1
|
Yan X, Wu X, Sun F, Nie H, Du X, Li X, Fang Y, Zhai Y, Zhao Y, Fan B, Ma Y. Cloning and Functional Study of AmGDSL1 in Agropyron mongolicum. Int J Mol Sci 2024; 25:9467. [PMID: 39273413 PMCID: PMC11395167 DOI: 10.3390/ijms25179467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Agropyron mongolicum Keng is a diploid perennial grass of triticeae in gramineae. It has strong drought resistance and developed roots that can effectively fix the soil and prevent soil erosion. GDSL lipase or esterases/lipase has a variety of functions, mainly focusing on plant abiotic stress response. In this study, a GDSL gene from A. mongolicum, designated as AmGDSL1, was successfully cloned and isolated. The subcellular localization of the AmGDSL1 gene (pCAMBIA1302-AmGDSL1-EGFP) results showed that the AmGDSL1 protein of A. mongolicum was only localized in the cytoplasm. When transferred into tobacco (Nicotiana benthamiana), the heterologous expression of AmGDSL1 led to enhanced drought tolerance. Under drought stress, AmGDSL1 overexpressing plants showed fewer wilting leaves, longer roots, and larger root surface area. These overexpression lines possessed higher superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and proline (PRO) activities. At the same time, the malondialdehyde (MDA) content was lower than that in wild-type (WT) tobacco. These findings shed light on the molecular mechanisms involved in the GDSL gene's role in drought resistance, contributing to the discovery and utilization of drought-resistant genes in A. mongolicum for enhancing crop drought resistance.
Collapse
Affiliation(s)
- Xiuxiu Yan
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Xiaojuan Wu
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Fengcheng Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.S.); (Y.F.)
| | - Hushuai Nie
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Xiaohong Du
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Xiaolei Li
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Yongyu Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.S.); (Y.F.)
| | - Yongqing Zhai
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Yan Zhao
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010010, China;
| | - Bobo Fan
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| | - Yanhong Ma
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.Y.); (X.W.); (H.N.); (X.D.); (X.L.); (Y.Z.); (B.F.)
| |
Collapse
|
2
|
Li Y, Zhang J, Wang S, Liu Y, Yang M, Huang Y. Genome-wide identification of the Pyrus R2R3-MYB gene family and PhMYB62 regulation analysis in Pyrus hopeiensis flowers at low temperature. Int J Biol Macromol 2024; 257:128611. [PMID: 38070811 DOI: 10.1016/j.ijbiomac.2023.128611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
The R2R3-MYB gene family play an important role in plant growth, development and stress responses. In this study, a total of 122 PcoR2R3-MYB genes were identified and grouped into 26 clades in pear. And these PcoMYBs were unevenly distributed among 17 chromosomes. The sequence characteristics, conversed motifs, exon/intron structures, classification, duplication events and cis-acting elements were also investigated. The gene duplication events showed that segmental duplication may play key roles in expansion of the PcoMYB gene family. Pyrus hopeiensis, which is a valuable wild resource, has strong cold resistance. An integrative analyses of miRNA and mRNA showed that PhMYB62 was involved in regulating low-temperature stress in P. hopeiensis flower organs. Subcellular localization analysis showed that PhMYB62 protein was specifically localized to the nucleus. The result of DAP-seq showed that PhMYB62 responded to low-temperature stress in P. hopeiensis by regulating TFs, which were associated with plant stress resistance, and POD, GAUT12, AUX28 and CHS genes. Subsequently, yeast one-hybrid verified that PhMYB62 could bind and activate the promoter of POD gene. The current study would provide a comprehensive information for further functional research on the stress-responsive R2R3-MYB gene candidates in pear, and may help to identify the genes associated with cold resistance for the cultivation of cold-resistant pear varieties.
Collapse
Affiliation(s)
- Yongtan Li
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China; College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Jun Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
| | - Shijie Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
| | - Yichao Liu
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China; Institute of Landscaping, Hebei Academic of Forestry and Grassland, Shijiazhuang, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
| | - Yinran Huang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
3
|
Guo J, Guo J, Li L, Bai X, Huo X, Shi W, Gao L, Dai K, Jing R, Hao C. Combined linkage analysis and association mapping identifies genomic regions associated with yield-related and drought-tolerance traits in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:250. [PMID: 37982873 DOI: 10.1007/s00122-023-04494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
KEY MESSAGE Combined linkage analysis and association mapping identified genomic regions associated with yield and drought tolerance, providing information to assist breeding for high yield and drought tolerance in wheat. Wheat (Triticum aestivum L.) is one of the most widely grown food crops and provides adequate amounts of protein to support human health. Drought stress is the most important abiotic stress constraining yield during the flowering and grain development periods. Precise targeting of genomic regions underlying yield- and drought tolerance-responsive traits would assist in breeding programs. In this study, two water treatments (well-watered, WW, and rain-fed water stress, WS) were applied, and five yield-related agronomic traits (plant height, PH; spike length, SL; spikelet number per spike, SNPS; kernel number per spike, KNPS; thousand kernel weight, TKW) and drought response values (DRVs) were used to characterize the drought sensitivity of each accession. Association mapping was performed on an association panel of 304 accessions, and linkage analysis was applied to a doubled haploid (DH) population of 152 lines. Eleven co-localized genomic regions associated with yield traits and DRV were identified in both populations. Many previously cloned key genes were located in these regions. In particular, a TKW-associated region on chromosome 2D was identified using both association mapping and linkage analysis and a key candidate gene, TraesCS2D02G142500, was detected based on gene annotation and differences in expression levels. Exonic SNPs were analyzed by sequencing the full length of TraesCS2D02G142500 in the association panel, and a rare haplotype, Hap-2, which reduced TKW to a lesser extent than Hap-1 under drought stress, and the Hap-2 varieties presented drought-insensitive. Altogether, this study provides fundamental insights into molecular targets for high yield and drought tolerance in wheat.
Collapse
Affiliation(s)
- Jie Guo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Jiahui Guo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
- College of Agronomy, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Long Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xionghui Bai
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Xiaoyu Huo
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Weiping Shi
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Keli Dai
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
| | - Ruilian Jing
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chenyang Hao
- College of Agronomy, Key Laboratory of Sustainable Dryland Agriculture (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
A Novel R2R3-MYB Transcription Factor FtMYB22 Negatively Regulates Salt and Drought Stress through ABA-Dependent Pathway. Int J Mol Sci 2022; 23:ijms232314549. [PMID: 36498877 PMCID: PMC9735685 DOI: 10.3390/ijms232314549] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is a coarse cereal with strongly abiotic resistance. The MYB family plays a regulatory role in plant growth, development, and responses to biotic and abiotic stresses. However, the characteristics and regulatory mechanisms of MYB transcription factors in Tartary buckwheat remain unclarified. Here, this study cloned the FtMYB22 gene from Tartary buckwheat, and investigated its involvement in responding to individual water deficit and salt stress in Arabidopsis. Sequence analysis highlighted that the N-termini of FtMYB22 contained two highly conserved SANT domains and one conserved domain from the SG20 subfamily. Nucleus-localized FtMYB22 did not have individual transcriptional activation activity. Water deficiency and salt stress induced the high expression of the GUS gene, which was driven by the promoter of FtMYB22. Yeast stress experiments showed that the overexpression of FtMYB22 significantly reduced the growth activity of transgenic yeast under water deficit or salt stress. Consistently, the overexpression of FtMYB22 reduced the salt and water deficit stress resistance of the transgenic plants. In addition, physiological parameters showed that transgenic plants had lower proline and antioxidant enzyme activity under stress conditions. Compared to the wild-type (WT), transgenic plants accumulated more malondialdehyde (MDA), H2O2, and O2−; they also showed higher ion permeability and water loss rates of detached leaves under stress treatments. Notably, FtMYB22 was involved in plant stress resistance through an ABA-dependent pathway. Under stress conditions, the expression of RD29A, RD29B, PP2CA, KIN1, COR15A, and other genes in response to plant stress in transgenic lines was significantly lower than that in the WT (p < 0.05). Furthermore, yeast two-hybrid assay showed that there was a significant interaction between FtMYB22 and the ABA receptor protein RCAR1/2, which functioned in the ABA signal pathway. Altogether, FtMYB22, as a negative regulator, inhibited a variety of physiological and biochemical reactions, affected gene expression and stomatal closure in transgenic plants through the ABA-dependent pathway, and reduced the tolerance of transgenic Arabidopsis to water deficiency and salt stress. Based on these fundamental verifications, further studies would shed light on the hormone signal response mechanism of FtMYB22.
Collapse
|
5
|
Qiu X, Wang G, Abou-Elwafa SF, Fu J, Liu Z, Zhang P, Xie X, Ku L, Ma Y, Guan X, Wei L. Genome-wide identification of HD-ZIP transcription factors in maize and their regulatory roles in promoting drought tolerance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:425-437. [PMID: 35400885 PMCID: PMC8943141 DOI: 10.1007/s12298-022-01147-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 05/31/2023]
Abstract
Drought is the main limiting factor of maize productivity, therefore improving drought tolerance in maize has potential practical importance. Cloning and functional verification of drought-tolerant genes is of great importance to understand molecular mechanisms under drought stress. Here, we employed a bioinformatic pipeline to identify 42 ZmHDZ drought responsive genes using previously reported maize transcriptomic datasets. The coding sequences, exon-intron structure and domain organization of all the 42 genes were identified. Phylogenetic analysis revealed evolutionary conservation of members of the ZmHDZ genes in maize. Several regulatory elements associated with drought tolerance were identified in the promoter regions of ZmHDZ genes, indicating the implication of these genes in plant response to drought stress. 42 ZmHDZ genes were distributed unevenly on 10 chromosomes, and 24 pairs of gene duplications were the segmental duplication. The expression of several ZmHDZ genes was upregulated under drought stress, and ZmHDZ9 overexpressing transgenic plants exhibited higher SOD and POD activities and higher accumulation of soluble proteins under drought stress which resulted in enhanced developed phenotype and improved resistance. The present study provides evidence for the evolutionary conservation of HD-ZIP transcription factors homologs in maize. The results further provide a comprehensive insight into the roles of ZmHDZ genes in regulating drought stress tolerance in maize.
Collapse
Affiliation(s)
- Xiao Qiu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - GuoRui Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | | | - Jiaxu Fu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Zhixue Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - PengYu Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xiaowen Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Lixia Ku
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Ying Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - XiaoKang Guan
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| | - Li Wei
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
6
|
Maheswari M, Varalaxmi Y, Sarkar B, Ravikumar N, Vanaja M, Yadav SK, Jyothilakshmi N, Vijayalakshmi T, Savita SK, Rao MS, Shanker AK, Mohapatra T. Tolerance mechanisms in maize identified through phenotyping and transcriptome analysis in response to water deficit stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1377-1394. [PMID: 34177152 PMCID: PMC8212253 DOI: 10.1007/s12298-021-01003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/19/2021] [Accepted: 05/07/2021] [Indexed: 05/03/2023]
Abstract
UNLABELLED Water deficit is a key limiting factor for maize (Zea mays L.) productivity. Elucidating the molecular regulatory networks of stress tolerance is crucial for genetic enhancement of drought tolerance. Two genotypes of maize contrasting in their yield response to water deficit were evaluated for tolerance traits of water relations, net CO2 assimilation rate, antioxidative metabolism and grain yield in relation to the expression levels, based on transcription profiling of genes involved in stress signaling, protein processing and energy metabolism to identify functional tolerance mechanisms. In the genotype SNJ201126 upregulation of calcium mediated signaling, plasma membrane and tonoplast intrinsic proteins and the membrane associated transporters contributed to better maintenance of water relations as evident from the higher relative water content and stomatal conductance at seedling and anthesis stages coupled with robust photosynthetic capacity and antioxidative metabolism. Further the protein folding machinery consisting of calnexin/calreticulin (CNX/CRT) cycle was significantly upregulated only in SNJ201126. While the down regulation of genes involved in photosystems and the enzymes of carbon fixation led to the relative susceptibility of genotype HKI161 in terms of reduced net CO2 assimilation rate, biomass and grain yield. Our results provide new insight into intrinsic functional mechanisms related to tolerance in maize. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01003-4.
Collapse
Affiliation(s)
- Mandapaka Maheswari
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P. O., Hyderabad, Telangana 500 059 India
| | - Yellisetty Varalaxmi
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P. O., Hyderabad, Telangana 500 059 India
| | - Basudeb Sarkar
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P. O., Hyderabad, Telangana 500 059 India
| | - Nakka Ravikumar
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P. O., Hyderabad, Telangana 500 059 India
| | - Maddi Vanaja
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P. O., Hyderabad, Telangana 500 059 India
| | - Sushil Kumar Yadav
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P. O., Hyderabad, Telangana 500 059 India
| | - Narayana Jyothilakshmi
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P. O., Hyderabad, Telangana 500 059 India
| | - Tekula Vijayalakshmi
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P. O., Hyderabad, Telangana 500 059 India
| | - S. K. Savita
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P. O., Hyderabad, Telangana 500 059 India
| | - Mathukumalli Srinivasa Rao
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P. O., Hyderabad, Telangana 500 059 India
| | - Arun Kumar Shanker
- Division of Crop Sciences, ICAR-Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad P. O., Hyderabad, Telangana 500 059 India
| | | |
Collapse
|
7
|
Li X, Tang Y, Li H, Luo W, Zhou C, Zhang L, Lv J. A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110613. [PMID: 32900449 DOI: 10.1016/j.plantsci.2020.110613] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 05/02/2023]
Abstract
MYB transcription factors (TFs) are one of the largest TF families, and R2R3-type MYB TFs participate in the multiply abiotic stress responses in wheat. In this study, an R2R3-type MYB gene Myb protein colourless 1 located on chromosome D (named TaMpc1-D4), was cloned from wheat. TaMpc1-D4-GFP protein was localized in the nucleus. Overexpression of TaMpc1-D4 reduced drought tolerance in transgenic Arabidopsis lines, which was supported by the lower germination rate, the shorter root length, a higher level of O2- and malonaldehyde (MDA), the decreased proline content, and limited activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Furthermore, P5CS1, RD29A, RD29B, DREB2A, ABF3, CBF1, CBF2, CBF3, ERF1, POD1, SOD (Cu/Zn), and CAT1 genes related to the stress and antioxidant system were remarkably down-regulated in TaMpc1-D4 transgenic Arabidopsis lines under drought stress. Silencing TaMpc1-D4 expression in wheat enhanced the relative water content (RWC), the proline content, and the activities of antioxidant enzymes, and activated stress-related and antioxidant-related genes (DREB1, DREB3, ERF3, ERF4b, ABF, P5CS, POD, SOD (Fe), and CAT). Taken together, these results indicated that TaMpc1-D4 negatively modulated drought tolerance by regulating the capacity of the enzyme system and the expression of stress-related and antioxidant-related genes.
Collapse
Affiliation(s)
- Xiaorui Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yan Tang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Hailan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wen Luo
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Chunju Zhou
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
8
|
Zhang L, Song Z, Li F, Li X, Ji H, Yang S. The specific MYB binding sites bound by TaMYB in the GAPCp2/3 promoters are involved in the drought stress response in wheat. BMC PLANT BIOLOGY 2019; 19:366. [PMID: 31426752 PMCID: PMC6701022 DOI: 10.1186/s12870-019-1948-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/29/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Drought stress is one of the major abiotic stresses that affects plant growth and productivity. The GAPCp genes play important roles in drought stress tolerance in multiple species. The aim of this experiment was to identify the core cis-regulatory elements that may respond to drought stress in the GAPCp2 and GAPCp3 promoter sequences. RESULTS In this study, the promoters of GAPCp2 and GAPCp3 were cloned. The promoter activities were significantly improved under abiotic stress via regulation of Rluc reporter gene expression, while promoter sequence analysis indicated that these fragments were not almost identical. In transgenic Arabidopsis with the expression of the GUS reporter gene under the control of one of these promoters, the activities of GUS were strong in almost all tissues except the seeds, and the activities were induced after abiotic stress. The yeast one-hybrid system and EMSA demonstrated that TaMYB bound TaGAPCp2P/3P. By analyzing different 5' deletion mutants of these promoters, it was determined that TaGAPCp2P (- 1312~ - 528) and TaGAPCp3P (- 2049~ - 610), including the MYB binding site, contained enhancer elements that increased gene expression levels under drought stress. We used an effector and a reporter to co-transform tobacco and found that TaMYB interacted with the specific MYB binding sites of TaGAPCp2P (- 1197~ - 635) and TaGAPCp3P (- 1456~ - 1144 and - 718~ - 610) in plant cells. Then, the Y1H system and EMSA assay demonstrated that these MYB binding sites in TaGAPCp2P (- 1135 and - 985) and TaGAPCp3P (- 1414 and - 665) were the target cis-elements of TaMYB. The deletion of the specific MYB binding sites in the promoter fragments significantly restrained the drought response, and these results confirmed that these MYB binding sites (AACTAAA/C) play vital roles in improving the transcription levels under drought stress. The results of qRT-PCR in wheat protoplasts transiently overexpressing TaMYB indicated that the expression of TaGAPCp2/3 induced by abiotic stress was upregulated by TaMYB. CONCLUSION The MYB binding sites (AACTAAA/C) in TaGAPCp2P/3P were identified as the key cis-elements for responding to drought stress and were bound by the transcription factor TaMYB.
Collapse
Affiliation(s)
- Lin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhiqiang Song
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fangfang Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xixi Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Haikun Ji
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shushen Yang
- College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
9
|
Liu X, Zhang X, Sun B, Hao L, Liu C, Zhang D, Tang H, Li C, Li Y, Shi Y, Xie X, Song Y, Wang T, Li Y. Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing. PLoS One 2019; 14:e0219176. [PMID: 31276526 PMCID: PMC6611575 DOI: 10.1371/journal.pone.0219176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/18/2019] [Indexed: 11/19/2022] Open
Abstract
Drought has become one of the most serious abiotic stresses influencing crop production worldwide. Understanding the molecular regulatory networks underlying drought adaption and tolerance in crops is of great importance for future breeding. microRNAs (miRNAs), as important components of post-transcriptional regulation, play crucial roles in drought response and adaptation in plants. Here, we report a miRNome analysis of two maize inbred lines with contrasting levels of drought tolerance under soil drought in the field. Differential expression analysis showed 11 and 34 miRNAs were uniquely responded to drought in H082183 (drought tolerant) and Lv28 (drought sensitive), respectively, in leaves. In roots, 19 and 23 miRNAs uniquely responded to drought in H082183 and Lv28, respectively. Expression analysis of these drought-responsive miRNA-mRNA modules revealed miR164-MYB, miR164-NAC, miR159-MYB, miR156-SPL and miR160-ARF showed a negative regulatory relationship. Further analysis showed that the miR164-MYB and miR164-NAC modules in the tolerant line modulated the stress response in an ABA (abscisic acid)-dependent manner, while the miR156-SPL and miR160-ARF modules in the sensitive line participated in the inhibition of metabolism in drought-exposed leaves. Together, our results provide new insight into not only drought-tolerance-related miRNA regulation networks in maize but also key miRNAs for further characterization and improvement of maize drought tolerance.
Collapse
Affiliation(s)
- Xuyang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baocheng Sun
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Luyang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Dengfeng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaijun Tang
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsu Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Xie
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yanchun Song
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
A MYB-Related Transcription Factor from Lilium lancifolium L. (LlMYB3) Is Involved in Anthocyanin Biosynthesis Pathway and Enhances Multiple Abiotic Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20133195. [PMID: 31261872 PMCID: PMC6651583 DOI: 10.3390/ijms20133195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Most commercial cultivars of lily are sensitive to abiotic stresses. However, tiger lily (Lilium lancifolium L.), one of the most widely distributed wild lilies in Asia, has strong abiotic stresses resistance. Thus, it is indispensable to identify stress-responsive candidate genes in tiger lily for the stress resistance improvement of plants. In this study, a MYB related homolog (LlMYB3) from tiger lily was functionally characterized as a positive regulator in plant stress tolerance. LlMYB3 is a nuclear protein with transcriptional activation activity at C-terminus. The expression of LlMYB3 gene was induced by multiple stress treatments. Several stress-related cis-acting regulatory elements (MYBRS, MYCRS, LTRE and DRE/CRT) were located within the promoter of LlMYB3; however, the promoter activity was not induced sufficiently by various stresses treatments. Overexpressing LlMYB3 in Arabidopsis thaliana L. transgenic plants showed ABA hypersensitivity and enhanced tolerance to cold, drought, and salt stresses. Furthermore, we found LlMYB3 highly co-expressed with LlCHS2 gene under cold treatment; yeast one-hybrid (Y1H) assays demonstrated LlMYB3 was able to bind to the promoter of LlCHS2. These findings suggest that the stress-responsive LlMYB3 may be involved in anthocyanin biosynthesis pathway to regulate stress tolerance of tiger lily.
Collapse
|
11
|
Yu Y, Bi C, Wang Q, Ni Z. Overexpression of TaSIM provides increased drought stress tolerance in transgenic Arabidopsis. Biochem Biophys Res Commun 2019; 512:66-71. [PMID: 30862358 DOI: 10.1016/j.bbrc.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Drought is the most serious meteorological disaster affecting wheat production. Members of the R2R3-MYB gene subfamily play a crucial role in the regulation of the wheat drought stress response. In this study, the function of polyethylene glycol (PEG)-induced expression of the wheat R2R3-MYB gene TaSIM in response to drought stress was characterized. β-Glucuronidase (GUS) histochemical staining revealed that the TaSIM promoter can drive the expression of the GUS gene in the flowers, roots, stems and rosette leaves. Moreover, TaSIM was expressed in the stamens, pistils, roots, stems and leaves of wheat. The TaSIM promoter contains a known stress-responsive cis-acting element and is inducible by stress, PEG and abscisic acid (ABA). Under drought stress, compared with wild-type (WT) Arabidopsis, transgenic Arabidopsis overexpressing TaSIM presented significantly lower leaf water loss rates and increased survival. Moreover, the content of soluble sugars and proline and the expression of stress-related genes (RD29A and RD22) in transgenic Arabidopsis overexpressing TaSIM were higher than those in WT Arabidopsis under drought stress. Our results indicate that TaSIM plays a positive role in the drought stress response and can be used as a candidate gene for the genetic engineering of wheat drought resistance.
Collapse
Affiliation(s)
- Yuehua Yu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, PR China.
| | - Chenxi Bi
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, PR China.
| | - Qing Wang
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, PR China.
| | - Zhiyong Ni
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, PR China.
| |
Collapse
|
12
|
Huang Y, Zhao H, Gao F, Yao P, Deng R, Li C, Chen H, Wu Q. A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/drought tolerance in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:238-248. [PMID: 30227384 DOI: 10.1016/j.plaphy.2018.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 05/24/2023]
Abstract
Abiotic stress causes various negative impacts on plants, such as water loss, reactive oxygen species (ROS) accumulation and decreased photosynthesis. R2R3-MYB transcription factors (TFs) play crucial roles in the response of plants to abiotic stress. However, their functions in Tartary buckwheat, a strongly abiotic and resistant coarse cereal, haven't been fully investigated. In this paper, we report that a R2R3-MYB from Tartary buckwheat, FtMYB13, is not an activator of transcriptional activity but is located in the nucleus. Moreover, compared to the wild type (WT), transgenic Arabidopsis overexpressing FtMYB13 had a lower sensitivity to ABA and caused improved drought/salt tolerance, which was attributed to the higher proline content, greater photosynthetic efficiency, higher transcript abundance of some stress-related genes and the smaller amount of reactive oxygen species (ROS) and malondialdehyde (MDA) in the transgenic lines compared to WT. Consequently, our work indicates that FtMYB13 is involved in mediating plant responses to ABA, as well as salt and drought.
Collapse
Affiliation(s)
- Yunji Huang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Fei Gao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Panfeng Yao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Renyu Deng
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an, 625014, Sichuan Province, China.
| |
Collapse
|
13
|
Khan SA, Li MZ, Wang SM, Yin HJ. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress. Int J Mol Sci 2018; 19:ijms19061634. [PMID: 29857524 PMCID: PMC6032162 DOI: 10.3390/ijms19061634] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023] Open
Abstract
Owing to diverse abiotic stresses and global climate deterioration, the agricultural production worldwide is suffering serious losses. Breeding stress-resilient crops with higher quality and yield against multiple environmental stresses via application of transgenic technologies is currently the most promising approach. Deciphering molecular principles and mining stress-associate genes that govern plant responses against abiotic stresses is one of the prerequisites to develop stress-resistant crop varieties. As molecular switches in controlling stress-responsive genes expression, transcription factors (TFs) play crucial roles in regulating various abiotic stress responses. Hence, functional analysis of TFs and their interaction partners during abiotic stresses is crucial to perceive their role in diverse signaling cascades that many researchers have continued to undertake. Here, we review current developments in understanding TFs, with particular emphasis on their functions in orchestrating plant abiotic stress responses. Further, we discuss novel molecular mechanisms of their action under abiotic stress conditions. This will provide valuable information for understanding regulatory mechanisms to engineer stress-tolerant crops.
Collapse
Affiliation(s)
- Sardar-Ali Khan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Meng-Zhan Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Hong-Ju Yin
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
14
|
Wang N, Zhang W, Qin M, Li S, Qiao M, Liu Z, Xiang F. Drought Tolerance Conferred in Soybean (Glycine max. L) by GmMYB84, a Novel R2R3-MYB Transcription Factor. PLANT & CELL PHYSIOLOGY 2017; 58:1764-1776. [PMID: 29016915 DOI: 10.1093/pcp/pcx111] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/03/2017] [Indexed: 05/18/2023]
Abstract
MYB-type transcription factors (MYB TFs) play diverse roles in plant development and stress responses. However, the mechanisms underlying the actions of MYB TFs during stress response remain unclear. In this study we identified a R2R3-MYB TF in soybean (Glycine max), denoted GmMYB84, which contributes to drought resistance. Expression of GmMYB84 was induced by drought, salt stress, H2O2 and ABA. Compared with the wild type (WT), GmMYB84-overexpressing soybean mutants (OE lines) exhibited enhanced drought resistance with a higher survival rate, longer primary root length, greater proline and reactive oxygen species (ROS) contents, higher antioxidant enzyme activities [peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD)], a lower dehydration rate and reduced malondialdehyde (MDA) content. We also found that ROS could induce SOD/POD/CAT activity in OE lines. In particular, we found that the optimal level of ROS is required for GmMYB84 to modulate primary root elongation. Some ROS-related genes were up-regulated under abiotic stress in GmMYB84 transgenic plants compared with the WT. Furthermore, electrophoretic mobility shift assay and luciferase reporter analysis demonstrated that GmMYB84 binds directly to the promoter of GmRBOHB-1 and GmRBOHB-2 genes. Based on this evidence, we propose a model for how GmMYB84, H2O2 and antioxidant enzymes work together to control root growth under both optimal and drought stress conditions.
Collapse
Affiliation(s)
- Nan Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Wenxiao Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Mengyin Qin
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Shuo Li
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Meng Qiao
- Shandong Province Administration of Work Safety, Jinan 250100, Shandong, China
| | - Zhenhua Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| | - Fengning Xiang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 2017; 491:642-648. [PMID: 28757414 DOI: 10.1016/j.bbrc.2017.07.150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 11/24/2022]
Abstract
MYB transcription factors are a large family of proteins involved in plant development and responses to stress. In this study, the wheat salinity-induced R2R3-MYB transcription factor TaSIM was functionally characterized, with a focus on its role in salt stress tolerance. TaSIM protein enters the nucleus and binds to the MYB-binding site II motif. Expression analysis revealed that TaSIM was induced by drought, high salinity, low temperature, and abscisic acid treatment. Overexpression of TaSIM improved salt stress tolerance in transgenic plants. Furthermore, the transcript levels of genes involved in abscisic acid (ABA)-dependent (RD22) and ABA-independent (RD29A) signaling were higher in TaSIM-overexpressing plants than in the wild type. These results suggest that TaSIM positively modulates salt stress tolerance and has potential applications in molecular breeding to enhance salt tolerance in crops.
Collapse
|
16
|
Zhang X, Liu X, Zhang D, Tang H, Sun B, Li C, Hao L, Liu C, Li Y, Shi Y, Xie X, Song Y, Wang T, Li Y. Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance. PLoS One 2017; 12:e0179477. [PMID: 28700592 PMCID: PMC5507481 DOI: 10.1371/journal.pone.0179477] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/31/2017] [Indexed: 11/19/2022] Open
Abstract
Drought is a major threat to maize growth and production. Understanding the molecular regulation network of drought tolerance in maize is of great importance. In this study, two maize inbred lines with contrasting drought tolerance were tested in the field under natural soil drought and well-watered conditions. In addition, the transcriptomes of their leaves was analyzed by RNA-Seq. In total, 555 and 2,558 genes were detected to specifically respond to drought in the tolerant and the sensitive line, respectively, with a more positive regulation tendency in the tolerant genotype. Furthermore, 4,700, 4,748, 4,403 and 4,288 genes showed differential expression between the two lines under moderate drought, severe drought and their well-watered controls, respectively. Transcription factors were enriched in both genotypic differentially expressed genes and specifically responsive genes of the tolerant line. It was speculated that the genotype-specific response of 20 transcription factors in the tolerance line and the sustained genotypically differential expression of 22 transcription factors might enhance tolerance to drought in maize. Our results provide new insight into maize drought tolerance-related regulation systems and provide gene resources for subsequent studies and drought tolerance improvement.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuyang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengfeng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaijun Tang
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baocheng Sun
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luyang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsu Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Xie
- Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yanchun Song
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Transcriptome wide identification, phylogenetic analysis, and expression profiling of zinc-finger transcription factors from Crocus sativus L. Mol Genet Genomics 2017; 292:619-633. [PMID: 28247040 DOI: 10.1007/s00438-017-1295-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/30/2017] [Indexed: 01/11/2023]
Abstract
Crocus sativus belongs to Iridaceae family and is the only plant species which produces apocarotenoids like crocin, picrocrocin, and safranal in significant quantities. Besides their organoleptic properties, Crocus apocarotenoids have been found to possess remarkable pharmacological potential. Although apocarotenoid biosynthetic pathway has been worked out to a great degree, but the mechanism that regulates the tissue and developmental stage-specific production of Crocus apocarotenoids is not known. To identify the genes regulating apocarotenoid biosynthesis in Crocus, transcriptome wide identification of zinc-finger transcription factors was undertaken. 81 zinc-finger transcription factors were identified which grouped into eight subfamilies. C2H2, C3H, and AN20/AN1 were the major subfamilies with 29, 20, and 14 members, respectively. Expression profiling revealed CsSAP09 as a potential candidate for regulation of apocarotenoid biosynthesis. CsSAP09 was found to be highly expressed in stigma at anthesis stage corroborating with the accumulation pattern of apocarotenoids. CsSAP09 was nuclear localized and activated reporter gene transcription in yeast. It was highly induced in response to oxidative, salt and dehydration stresses, ABA and methyl jasmonate. Furthermore, upstream region of CsSAP09 was found to contain stress and light responsive elements. To our knowledge, this is the first report on the study of a gene family in C. sativus and may provide basic insights into the putative role of zinc finger genes. It may also serve as a valuable resource for functional characterization of these genes aimed towards unraveling their role in regulation of apocarotenoid biosynthesis.
Collapse
|
18
|
Wu J, Chen J, Wang L, Wang S. Genome-Wide Investigation of WRKY Transcription Factors Involved in Terminal Drought Stress Response in Common Bean. FRONTIERS IN PLANT SCIENCE 2017; 8:380. [PMID: 28386267 PMCID: PMC5362628 DOI: 10.3389/fpls.2017.00380] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/06/2017] [Indexed: 05/03/2023]
Abstract
WRKY transcription factor plays a key role in drought stress. However, the characteristics of the WRKY gene family in the common bean (Phaseolus vulgaris L.) are unknown. In this study, we identified 88 complete WRKY proteins from the draft genome sequence of the "G19833" common bean. The predicted genes were non-randomly distributed in all chromosomes. Basic information, amino acid motifs, phylogenetic tree and the expression patterns of PvWRKY genes were analyzed, and the proteins were classified into groups 1, 2, and 3. Group 2 was further divided into five subgroups: 2a, 2b, 2c, 2d, and 2e. Finally, we detected 19 WRKY genes that were responsive to drought stress using qRT-PCR; 11 were down-regulated, and 8 were up-regulated under drought stress. This study comprehensively examines WRKY proteins in the common bean, a model food legume, and it provides a foundation for the functional characterization of the WRKY family and opportunities for understanding the mechanisms of drought stress tolerance in this plant.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing, China
| | - Jibao Chen
- College of Agricultural Engineering, Nanyang Normal University,Nanyang, China
| | - Lanfen Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing, China
| | - Shumin Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences,Beijing, China
- *Correspondence: Shumin Wang,
| |
Collapse
|