1
|
Yang Z, Mei W, Wang H, Zeng J, Dai H, Ding X. Comprehensive Analysis of NAC Transcription Factors Reveals Their Evolution in Malvales and Functional Characterization of AsNAC019 and AsNAC098 in Aquilaria sinensis. Int J Mol Sci 2023; 24:17384. [PMID: 38139213 PMCID: PMC10744133 DOI: 10.3390/ijms242417384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
NAC is a class of plant-specific transcription factors that are widely involved in the growth, development and (a)biotic stress response of plants. However, their molecular evolution has not been extensively studied in Malvales, especially in Aquilaria sinensis, a commercial and horticultural crop that produces an aromatic resin named agarwood. In this study, 1502 members of the NAC gene family were identified from the genomes of nine species from Malvales and three model plants. The macroevolutionary analysis revealed that whole genome duplication (WGD) and dispersed duplication (DSD) have shaped the current architectural structure of NAC gene families in Malvales plants. Then, 111 NAC genes were systemically characterized in A. sinensis. The phylogenetic analysis suggests that NAC genes in A. sinensis can be classified into 16 known clusters and four new subfamilies, with each subfamily presenting similar gene structures and conserved motifs. RNA-seq analysis showed that AsNACs presents a broad transcriptional response to the agarwood inducer. The expression patterns of 15 AsNACs in A. sinensis after injury treatment indicated that AsNAC019 and AsNAC098 were positively correlated with the expression patterns of four polyketide synthase (PKS) genes. Additionally, AsNAC019 and AsNAC098 were also found to bind with the AsPKS07 promoter and activate its transcription. This comprehensive analysis provides valuable insights into the molecular evolution of the NAC gene family in Malvales plants and highlights the potential mechanisms of AsNACs for regulating secondary metabolite biosynthesis in A. sinensis, especially for the biosynthesis of 2-(2-phenyl) chromones in agarwood.
Collapse
Affiliation(s)
- Zhuo Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jun Zeng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
2
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
3
|
Liu X, Zong X, Wu X, Liu H, Han J, Yao Z, Ren Y, Ma L, Wang B, Zhang H. Ectopic expression of NAC transcription factor HaNAC3 from Haloxylon ammodendron increased abiotic stress resistance in tobacco. PLANTA 2022; 256:105. [PMID: 36315282 DOI: 10.1007/s00425-022-04021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
HaNAC3 is a transcriptional activator located in the nucleus that may be involved in the response to high temperature, high salt and drought stresses as well as phytohormone IAA and ABA treatments. Our study demonstrated that HaNAC3 increased the tolerance of transgenic tobacco to abiotic stress and was involved in the regulation of a range of downstream genes and metabolic pathways. This also indicates the potential application of HaNAC3 as a plant tolerance gene. NAC transcription factors play a key role in plant growth and development and plant responses to biotic and abiotic stresses. However, the biological functions of NAC transcription factors in the desert plant Haloxylon ammodendron are still poorly understood. In this study, the NAC transcription factor HaNAC3 was isolated and cloned from a typical desert plant H. ammodendron, and its possible biological functions were investigated. Bioinformatics analysis showed that HaNAC3 has the unique N-terminal NAC structural domain of NAC transcription factor. Quantitative real-time fluorescence analysis showed that HaNAC3 was able to participate in the response to simulated drought, high temperature, high salt, and phytohormone IAA and ABA treatments, and was very sensitive to simulated high temperature and phytohormone ABA treatments. Subcellular localization analysis showed that the GFP-HaNAC3 fusion protein was localized in the nucleus of tobacco epidermal cells. The transcriptional self-activation assay showed that HaNAC3 had transcriptional self-activation activity, and the truncation assay confirmed that the transcriptional activation activity was located at the C-terminus. HaNAC3 gene was expressed exogenously in wild-type Nicotiana benthamiana, and the physiological function of HaNAC3 was verified by simulating drought and other abiotic stresses. The results indicated that transgenic tobacco had better resistance to abiotic stresses than wild-type B. fuminata. Further transcriptome analysis showed that HaNAC3 was involved in the regulation of a range of downstream resistance genes, wax biosynthesis and other metabolic pathways. These results suggest that HaNAC3 may have a stress resistance role in H. ammodendron and has potential applications in plant molecular breeding.
Collapse
Affiliation(s)
- Xiashun Liu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xingfeng Zong
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xia Wu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Hao Liu
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Jvdong Han
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Zhengpei Yao
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yanping Ren
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Li Ma
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Bo Wang
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China
| | - Hua Zhang
- College of Life Science, Xinjiang Agricultural University, Ürümqi, China.
- Arid Desert Research Institute, Ürümqi, China.
| |
Collapse
|
4
|
Chen Z, Peng Z, Liu S, Leng H, Luo J, Wang F, Yi Y, Resco de Dios V, Lucas GR, Yao Y, Gao Y. Overexpression of PeNAC122 gene promotes wood formation and tolerance to osmotic stress in poplars. PHYSIOLOGIA PLANTARUM 2022; 174:e13751. [PMID: 36004736 DOI: 10.1111/ppl.13751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Finding the adequate balance between wood formation and abiotic stress resistance is still an important challenge for industrial woody crops. In this study, PeNAC122, a member of the NAC transcription factor (TF) family highly expressed in xylem, was cloned from Populus euphratica. Tissue expression and β-glucuronidase (GUS) staining showed that PeNAC122 was exclusively expressed in phloem fiber and secondary xylem of stems. Subcellular and yeast transactivation assays confirmed that PeNAC122 protein existed in the nucleus and did not have transcriptional activation and inhibitory activity. Overexpression of PeNAC122 poplar lines exhibited reduced plant height, thickened xylem, and accumulated lignin content in stems, and also upregulates the expression of secondary cell wall biosynthetic genes. Moreover, overexpression of PeNAC122 lines displayed more tolerance to PEG6000-induced osmotic stress, with stronger photosynthetic performance, higher antioxidant enzyme activity, and less accumulation of reactive oxygen species in leaves, and higher expression levels of stress response genes DREB2A, RD29, and NCED3. These results indicate that PeNAC122 plays a crucial role in wood formation and abiotic stress tolerance, which, in addition to potential use in improving wood quality, provides further insight into the role of NAC family TFs in balancing wood development and abiotic stress resistance.
Collapse
Affiliation(s)
- Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Zhuoxi Peng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Siqin Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Haiqin Leng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Jianxun Luo
- Institute of Forestry, Sichuan Academy of Forestry, Chengdu, People's Republic of China
| | - Fei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yuanyuan Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Gutiérrez Rodríguez Lucas
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, People's Republic of China
| |
Collapse
|
5
|
Liu Y, Han ZJ, Su MX, Zhang M. Transcriptomic Profile Analysis of Populus talassica × Populus euphratica Response and Tolerance under Salt Stress Conditions. Genes (Basel) 2022; 13:genes13061032. [PMID: 35741794 PMCID: PMC9222677 DOI: 10.3390/genes13061032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
A new Populus variety with a strong salt tolerance was obtained from cross breeding P. talassica as the female parent and P. euphratica as the male parent. In order to elucidate the molecular mechanism and find out the major differentially expressed genes of salt tolerance of P. talassica × P. euphratica, after being subjected to salt stress, at 0, 200, and 400 mmol/L NaCl, the root, stem, and leaf transcriptomes (denoted as R0, S0, and L0; R200, S200, and L200; and R400, S400, and L400, respectively) of P. talassica × P. euphratica were sequenced. In total, 41,617 differentially expressed genes (DEGs) were identified in all the comparison groups with 21,603 differentially upregulated genes and 20,014 differentially downregulated genes. Gene Ontology analysis showed that DEGs were significantly enriched in biological processes that may be involved in salt stress, such as ‘cell communication’, ‘ion transport’, ‘signaling’, and signal ‘transmission’. Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were mainly enriched in pathways of ‘plant–pathogen interaction’, ‘carbon metabolism’, and ‘plant hormone signal transmission’. The pathways and related gene information formed a basis for future research on the mechanisms of salt stress, the development of molecular markers, and the cloning of key genes in P. talassica × P. euphratica.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Y.L.); (M.X.S.); (M.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Zhan Jiang Han
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Y.L.); (M.X.S.); (M.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
- Correspondence:
| | - Meng Xu Su
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Y.L.); (M.X.S.); (M.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| | - Min Zhang
- College of Life Science and Technology, Tarim University, Alar 843300, China; (Y.L.); (M.X.S.); (M.Z.)
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China
| |
Collapse
|
6
|
Zhang X, Cheng Z, Fan G, Yao W, Li W, Chen S, Jiang T. Functional analysis of PagNAC045 transcription factor that improves salt and ABA tolerance in transgenic tobacco. BMC PLANT BIOLOGY 2022; 22:261. [PMID: 35610568 PMCID: PMC9131654 DOI: 10.1186/s12870-022-03623-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/26/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Salt stress causes inhibition of plant growth and development, and always leads to an increasing threat to plant agriculture. Transcription factors regulate the expression of various genes for stress response and adaptation. It's crucial to reveal the regulatory mechanisms of transcription factors in the response to salt stress. RESULTS A salt-inducible NAC transcription factor gene PagNAC045 was isolated from Populus alba×P. glandulosa. The PagNAC045 had a high sequence similarity with NAC045 (Potri.007G099400.1) in P. trichocarpa, and they both contained the same conserved motifs 1 and 2, which constitute the highly conserved NAM domain at the N-terminus. Protein-protein interaction (PPI) prediction showed that PagNAC045 potentially interacts with many proteins involved in plant hormone signaling, DNA-binding and transcriptional regulation. The results of subcellular localization and transient expression in tobacco leaves confirmed the nuclear localization of PagNAC045. Yeast two-hybrid revealed that PagNAC045 protein exhibits transcriptional activation property and the activation domain located in its C-terminus. In addition, the 1063 bp promoter of PagNAC045 was able to drive GUS gene expression in the leaves and roots. In poplar leaves and roots, PagNAC045 expression increased significantly by salt and ABA treatments. Tobacco seedlings overexpressing PagNAC045 exhibited enhanced tolerance to NaCl and ABA compared to the wild-type (WT). Yeast one-hybrid assay demonstrated that a bHLH104-like transcription factor can bind to the promoter sequence of PagNAC045. CONCLUSION The PagNAC045 functions as positive regulator in plant responses to NaCl and ABA-mediated stresses.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, 32611, USA
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida (UF), Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Program, UF, Gainesville, FL, 32610, USA.
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, UF, Gainesville, FL, 32610, USA.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
7
|
Diao J, Wang J, Zhang P, Hao X, Wang Y, Liang L, Zhang Y, Ma W, Ma L. Transcriptome Analysis Reveals the Important Role of WRKY28 in Fusarium oxysporum Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:720679. [PMID: 34490017 PMCID: PMC8418079 DOI: 10.3389/fpls.2021.720679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Root rot of Populus davidiana × P. alba var. pyramidalis Louche (Pdpap) is caused by Fusarium oxysporum. We used RNA sequencing to study the molecular mechanisms and response pattern of Pdpap infected by F. oxysporum CFCC86068. We cloned the PdpapWRKY28 transcription factor gene and transformed the recombinant vector pBI121-PdpapWRKY28 into Pdpap. The resistance function of PdpapWRKY28 was verified using physiological and biochemical methods. By means of RNA sequencing, we detected 1,403 differentially expressed genes (DEGs) that are common in the different treatments by F. oxysporum. Furthermore, we found that overexpression of the PdpapWRKY28 gene may significantly improve the resistance of Pdpap plants to F. oxysporum. Our research reveals a key role for PdpapWRKY28 in the resistance response of Pdpap to F. oxysporum. Additionally, our results provide a theoretical basis for in-depth research on resistance breeding to combat root rot.
Collapse
Affiliation(s)
- Jian Diao
- Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Jiaqi Wang
- Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Ping Zhang
- Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Xin Hao
- Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Yang Wang
- Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Liwei Liang
- Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Yue Zhang
- Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| | - Wei Ma
- Medicinal Plant, College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Ma
- Forest Protection, College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
8
|
Veremeichik GN, Shkryl YN, Silantieva SA, Gorpenchenko TY, Brodovskaya EV, Yatsunskaya MS, Bulgakov VP. Managing activity and Ca 2+ dependence through mutation in the Junction of the AtCPK1 coordinates the salt tolerance in transgenic tobacco plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:104-113. [PMID: 34034156 DOI: 10.1016/j.plaphy.2021.05.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are Ca2+ decoders in plants. AtCPK1 is a positive regulator in the plant response to biotic and abiotic stress. Inactivation of the autoinhibitory domain of AtCPK1 in the mutated form KJM23 provides constitutive activity of the kinase. In the present study, we investigated the effect of overexpressed native and mutant KJM23 forms on salinity tolerance in Nicotiana tabacum. Overexpression of native AtCPK1 provided tobacco resistance to 120 mM NaCl during germination and 180 mM NaCl during long-term growth, while the resistance of plants increased to 240 mM NaCl during both phases of plant development when transformed with KJM23. Mutation in the junction KJM4, which disrupted Ca2+ induced activation, completely nullified the acquired salt tolerance up to levels of normal plants. Analysis by confocal microscopy showed that under high salinity conditions, overexpression of AtCPK1 and KJM23 inhibited reactive oxygen species (ROS) accumulation to levels observed in untreated plants. Quantitative real-time PCR analysis showed that overexpression of AtCPK1 and KJM23 was associated with changes in expression of genes encoding heat shock factors. In all cases, the KJM23 mutation enhanced the effect of AtCPK1, while the KJM4 mutation reduced it to the control level. We suggest that the autoinhibitory domains in CDPKs could be promising targets for manipulation in engineering salt-tolerant plants.
Collapse
Affiliation(s)
- G N Veremeichik
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | - Y N Shkryl
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - S A Silantieva
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - T Y Gorpenchenko
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - E V Brodovskaya
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - M S Yatsunskaya
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - V P Bulgakov
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia
| |
Collapse
|
9
|
Proteomics of Homeobox7 Enhanced Salt Tolerance in Mesembryanthemum crystallinum. Int J Mol Sci 2021; 22:ijms22126390. [PMID: 34203768 PMCID: PMC8232686 DOI: 10.3390/ijms22126390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022] Open
Abstract
Mesembryanthemum crystallinum (common ice plant) is a halophyte species that has adapted to extreme conditions. In this study, we cloned a McHB7 transcription factor gene from the ice plant. The expression of McHB7 was significantly induced by 500 mM NaCl and it reached the peak under salt treatment for 7 days. The McHB7 protein was targeted to the nucleus. McHB7-overexpressing in ice plant leaves through Agrobacterium-mediated transformation led to 25 times more McHB7 transcripts than the non-transformed wild type (WT). After 500 mM NaCl treatment for 7 days, the activities of superoxide dismutase (SOD) and peroxidase (POD) and water content of the transgenic plants were higher than the WT, while malondialdehyde (MDA) was decreased in the transgenic plants. A total of 1082 and 1072 proteins were profiled by proteomics under control and salt treatment, respectively, with 22 and 11 proteins uniquely identified under control and salt stress, respectively. Among the 11 proteins, 7 were increased and 4 were decreased after salt treatment. Most of the proteins whose expression increased in the McHB7 overexpression (OE) ice plants under high salinity were involved in transport regulation, catalytic activities, biosynthesis of secondary metabolites, and response to stimulus. The results demonstrate that the McHB7 transcription factor plays a positive role in improving plant salt tolerance.
Collapse
|
10
|
Singh S, Koyama H, Bhati KK, Alok A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. JOURNAL OF PLANT RESEARCH 2021; 134:475-495. [PMID: 33616799 PMCID: PMC8106581 DOI: 10.1007/s10265-021-01270-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/13/2021] [Indexed: 05/02/2023]
Abstract
Climate change, malnutrition, and food insecurity are the inevitable challenges being faced by the agriculture sector today. Plants are susceptible to extreme temperatures during the crucial phases of flowering and seed development, and elevated carbon levels also lead to yield losses. Productivity is also affected by floods and droughts. Therefore, increasing plant yield and stress tolerance are the priorities to be met through novel biotechnological interventions. The contributions of NAC genes towards enhancing plant survivability under stress is well known. Here we focus on the potential of NAC genes in the regulation of abiotic stress tolerance, secondary cell wall synthesis, lateral root development, yield potential, seed size and biomass, ROS signaling, leaf senescence, and programmed cell death. Once naturally tolerant candidate NAC genes have been identified, and the nature of their association with growth and fitness against multi-environmental stresses has been determined, they can be exploited for building inherent tolerance in future crops via transgenic technologies. An update on the latest developments is provided in this review, which summarizes the current understanding of the roles of NAC in the establishment of various stress-adaptive mechanisms in model and food crop plants.
Collapse
Affiliation(s)
- Sadhana Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Hiroyuki Koyama
- Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kaushal K Bhati
- Louvain Institute of Biomolecular Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Anshu Alok
- Department of Biotechnology, UIET, Punjab University, Chandigarh, India
| |
Collapse
|
11
|
Zhang X, Cheng Z, Yao W, Zhao K, Wang X, Jiang T. Functional Characterization of PsnNAC036 under Salinity and High Temperature Stresses. Int J Mol Sci 2021; 22:2656. [PMID: 33800795 PMCID: PMC7961394 DOI: 10.3390/ijms22052656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Plant growth and development are challenged by biotic and abiotic stresses including salinity and heat stresses. For Populus simonii × P. nigra as an important greening and economic tree species in China, increasing soil salinization and global warming have become major environmental challenges. We aim to unravel the molecular mechanisms underlying tree tolerance to salt stress and high temprerature (HT) stress conditions. Transcriptomics revealed that a PsnNAC036 transcription factor (TF) was significantly induced by salt stress in P. simonii × P. nigra. This study focuses on addressing the biological functions of PsnNAC036. The gene was cloned, and its temporal and spatial expression was analyzed under different stresses. PsnNAC036 was significantly upregulated under 150 mM NaCl and 37 °C for 12 h. The result is consistent with the presence of stress responsive cis-elements in the PsnNAC036 promoter. Subcellular localization analysis showed that PsnNAC036 was targeted to the nucleus. Additionally, PsnNAC036 was highly expressed in the leaves and roots. To investigate the core activation region of PsnNAC036 protein and its potential regulatory factors and targets, we conducted trans-activation analysis and the result indicates that the C-terminal region of 191-343 amino acids of the PsnNAC036 was a potent activation domain. Furthermore, overexpression of PsnNAC036 stimulated plant growth and enhanced salinity and HT tolerance. Moreover, 14 stress-related genes upregulated in the transgenic plants under high salt and HT conditions may be potential targets of the PsnNAC036. All the results demonstrate that PsnNAC036 plays an important role in salt and HT stress tolerance.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Xueyi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| |
Collapse
|