii, and PEPC-iii (PTPC), and PEPC-iv (BTPC), supported by the comprehensive analyses of their physicochemical properties, motif, and gene structures. Remarkably, PEPC-iv contained a heretofore unreported orchid PEPC gene, identified as VpPEPC4. Differences in the number of PEPC homolog genes among these species were attributed to segmental duplication, whole-genome duplication (WGD), or gene loss events. Cis-elements identified in promoter regions were predominantly associated with light responsiveness, and circadian-related elements were observed in each PEPC-i and PEPC-ii gene. The expression levels of recruited BTPC, VpPEPC4, exhibited a lower expression level than other VpPEPCs in the tested tissues. The expression analyses and RT-qPCR results revealed diverse expression patterns in orchid PEPC genes. Duplicated genes exhibited distinct expression patterns, suggesting functional divergence. This study offered a comprehensive analysis to unveil the evolution and function of PEPC genes in Orchidaceae.
Collapse
Affiliation(s)
- Ruyi Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Xuyong Gao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Yuwei Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Chunyi Wei
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
| | - Ming-He Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Landscape Architecture and Arts, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (X.G.); (Y.W.); (C.W.); (M.-H.L.)
- Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Zotz G, Andrade JL, Einzmann HJR. CAM plants: their importance in epiphyte communities and prospects with global change. ANNALS OF BOTANY 2023; 132:685-698. [PMID: 36617243 PMCID: PMC10799991 DOI: 10.1093/aob/mcac158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND SCOPE The epiphytic life form characterizes almost 10 % of all vascular plants. Defined by structural dependence throughout their life and their non-parasitic relationship with the host, the term epiphyte describes a heterogeneous and taxonomically diverse group of plants. This article reviews the importance of crassulacean acid metabolism (CAM) among epiphytes in current climatic conditions and explores the prospects under global change. RESULTS AND CONCLUSIONS We question the view of a disproportionate importance of CAM among epiphytes and its role as a 'key innovation' for epiphytism but do identify ecological conditions in which epiphytic existence seems to be contingent on the presence of this photosynthetic pathway. Possibly divergent responses of CAM and C3 epiphytes to future changes in climate and land use are discussed with the help of experimental evidence, current distributional patterns and the results of several long-term descriptive community studies. The results and their interpretation aim to stimulate a fruitful discussion on the role of CAM in epiphytes in current climatic conditions and in altered climatic conditions in the future.
Collapse
Affiliation(s)
- Gerhard Zotz
- Functional Ecology Group, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Box 5634, D-26046 Oldenburg, Germany
- Smithsonian Tropical Research Institute, Box 0843-03092, Panama, Republic of Panama
| | - José Luis Andrade
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Chuburná de Hidalgo, Mérida, Yucatán, Mexico
| | - Helena J R Einzmann
- Functional Ecology Group, Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Box 5634, D-26046 Oldenburg, Germany
| |
Collapse
|
4
|
Yamaga-Hatakeyama Y, Okutani M, Hatakeyama Y, Yabiku T, Yukawa T, Ueno O. Photosynthesis and leaf structure of F1 hybrids between Cymbidium ensifolium (C3) and C. bicolor subsp. pubescens (CAM). ANNALS OF BOTANY 2023; 132:895-907. [PMID: 36579478 PMCID: PMC10799985 DOI: 10.1093/aob/mcac157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS The introduction of crassulacean acid metabolism (CAM) into C3 crops has been considered as a means of improving water-use efficiency. In this study, we investigated photosynthetic and leaf structural traits in F1 hybrids between Cymbidium ensifolium (female C3 parent) and C. bicolor subsp. pubescens (male CAM parent) of the Orchidaceae. METHODS Seven F1 hybrids produced through artificial pollination and in vitro culture were grown in a greenhouse with the parent plants. Structural, biochemical and physiological traits involved in CAM in their leaves were investigated. KEY RESULTS Cymbidium ensifolium accumulated very low levels of malate without diel fluctuation, whereas C. bicolor subsp. pubescens showed nocturnal accumulation and diurnal consumption of malate. The F1s also accumulated malate at night, but much less than C. bicolor subsp. pubescens. This feature was consistent with low nocturnal fixation of atmospheric CO2 in the F1s. The δ13C values of the F1s were intermediate between those of the parents. Leaf thickness was thicker in C. bicolor subsp. pubescens than in C. ensifolium, and those of the F1s were more similar to that of C. ensifolium. This was due to the difference in mesophyll cell size. The chloroplast coverage of mesophyll cell perimeter adjacent to intercellular air spaces of C. bicolor subsp. pubescens was lower than that of C. ensifolium, and that of the F1s was intermediate between them. Interestingly, one F1 had structural and physiological traits more similar to those of C. bicolor subsp. pubescens than the other F1s. Nevertheless, all F1s contained intermediate levels of phosphoenolpyruvate carboxylase but as much pyruvate, Pi dikinase as C. bicolor subsp. pubescens. CONCLUSIONS CAM traits were intricately inherited in the F1 hybrids, the level of CAM expression varied widely among F1 plants, and the CAM traits examined were not necessarily co-ordinately transmitted to the F1s.
Collapse
Affiliation(s)
| | - Masamitsu Okutani
- School of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Hatakeyama
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takayuki Yabiku
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Eskov AK, Elumeeva TG, Leonov VD, Tsurikov SM, Viktorova VA, Prilepsky NG, Abakumov EV. The Carbon Isotope Composition of Epiphytes Depends Not Only on Their Layers, Life Forms, and Taxonomical Groups but Also on the Carbon and Nitrogen Indicators of Host Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:3500. [PMID: 37836240 PMCID: PMC10575002 DOI: 10.3390/plants12193500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The carbon isotopic composition of plant tissues is a diagnostic feature of a number of physiological and ecological processes. The most important of which is the type of photosynthesis. In epiphytes, two peaks of δ13C values are known to correspond to C3 and CAM photosynthesis and some variants of transitional forms between them. But the diagnosis of δ13C may not be limited to the type of photosynthesis. This makes it necessary to study trends in the distribution of δ13C in a broader ecological context. In this study, we present trends in the distribution of δ13C epiphytes and other structurally dependent plants and their relationship with other isotopic and elemental parameters (δ15N, C%, N%, and C/N) and with life forms of epiphytes, taxonomic or vertical groups in crowns (synusia), and the parameters of the trees themselves. In all communities except for the moss forest, δ13C in epiphyte leaves was significantly higher (less negative) than in phorophyte leaves. In general, δ13C in epiphytes in mountain communities (pine forest and moss forest) was more negative than in other communities due to the absence of succulents with CAM. δ13C in the leaves of all epiphytes was negatively related to the percentage of carbon and δ15N in the leaves of the phorophyte. When considering the Gaussian distributions of δ13C with the method of modeling mixtures, we observe the unimodal, bimodal, and trimodal nature of the distribution.
Collapse
Affiliation(s)
- Alen K. Eskov
- Department of Plant Ecology and Geography, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Tatiana G. Elumeeva
- Department of Plant Ecology and Geography, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Vlad. D. Leonov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij Prosp., 119071 Moscow, Russia
| | - Sergey M. Tsurikov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij Prosp., 119071 Moscow, Russia
| | | | - Nikolay G. Prilepsky
- Department of Plant Ecology and Geography, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Evgeny V. Abakumov
- Department of Applied Ecology, Saint-Petersburg State University, 16 Line of VO 29, 199178 St. Petersburg, Russia;
| |
Collapse
|
6
|
Fan W, He ZS, Zhe M, Feng JQ, Zhang L, Huang Y, Liu F, Huang JL, Ya JD, Zhang SB, Yang JB, Zhu A, Li DZ. High-quality Cymbidium mannii genome and multifaceted regulation of crassulacean acid metabolism in epiphytes. PLANT COMMUNICATIONS 2023; 4:100564. [PMID: 36809882 PMCID: PMC10504564 DOI: 10.1016/j.xplc.2023.100564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Epiphytes with crassulacean acid metabolism (CAM) photosynthesis are widespread among vascular plants, and repeated evolution of CAM photosynthesis is a key innovation for micro-ecosystem adaptation. However, we lack a complete understanding of the molecular regulation of CAM photosynthesis in epiphytes. Here, we report a high-quality chromosome-level genome assembly of a CAM epiphyte, Cymbidium mannii (Orchidaceae). The 2.88-Gb orchid genome with a contig N50 of 22.7 Mb and 27 192 annotated genes was organized into 20 pseudochromosomes, 82.8% of which consisted of repetitive elements. Recent expansions of long terminal repeat retrotransposon families have made a major contribution to the evolution of genome size in Cymbidium orchids. We reveal a holistic scenario of molecular regulation of metabolic physiology using high-resolution transcriptomics, proteomics, and metabolomics data collected across a CAM diel cycle. Patterns of rhythmically oscillating metabolites, especially CAM-related products, reveal circadian rhythmicity in metabolite accumulation in epiphytes. Genome-wide analysis of transcript and protein level regulation revealed phase shifts during the multifaceted regulation of circadian metabolism. Notably, we observed diurnal expression of several core CAM genes (especially βCA and PPC) that may be involved in temporal fixation of carbon sources. Our study provides a valuable resource for investigating post-transcription and translation scenarios in C. mannii, an Orchidaceae model for understanding the evolution of innovative traits in epiphytes.
Collapse
Affiliation(s)
- Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zheng-Shan He
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Mengqing Zhe
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jing-Qiu Feng
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Le Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yiwei Huang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Ji-Dong Ya
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
7
|
Zhe M, Zhang L, Liu F, Huang Y, Fan W, Yang J, Zhu A. Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes. PLANT DIVERSITY 2022; 44:316-321. [PMID: 35769591 PMCID: PMC9209865 DOI: 10.1016/j.pld.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/15/2023]
Abstract
Recent sequencing efforts have broadly uncovered the evolutionary trajectory of plastid genomes (plastomes) of flowering plants in diverse habitats, yet our knowledge of the evolution of plastid posttranscriptional modifications is limited. In this study, we generated 11 complete plastomes and performed ultra-deep transcriptome sequencing to investigate the co-evolution of plastid RNA editing and genetic variation in Cymbidium, a genus with diverse trophic lifestyles. Genome size and gene content is reduced in terrestrial and green mycoheterotrophic orchids relative to their epiphytic relatives. This could be partly due to extensive losses and pseudogenization of ndh genes for the plastid NADH dehydrogenase-like complex, but independent pseudogenization of ndh genes has also occurred in the epiphyte C. mannii, which was reported to use strong crassulacean acid metabolism photosynthesis. RNA editing sites are abundant but variable in number among Cymbidium plastomes. The nearly twofold variation in editing abundance is mainly due to extensive reduction of ancestral editing sites in ndh transcripts of terrestrial, mycoheterotrophic, and C. mannii plastomes. The co-occurrence of editing reduction and pseudogenization in ndh genes suggests functional constraints on editing machinery may be relaxed, leading to nonrandom loss of ancestral edited sites via reduced editing efficiency. This study represents the first systematic examination of RNA editing evolution linked to plastid genome variation in a single genus. We also propose an explanation for how genomic and posttranscriptional variations might be affected by lifestyle-associated ecological adaptation strategies in Cymbidium.
Collapse
Affiliation(s)
- Mengqing Zhe
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwei Huang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
8
|
Mycorrhizal Compatibility and Germination-Promoting Activity of Tulasnella Species in Two Species of Orchid (Cymbidium mannii and Epidendrum radicans). HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In nature, Orchidaceae seeds establish a relationship with orchid mycorrhizal fungi to obtain essential nutrients for germination. The orchids, Cymbidium mannii and Epidendrum radicans, have significant ornamental and economic value. We isolated and cultured mycorrhizal fungi from C. mannii, E. radicans, and C. goeringii roots. Three strains of fungi, Tulasnella calospora (Tca), T. asymmetrica (Tas), and T. bifrons (Tbi), were identified using ITS-rDNA sequencing. Their mycorrhizal compatibility, germination-promoting effects, and symbiosis with the seeds of C. mannii and E. radicans were studied in vitro using various concentrations of oatmeal agar (OA) medium. Tca exhibited significant seed-germination-promoting effects on C. mannii (92.1%) and E. radicans (84.7%) on 2.0 and 4.0 g/L OA, respectively. For Tbi and Tas, the highest germination percentages were observed on 4.0 g/L OA in E. radicans (73.60% and 76.49%, respectively). Seed germination in C. mannii was enhanced by high oatmeal concentrations (8.0 and 12.0 g/L) during symbiosis with Tas, whereas Tbi had no effect regardless of OA concentration. Tca exhibited high compatibility with C. mannii and E. radicans, and the oatmeal concentration of the medium affected this compatibility. The findings of this study will aid in the propagation of endangered orchid species for conservation and commercial purposes using mycorrhizal technology.
Collapse
|
9
|
Gamisch A, Winter K, Fischer GA, Comes HP. Evolution of crassulacean acid metabolism (CAM) as an escape from ecological niche conservatism in Malagasy Bulbophyllum (Orchidaceae). THE NEW PHYTOLOGIST 2021; 231:1236-1248. [PMID: 33960438 DOI: 10.1111/nph.17437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 05/29/2023]
Abstract
Despite growing evidence that niche shifts are more common in flowering plants than previously thought, little is known of whether such shifts are promoted by changes in photosynthetic pathways. Here we combine the most complete phylogeny for epiphytic Malagasy Bulbophyllum orchids (c. 210 spp.) with climatic niche and carbon isotope ratios to infer the group's spatial-temporal history, and the role of strongly expressed crassulacean acid metabolism (CAM) in facilitating niche shifts and diversification. We find that most extant species still retain niche (Central Highland) and photosynthesis (C3 ) states as present in the single mid-Miocene (c. 12.70 million yr ago (Ma)) ancestor colonizing Madagascar. However, we also infer a major transition to CAM, linked to a late Miocene (c. 7.36 Ma) invasion of species from the sub-humid highland first into the island's humid eastern coastal, and then into the seasonally dry 'Northwest Sambirano' rainforests, yet without significant effect on diversification rates. These findings indicate that CAM in tropical epiphytes may be selectively advantageous even in high rainfall habitats, rather than presenting a mere adaptation to dry environments or epiphytism per se. Overall, our study qualifies CAM as an evolutionary 'gateway' trait that considerably widened the spatial-ecological amplitude of Madagascar's most species-rich orchid genus.
Collapse
Affiliation(s)
- Alexander Gamisch
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado, Balboa, Ancón, 0843-03092, Republic of Panama
| | - Gunter A Fischer
- Kadoorie Farm and Botanic Garden Corporation, Lam Kam Road, Tai Po, NT, Hong Kong SAR, China
| | - Hans Peter Comes
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| |
Collapse
|
10
|
Li JW, Chen XD, Hu XY, Ma L, Zhang SB. Comparative physiological and proteomic analyses reveal different adaptive strategies by Cymbidium sinense and C. tracyanum to drought. PLANTA 2018; 247:69-97. [PMID: 28871432 DOI: 10.1007/s00425-017-2768-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
A terrestrial orchid, Cymbidium sinense appears to utilizes "remedy strategy", while an epiphytic orchid, C. tracyanum , employs a "precaution strategy" to drought stress based on morphological, physiological and proteomic analysis. Drought condition influences plant growth and productivity. Although the mechanism by which plants adapt to this abiotic stress has been studied extensively, the water-adaptive strategies of epiphytes grown in water-limited habitats remain undefined. Here, root and leaf anatomies, dynamic changes in physiological and proteomic responses during periods of drought stress and recovery studied in an epiphytic orchid (Cymbidium tracyanum) and a terrestrial orchid (C. sinense) to investigate their strategies for coping with drought. Compared with C. sinense, C. tracyanum showed stronger drought-resistant adaptive characteristics to drought because its leaves had more negative water potential at turgor loss point and roots had higher proportion of velamen radicum thickness. Although both species demonstrated quick recovery of photosynthesis after stress treatment, they differed in physiological and proteomic responses. We detected and functionally characterized 103 differentially expressed proteins in C. sinense and 104 proteins in C. tracyanum. These proteins were mainly involved in carbon and energy metabolism, photosynthesis, and defense responses. The up-regulated expression of plastid fibrillin may have contributed to the marked accumulation of jasmonates only in stressed C. sinense, while ferredoxin-NADP reductase up-regulation was only found in C. tracyanum which possibly related to the stimulation of cyclic electron flow that is linked with photoprotection. These physiological and proteomic performances suggest distinct adaptive strategies to drought stress between C. sinense (remedy strategy) and C. tracyanum (precaution strategy). Our findings may help improve our understanding about the ecological adaptation of epiphytic orchids.
Collapse
Affiliation(s)
- Jia-Wei Li
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Dong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiang-Yang Hu
- College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lan Ma
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China.
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China.
| |
Collapse
|
11
|
Jia S, Nakano T, Hattori M, Nara K. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan. MYCORRHIZA 2017; 27:733-745. [PMID: 28707027 PMCID: PMC5645451 DOI: 10.1007/s00572-017-0788-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Pyroleae species are perennial understory shrubs, many of which are partial mycoheterotrophs. Most fungi colonizing Pyroleae roots are ectomycorrhizal (ECM) and share common mycobionts with their Pyroleae hosts. However, such mycobiont sharing has neither been examined in depth before nor has the interspecific variation in sharing among Pyroleae species. Here, we examined root-associated fungal communities in three co-existing Pyroleae species, including Pyrola alpina, Pyrola incarnata, and Orthilia secunda, with reference to co-existing ECM fungi on the surrounding trees in the same soil blocks in subalpine coniferous forests. We identified 42, 75, and 18 fungal molecular operational taxonomic units in P. alpina, P. incarnata, and O. secunda roots, respectively. Mycobiont sharing with surrounding trees, which was defined as the occurrence of the same mycobiont between Pyroleae and surrounding trees in each soil block, was most frequent among P. incarnata (31 of 44 plants). In P. alpina, sharing was confirmed in 12 of 37 plants, and the fungal community was similar to that of P. incarnata. Mycobiont sharing was least common in O. secunda, found in only 5 of 32 plants. Root-associated fungi of O. secunda were dominated by Wilcoxina species, which were absent from the surrounding ECM roots in the same soil blocks. These results indicate that mycobiont sharing with surrounding trees does not equally occur among Pyroleae plants, some of which may develop independent mycorrhizal associations with ECM fungi, as suggested in O. secunda at our research sites.
Collapse
Affiliation(s)
- Shuzheng Jia
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan.
| | - Takashi Nakano
- Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
| | - Masahira Hattori
- Laboratory of Metagenomics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kazuhide Nara
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8563, Japan
| |
Collapse
|
12
|
Konhar R, Debnath M, Marbaniang JV, Biswal DK, Tandon P. Age estimation for the genus Cymbidium (Orchidaceae: Epidendroideae) with implementation of fossil data calibration using molecular markers (ITS2 & matK) and phylogeographic inference from ancestral area reconstruction. J Bioinform Comput Biol 2017; 14:1660001. [DOI: 10.1142/s0219720016600015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intercontinental dislocations between tropical regions harboring two-thirds of the flowering plants have always drawn attention from taxonomists and biogeographers. One such family belonging to angiosperms is Orchidaceae with an herbaceous habit and high species diversity in the tropics. Here, we investigate the evolutionary and biogeographical history of the genus Cymbidium, which represents a monophyletic subfamily (Epidendroideae) of the orchids and comprises 50 odd species that are distinctly distributed in tropical to temperate regions. Much is not known about correlations among the level of CAM activity (one of the photosynthetic pathways often regarded as an adaptation to water stress in land plants), habitat, life forms, and phylogenetic relationships of orchids from an evolutionary perspective. A relatively well-resolved and highly supported phylogeny for Cymbidium orchids is reconstructed based on sequence analysis of ITS2 and matK regions from the chloroplast DNA available in public repositories viz. GenBank at NCBI. This study examines a genus level analysis by integrating different molecular matrices to existing fossil data on orchids in a molecular Bayesian relaxed clock employed in BEAST and assessed divergence times for the genus Cymbidium with a focus on evolutionary history of photosynthetic characters. Our study has enabled age estimations (45Ma) as well as ancestral area reconstruction for the genus Cymbidium using BEAST by addition of previously analyzed two internal calibration points.
Collapse
Affiliation(s)
- Ruchishree Konhar
- Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Manish Debnath
- Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, India
| | | | | | | |
Collapse
|
13
|
Yang SJ, Sun M, Yang QY, Ma RY, Zhang JL, Zhang SB. Two strategies by epiphytic orchids for maintaining water balance: thick cuticles in leaves and water storage in pseudobulbs. AOB PLANTS 2016; 8:plw046. [PMID: 27339052 PMCID: PMC4972464 DOI: 10.1093/aobpla/plw046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/10/2016] [Indexed: 05/21/2023]
Abstract
Epiphytes are an important component of tropical and subtropical flora, and serve vital ecological functions in forest hydrology and nutrient fluxes. However, they often encounter water deficits because there is no direct contact between their roots and the soil. The strategies employed by epiphytes for maintaining water balance in relatively water-limited habitats are not completely understood. In the present study, we investigated the anatomical traits, water loss rates, and physiology of leaves and pseudobulbs of four Dendrobium species with different pseudobulb morphologies to understand the roles of leaf and pseudobulb in maintaining water balance of epiphytic orchids. Our results showed that two species (D. chrysotoxum and D. officinale), with lower rates of water loss, have thicker leaves and upper cuticles, but lower epidermal thickness and leaf dry mass per area. In contrast, the other two species (D. chrysanthum and D. crystallinum) with thinner cuticles and higher rates of water loss, have less tissue density and greater saturated water contents in their pseudobulbs. Therefore, our results indicate that these latter two species may resist drought by storing water in the pseudobulbs to compensate for their thin cuticles and rapid water loss through the leaves. Under the same laboratory conditions, excised pseudobulbs with attached leaves had lower rates of water loss when compared with samples comprising only excised leaves. This implies that epiphytic orchids utilize two different strategies for sustaining water balance: thick cuticles to conserve water in leaves and water storage in pseudobulbs. Our results also show that Dendrobium species with thin cuticles tend to have pseudobulbs with high water storage capacity that compensates for their faster rates of water loss. These outcomes contribute to our understanding of the adaptive water-use strategies in Dendrobium species, which is beneficial for the conservation and cultivation of epiphytic orchids.
Collapse
Affiliation(s)
- Shi-Jian Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Mei Sun
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China National Plateau Wetlands Research Centre, Kunming, Yunnan 650224, China
| | - Qiu-Yun Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ren-Yi Ma
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Jiao-Lin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
14
|
Habibi G, Ajory N. The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes. JOURNAL OF PLANT RESEARCH 2015; 128:987-994. [PMID: 26314352 DOI: 10.1007/s10265-015-0748-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/04/2015] [Indexed: 06/04/2023]
Abstract
Photosynthesis is a biological process most affected by water deficit. Plants have various photosynthetic mechanisms that are matched to specific climatic zones. We studied the photosynthetic plasticity of C3 plants at water deficit using ecotypes of Marrubium vulgare L. from high (2,200 m) and low (1,100 m) elevation sites in the Mishou-Dagh Mountains of Iran. Under experimental drought, high-altitude plants showed more tolerance to water stress based on most of the parameters studied as compared to the low-altitude plants. Increased tolerance in high-altitude plants was achieved by lower levels of daytime stomatal conductance (g s) and reduced damaging effect on maximal quantum yield of photosystem II (PSII) (F v /F m ) coupled with higher levels of carotenoids and non-photochemical quenching (NPQ). High-altitude plants exhibited higher water use efficiency (WUE) than that in low-altitude plants depending on the presence of thick leaves and the reduced daytime stomatal conductance. Additionally, we have studied the oscillation in H(+) content and diel gas exchange patterns to determine the occurrence of C3 or weak CAM (Crassulacean acid metabolism) in M. vulgare through 15 days drought stress. Under water-stressed conditions, low-altitude plants exhibited stomatal conductance and acid fluctuations characteristic of C3 photosynthesis, though high-altitude plants exhibited more pronounced increases in nocturnal acidity and phosphoenolpyruvate carboxylase (PEPC) activity, suggesting photosynthetic flexibility. These results indicated that the regulation of carotenoids, NPQ, stomatal conductance and diel patterns of CO2 exchange presented the larger differences among studied plants at different altitudes and seem to be the protecting mechanisms controlling the photosynthetic performance of M. vulgare plants under drought conditions.
Collapse
Affiliation(s)
- Ghader Habibi
- Department of Biology, Payame Noor University, PO BOX 19395-3697, Tehran, Iran.
| | - Neda Ajory
- Department of Biology, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| |
Collapse
|
15
|
Zhang SB, Dai Y, Hao GY, Li JW, Fu XW, Zhang JL. Differentiation of water-related traits in terrestrial and epiphytic Cymbidium species. FRONTIERS IN PLANT SCIENCE 2015; 6:260. [PMID: 25954289 PMCID: PMC4406080 DOI: 10.3389/fpls.2015.00260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/02/2015] [Indexed: 05/11/2023]
Abstract
Epiphytes that grow in the canopies of tropical and subtropical forests experience different water regimes when compared with terrestrial plants. However, the differences in adaptive strategies between epiphytic and terrestrial plants with respect to plant water relations remain poorly understood. To understand how water-related traits contrast between epiphytic and terrestrial growth forms within the Cymbidium (Orchidaceae), we assessed leaf anatomy, hydraulics, and physiology of seven terrestrial and 13 epiphytic species using a common garden experiment. Compared with terrestrial species, epiphytic species had higher values for leaf mass per unit area (LMA), leaf thickness (LT), epidermal thickness, saturated water content (SWC) and the time required to dry saturated leaves to 70% relative water content (T70). However, vein density (Dvein), stomatal density (SD), and photosynthetic capacity (Amax) did not differ significantly between the two forms. T70 was positively correlated with LT, LMA, and SWC, and negatively correlated with stomatal index (SI). Amax showed positive correlations with SD and SI, but not with Dvein. Vein density was marginally correlated with SD, and significantly correlated with SI. Overall, epiphytic orchids exhibited substantial ecophysiological differentiations from terrestrial species, with the former type showing trait values indicative of greater drought tolerance and increased water storage capacity. The ability to retain water in the leaves plays a key role in maintaining a water balance in those epiphytes. Therefore, the process of transpiration depends less upon the current substrate water supply and enables epiphytic Cymbidium species to adapt more easily to canopy habitats.
Collapse
Affiliation(s)
- Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
| | - Yan Dai
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesKunming, China
| | - Guang-You Hao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of SciencesShenyang, China
- The Arnold Arboretum of Harvard UniversityBoston, MA, USA
| | - Jia-Wei Li
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Xue-Wei Fu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Jiao-Lin Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesKunming, China
| |
Collapse
|
16
|
Li JW, Zhang SB. Differences in the Responses of Photosystems I and II in Cymbidium sinense and C. tracyanum to Long-Term Chilling Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1097. [PMID: 26779201 PMCID: PMC4700187 DOI: 10.3389/fpls.2015.01097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/22/2015] [Indexed: 05/11/2023]
Abstract
The susceptibility of photosystem I (PSI) and photosystem II (PSII) to chilling stress depends on plant species, and cyclic electron flow (CEF) plays an important role in photoprotection for some species under short stress periods. However, little is known about the responses of PSI and PSII to long-term chilling stress. We studied two orchid species-Cymbidium sinense and C. tracyanum- that differ in their capacity to adapt to low temperature, and exposed plants for 19 d to stress conditions that included 4°C and a light intensity of 250 to 350 μmol photons m(-2) s(-1). Meanwhile, we investigated their dynamic variations in Chl fluorescence and P700 parameters. After exposure to 4°C and 250 μmol photons m(-2) s(-1) for 6 h, PSI activity was maintained stable in both species, but stronger PSII photoinhibition was observed in C. sinense. During the long-term treatment, the maximum quantum yield of PSII was significantly reduced, with that decrease being greater in C. sinense. After 19 d of chilling treatment, the maximum photo-oxidizable P700 declined only slightly in C. tracyanum but dropped significantly in C. sinense. Linear electron flow was largely depressed during the long-term chilling treatment, especially in C. sinense. Meanwhile, C. tracyanum showed higher CEF activity than C. sinense. These results indicate that PSII is more sensitive to chilling-light stress than PSI in both species. The rate of PSII photodamage at chilling-light stress is higher in C. sinense than C. tracyanum, and CEF contributes to photoprotection for PSI and PSII under long-term chilling stress in C. tracyanum.
Collapse
Affiliation(s)
- Jia-Wei Li
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
- University of Chinese Academy of SciencesBeijing, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
- *Correspondence: Shi-Bao Zhang,
| |
Collapse
|
17
|
Suetsugu K. Autonomous self-pollination and insect visitors in partially and fully mycoheterotrophic species of Cymbidium (Orchidaceae). JOURNAL OF PLANT RESEARCH 2015; 128:115-25. [PMID: 25286768 DOI: 10.1007/s10265-014-0669-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/14/2014] [Indexed: 05/12/2023]
Abstract
Few studies have examined the reproductive ecology of mycoheterotrophic plants, but the existing literature hypothesizes that they adopt a self-pollinating strategy. Although growing evidence indicates that some rewarding mycoheterotrophic plants depend (at least partially) on an insect-mediated pollination system, it remains unclear whether some mycoheterotrophic plants can attract pollinators without nectar or other rewards. Moreover, in a broader evolutionary/ecological context, the question of whether the evolution of mycoheterotrophy induces a shift in pollination pattern is still unknown. Here I present a comparative investigation into the breeding system of two fully mycoheterotrophic orchids, Cymbidium macrorhizon and C. aberrans, and their closest extant relative, the mixotrophic C. lancifolium. Pollination experiments were conducted to determine the breeding system of these plants. In addition, flower visitors that might contribute to pollination were recorded. Flowers at different maturity stages were examined to investigate mechanisms enabling or limiting self-fertilization. While nectarless flowers of C. lancifolium and C. macrorhizon can successfully attract potential pollinator honeybees, all three Cymbidium possess an effective self-pollination system in which the rostellum that physically separates the stigma and pollinia is absent. Because mixotrophic and mycoheterotrophic Cymbidium occupy low-light niches, pollinator foraging would be negatively influenced by low-light intensity. In partial and fully mycoheterotrophic Cymbidium, autogamy would likely be favoured as a reproductive assurance to compensate for pollinator limitation due to their lack of nectar and pollinators' hostile habitat preferences.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-cho, Sakyo, Kyoto, 606-8501, Japan,
| |
Collapse
|
18
|
Ogura-Tsujita Y, Miyoshi K, Tsutsumi C, Yukawa T. First flowering hybrid between autotrophic and mycoheterotrophic plant species: breakthrough in molecular biology of mycoheterotrophy. JOURNAL OF PLANT RESEARCH 2014; 127:299-305. [PMID: 24310615 DOI: 10.1007/s10265-013-0612-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/28/2013] [Indexed: 06/02/2023]
Abstract
Among land plants, which generally exhibit autotrophy through photosynthesis, about 880 species are mycoheterotrophs, dependent on mycorrhizal fungi for their carbon supply. Shifts in nutritional mode from autotrophy to mycoheterotrophy are usually accompanied by evolution of various combinations of characters related to structure and physiology, e.g., loss of foliage leaves and roots, reduction in seed size, degradation of plastid genome, and changes in mycorrhizal association and pollination strategy. However, the patterns and processes involved in such alterations are generally unknown. Hybrids between autotrophic and mycoheterotrophic plants may provide a breakthrough in molecular studies on the evolution of mycoheterotrophy. We have produced the first hybrid between autotrophic and mycoheterotrophic plant species using the orchid group Cymbidium. The autotrophic Cymbidium ensifolium subsp. haematodes and mycoheterotrophic C. macrorhizon were artificially pollinated, and aseptic germination of the hybrid seeds obtained was promoted by sonication. In vitro flowering was observed five years after seed sowing. Development of foliage leaves, an important character for photosynthesis, segregated in the first generation; that is, some individuals only developed scale leaves on the rhizome and flowering stems. However, all of the flowering plants formed roots, which is identical to the maternal parent.
Collapse
Affiliation(s)
- Yuki Ogura-Tsujita
- Botanical Gardens Tohoku University, Kawauchi 12-1, Aobaku, Sendai, 980-0862, Japan,
| | | | | | | |
Collapse
|
19
|
Motomura H, Selosse MA, Martos F, Kagawa A, Yukawa T. Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). ANNALS OF BOTANY 2010; 106:573-81. [PMID: 20685727 PMCID: PMC2944979 DOI: 10.1093/aob/mcq156] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/09/2010] [Accepted: 06/25/2010] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Nutritional changes associated with the evolution of achlorophyllous, mycoheterotrophic plants have not previously been inferred with robust phylogenetic hypotheses. Variations in heterotrophy in accordance with the evolution of leaflessness were examined using a chlorophyllous-achlorophyllous species pair in Cymbidium (Orchidaceae), within a well studied phylogenetic background. METHODS To estimate the level of mycoheterotrophy in chlorophyllous and achlorophyllous Cymbidium, natural (13)C and (15)N contents (a proxy for the level of heterotrophy) were measured in four Cymbidium species and co-existing autotrophic and mycoheterotrophic plants and ectomycorrhizal fungi from two Japanese sites. KEY RESULTS δ(13)C and δ(15)N values of the achlorophyllous C. macrorhizon and C. aberrans indicated that they are full mycoheterotrophs. δ(13)C and δ(15)N values of the chlorophyllous C. lancifolium and C. goeringii were intermediate between those of reference autotrophic and mycoheterotrophic plants; thus, they probably gain 30-50 % of their carbon resources from fungi. These data suggest that some chlorophyllous Cymbidium exhibit partial mycoheterotrophy (= mixotrophy). CONCLUSIONS It is demonstrated for the first time that mycoheterotrophy evolved after the establishment of mixotrophy rather than through direct shifts from autotrophy to mycoheterotrophy. This may be one of the principal patterns in the evolution of mycoheterotrophy. The results also suggest that the establishment of symbiosis with ectomycorrhizal fungi in the lineage leading to mixotrophic Cymbidium served as pre-adaptation to the evolution of the mycoheterotrophic species. Similar processes of nutritional innovations probably occurred in several independent orchid groups, allowing niche expansion and radiation in Orchidaceae, probably the largest plant family.
Collapse
Affiliation(s)
- Hiroyuki Motomura
- Tsukuba Botanical Garden, National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan
| | - Marc-André Selosse
- Centre d'Ecologie Fonctionnelle et Evolutive (CNRS, UMR 5175), Equipe Interactions Biotiques, 19129 Route de Mende, Montpellier cedex 5, France
| | - Florent Martos
- Centre d'Ecologie Fonctionnelle et Evolutive (CNRS, UMR 5175), Equipe Interactions Biotiques, 19129 Route de Mende, Montpellier cedex 5, France
- UMR C53 Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, 15 Avenue René Cassin, BP 7151, 97715 Saint-Denis cedex 9, France
| | - Akira Kagawa
- Forestry and Forest Products Research Institute, Tsukuba Norin PO Box 16, Ibaraki 305-8687, Japan
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan
| |
Collapse
|