1
|
Singh R, Singh T, Hassan M, Kennedy JF. Updates on inulinases: Structural aspects and biotechnological applications. Int J Biol Macromol 2020; 164:193-210. [DOI: 10.1016/j.ijbiomac.2020.07.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
|
2
|
Hang H, Cheng X, Yan F, Wang C, Sun K. Immobilized Inulinase for the Continuous Conversion of Inulin in the Fluidized-Bed Reactor. Catal Letters 2020. [DOI: 10.1007/s10562-020-03122-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
3
|
Singh RS, Chauhan K. Functionalization of multiwalled carbon nanotubes for enzyme immobilization. Methods Enzymol 2020; 630:25-38. [DOI: 10.1016/bs.mie.2019.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
4
|
Singh RS, Singh T, Larroche C. Biotechnological applications of inulin-rich feedstocks. BIORESOURCE TECHNOLOGY 2019; 273:641-653. [PMID: 30503580 DOI: 10.1016/j.biortech.2018.11.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Inulin is a naturally occurring second largest storage polysaccharide with a wide range of applications in pharmaceutical and food industries. It is a robust polysaccharide which consists of a linear chain of β-2, 1-linked-d-fructofuranose molecules terminated with α-d-glucose moiety at the reducing end. It is present in tubers, bulbs and tuberous roots of more than 36,000 plants belonging to both monocotyledonous and dicotyledonous families. Jerusalem artichoke, chicory, dahlia, asparagus, etc. are important inulin-rich plants. Inulin is a potent substrate and inducer for the production of inulinases. Inulin/inulin-rich feedstocks can be used for the production of fructooligosaccharides and high-fructose syrup. Additionally, inulin-rich feedstocks can also be exploited for the production of other industrially important products like acetone, butanol, bioethanol, single cell proteins, single cell oils, 2, 3-butanediol, sorbitol, mannitol, etc. Current review highlights the biotechnological potential of inulin-rich feedstocks for the production of various industrially important products.
Collapse
Affiliation(s)
- R S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Taranjeet Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Christian Larroche
- Université Clermont Auvergne, Institut Pascal, UMR, CNRS 6602, and Labex, IMobS3, 4 Avenue Blaise Pascal, TSA 60026, CS 60026, F-63178 Aubiere Cedex, France
| |
Collapse
|
5
|
Purification and characterization of two isoforms of exoinulinase from Penicillium oxalicum BGPUP-4 for the preparation of high fructose syrup from inulin. Int J Biol Macromol 2018; 118:1974-1983. [DOI: 10.1016/j.ijbiomac.2018.07.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 01/26/2023]
|
6
|
Singh RS, Chauhan K, Pandey A, Larroche C. Biocatalytic strategies for the production of high fructose syrup from inulin. BIORESOURCE TECHNOLOGY 2018; 260:395-403. [PMID: 29636277 DOI: 10.1016/j.biortech.2018.03.127] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The consumption of natural and low calorie sugars has increased enormously from the past few decades. To fulfil the demands, the production of healthy sweeteners as an alternative to sucrose has recently received considerable interest. Fructose is the most health beneficial and safest sugar amongst them. It is generally recognised as safe (GRAS) and has become an important food ingredient due its sweetening and various health promising functional properties. Commercially, high fructose syrup is prepared from starch by multienzymatic process. Single-step enzymatic hydrolysis of inulin using inulinase has emerged as an alternate to the conventional approach to reduce complexity, time and cost. The present review, outlines the enzymatic strategies used for the preparation of high fructose syrup from inulin/inulin-rich plant materials in batch and continuous systems, and its conclusions.
Collapse
Affiliation(s)
- R S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Kanika Chauhan
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, 31 Marg, 226 001 Lucknow, India
| | - Christian Larroche
- Université Clermont Auvergne, Institut Pascal, UMR, CNRS 6602, and Labex, IMobS3, 4 Avenue Blaise Pascal, TSA 60026, CS 60026, F-63178 Aubiere Cedex, France
| |
Collapse
|
7
|
Singh RS, Chauhan K. Sequential statistical optimization of lactose-based medium and process variables for inulinase production from Penicillium oxalicum BGPUP-4. 3 Biotech 2018; 8:38. [PMID: 29291151 PMCID: PMC5745202 DOI: 10.1007/s13205-017-1060-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022] Open
Abstract
A statistical tool of response surface methodology was used sequentially to optimise lactose-based medium and process variables for inulinase production from Penicillium oxalicum BGPUP-4. Two-level CCRD with four variables, for each design, was used for the optimization study. The independent variables: lactose 1-3%, NH4H2PO4 0.2-0.5%, NaNO3 0.2-0.5%, pH 5.0-7.0 (design-1); temperature 25-35 °C, incubation time 4.0-6.0 days, inoculum size 1.0-3.0 mycelial agar discs and agitation 100-200 rpm (design-2) were selected for the present investigation. The optimised medium variables (lactose 3.70%, NH4H2PO4 0.35%, NaNO3 0.35% and pH 6.0) produced 44.44 (IU/ml) and 0.38 (g dry wt./50 ml) of inulinase and biomass yield, respectively. Thereafter, the optimization of process conditions (temperature 25 °C, incubation time 5 days, inoculum size 2 mycelial agar discs and agitation 150 rpm), increased the inulinase production 50.45 (IU/ml) and biomass yield 0.26 (g dry wt./50 ml). The good agreement between experimental and predicted values in both the designs, the coefficient of determination (R2 ) greater than 0.90 and very close to 1.0 shows an appropriate fitness of the polynomial quadratic models.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147 002 Punjab India
| | - Kanika Chauhan
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147 002 Punjab India
| |
Collapse
|
8
|
Design and Properties of an Immobilization Enzyme System for Inulin Conversion. Appl Biochem Biotechnol 2017; 184:453-470. [DOI: 10.1007/s12010-017-2558-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
|
9
|
Singh R, Singh R, Kennedy J. Immobilization of yeast inulinase on chitosan beads for the hydrolysis of inulin in a batch system. Int J Biol Macromol 2017; 95:87-93. [DOI: 10.1016/j.ijbiomac.2016.11.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
10
|
Singh RS, Chauhan K. Inulinase production from a new inulinase producer, Penicillium oxalicum BGPUP-4. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Singh RS, Singh RP, Kennedy JF. Recent insights in enzymatic synthesis of fructooligosaccharides from inulin. Int J Biol Macromol 2016; 85:565-72. [DOI: 10.1016/j.ijbiomac.2016.01.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/11/2023]
|
12
|
Trivedi S, Divecha J, Shah T, Shah A. Rapid and efficient bioconversion of chicory inulin to fructose by immobilized thermostable inulinase from Aspergillus tubingensis CR16. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0060-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Fructose, a monosaccharide, has gained wide applications in food, pharmaceutical and medical industries because of its favourable properties and health benefits. Biocatalytic production of fructose from inulin employing inulinase is the most promising alternative for fructose production. For commercial production, use of immobilized inulinase is advantageous as it offers reutilization of enzyme and increase in stability. In order to meet the demand of concentrated fructose syrup, inulin hydrolysis at high substrate loading is essential.
Results
Inulinase was immobilized on chitosan particles and employed for fructose production by inulin hydrolysis. Fourier transform infrared spectroscopy (FTIR) analysis confirmed linkage of inulinase with chitosan particles. Immobilized biocatalyst displayed significant increase in thermostability at 60 and 65 °C. Statistical model was proposed with an objective of optimizing enzymatic inulin hydrolytic process. At high substrate loading (17.5 % inulin), using 9.9 U/g immobilized inulinase at 60 °C in 12 h, maximum sugar yield was 171.1 ± 0.3 mg/ml and productivity was 14.25 g/l/h. Immobilized enzyme was reused for ten cycles. Raw inulin from chicory and asparagus was extracted and supplied in 17.5 % for enzymatic hydrolysis as a replacement of pure inulin. More than 70 % chicory inulin and 85 % asparagus inulin were hydrolyzed under optimized parameters at 60 °C. Results of high performance liquid chromatography confirmed the release of fructose after inulin hydrolysis.
Conclusions
The present findings prove potentiality of immobilized thermostable inulinase from Aspergillus tubingensis CR16 for efficient production of fructose syrup. Successful immobilization of inulinase on chitosan increased its stability and provided the benefit of enzyme reutilization. Box-Behnken design gave a significant model for inulin hydrolysis. Extraction of raw inulin from chicory and asparagus and their enzymatic hydrolysis using immobilized inulinase suggested that it can be a remarkable cost-effective process for large-scale fructose production.
Collapse
|
13
|
Yang L, He QS, Corscadden K, Udenigwe CC. The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2015; 5:77-88. [PMID: 28626686 PMCID: PMC5466194 DOI: 10.1016/j.btre.2014.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/24/2014] [Accepted: 12/08/2014] [Indexed: 01/09/2023]
Abstract
Jerusalem artichoke, a native plant to North America has recently been recognized as a promising biomass for bioeconomy development, with a number of advantages over conventional crops such as low input cultivation, high crop yield, wide adaptation to climatic and soil conditions and strong resistance to pests and plant diseases. A variety of bioproducts can be derived from Jerusalem artichoke, including inulin, fructose, natural fungicides, antioxidant and bioethanol. This paper provides an overview of the cultivation of Jerusalem artichoke, derivation of bioproducts and applicable production technologies, with an expectation to draw more attention on this valuable crop for its applications as biofuel, functional food and bioactive ingredient sources.
Collapse
Affiliation(s)
- Linxi Yang
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Kenneth Corscadden
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Chibuike C. Udenigwe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
14
|
Nunes MAP, Rosa ME, Fernandes PCB, Ribeiro MHL. Operational stability of naringinase PVA lens-shaped microparticles in batch stirred reactors and mini packed bed reactors-one step closer to industry. BIORESOURCE TECHNOLOGY 2014; 164:362-370. [PMID: 24874877 DOI: 10.1016/j.biortech.2014.04.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
The immobilization of naringinase in PVA lens-shaped particles, a cheap and biocompatible hydrogel was shown to provide an effective biocatalyst for naringin hydrolysis, an appealing reaction in the food and pharmaceutical industries. The present work addresses the operational stability and scale-up of the bioconversion system, in various types of reactors, namely shaken microtiter plates (volume ⩽ 2 mL), batch stirred tank reactors (volume <400 mL) and a packed-bed reactor (PBR, 6.8 mL). Consecutive batch runs were performed with the shaken/stirred vessels, with reproducible and encouraging results, related to operational stability. The PBR was used to establish the feasibility for continuous operation, running continuously for 54 days at 45°C. The biocatalyst activity remained constant for 40 days of continuous operation. The averaged specific productivity was 9.07 mmol h(-1) g enzyme(-1) and the half-life of 48 days.
Collapse
Affiliation(s)
- Mário A P Nunes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - M Emilia Rosa
- Instituto de Ciência e Engenharia de Materiais e Superficies (ICEMS), Instituto Superior Técnico, Universidade Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro C B Fernandes
- Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
| | - Maria H L Ribeiro
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
15
|
Development of a continuous bioconversion system using a thermophilic whole-cell biocatalyst. Appl Environ Microbiol 2013; 79:1996-2001. [PMID: 23335777 DOI: 10.1128/aem.03752-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat treatment of recombinant mesophilic cells having heterologous thermophilic enzymes results in the denaturation of indigenous mesophilic enzymes and the elimination of undesired side reactions; therefore, highly selective whole-cell catalysts comparable to purified enzymes can be readily prepared. However, the thermolysis of host cells leads to the heat-induced leakage of thermophilic enzymes, which are produced as soluble proteins, limiting the exploitation of their excellent stability in repeated and continuous reactions. In this study, Escherichia coli cells having the thermophilic fumarase from Thermus thermophilus (TtFTA) were treated with glutaraldehyde to prevent the heat-induced leakage of the enzyme, and the resulting cells were used as a whole-cell catalyst in repeated and continuous reactions. Interestingly, although electron microscopic observations revealed that the cellular structure of glutaraldehyde-treated E. coli was not apparently changed by the heat treatment, the membrane permeability of the heated cells to relatively small molecules (up to at least 3 kDa) was significantly improved. By applying the glutaraldehyde-treated E. coli having TtFTA to a continuous reactor equipped with a cell-separation membrane filter, the enzymatic hydration of fumarate to malate could be operated for more than 600 min with a molar conversion yield of 60% or higher.
Collapse
|
16
|
Contesini FJ, de Alencar Figueira J, Kawaguti HY, de Barros Fernandes PC, de Oliveira Carvalho P, Nascimento MDG, Sato HH. Potential applications of carbohydrases immobilization in the food industry. Int J Mol Sci 2013; 14:1335-69. [PMID: 23344046 PMCID: PMC3565324 DOI: 10.3390/ijms14011335] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/16/2022] Open
Abstract
Carbohydrases find a wide application in industrial processes and products, mainly in the food industry. With these enzymes, it is possible to obtain different types of sugar syrups (viz. glucose, fructose and inverted sugar syrups), prebiotics (viz. galactooligossacharides and fructooligossacharides) and isomaltulose, which is an interesting sweetener substitute for sucrose to improve the sensory properties of juices and wines and to reduce lactose in milk. The most important carbohydrases to accomplish these goals are of microbial origin and include amylases (α-amylases and glucoamylases), invertases, inulinases, galactosidases, glucosidases, fructosyltransferases, pectinases and glucosyltransferases. Yet, for all these processes to be cost-effective for industrial application, a very efficient, simple and cheap immobilization technique is required. Immobilization techniques can involve adsorption, entrapment or covalent bonding of the enzyme into an insoluble support, or carrier-free methods, usually based on the formation of cross-linked enzyme aggregates (CLEAs). They include a broad variety of supports, such as magnetic materials, gums, gels, synthetic polymers and ionic resins. All these techniques present advantages and disadvantages and several parameters must be considered. In this work, the most recent and important studies on the immobilization of carbohydrases with potential application in the food industry are reviewed.
Collapse
Affiliation(s)
- Fabiano Jares Contesini
- Laboratory of Food Biochemistry, Department of Food Science, College of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862, P.O. Box 6121, Campinas, SP, Brazil; E-Mails: (J.A.F.); (H.Y.K.); (H.H.S.)
| | - Joelise de Alencar Figueira
- Laboratory of Food Biochemistry, Department of Food Science, College of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862, P.O. Box 6121, Campinas, SP, Brazil; E-Mails: (J.A.F.); (H.Y.K.); (H.H.S.)
| | - Haroldo Yukio Kawaguti
- Laboratory of Food Biochemistry, Department of Food Science, College of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862, P.O. Box 6121, Campinas, SP, Brazil; E-Mails: (J.A.F.); (H.Y.K.); (H.H.S.)
| | | | - Patrícia de Oliveira Carvalho
- Laboratory of Multidisciplinary Research, University São Francisco, São Francisco de Assis Av, 218, 12916-900, Bragança Paulista, SP, Brazil; E-Mail:
| | - Maria da Graça Nascimento
- Chemistry Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil; E-Mail:
| | - Hélia Harumi Sato
- Laboratory of Food Biochemistry, Department of Food Science, College of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, 13083-862, P.O. Box 6121, Campinas, SP, Brazil; E-Mails: (J.A.F.); (H.Y.K.); (H.H.S.)
| |
Collapse
|
17
|
Singh RS, Saini GK, Kennedy JF. Continuous hydrolysis of pullulan using covalently immobilized pullulanase in a packed bed reactor. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.08.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Danial EN, Elnashar MMM, Awad GEA. Immobilized Inulinase on Grafted Alginate Beads Prepared by the One-Step and the Two-Steps Methods. Ind Eng Chem Res 2010. [DOI: 10.1021/ie100011z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Enas N. Danial
- Chemistry of Natural and Microbial Products Department and Centre of Scientific Excellence—Polymers Department—Advanced Materials & Nanotechnology Laboratory, National Research Center, El-Behooth St., Dokki, Cairo, Egypt
| | - Magdy M. M. Elnashar
- Chemistry of Natural and Microbial Products Department and Centre of Scientific Excellence—Polymers Department—Advanced Materials & Nanotechnology Laboratory, National Research Center, El-Behooth St., Dokki, Cairo, Egypt
| | - Ghada E. A. Awad
- Chemistry of Natural and Microbial Products Department and Centre of Scientific Excellence—Polymers Department—Advanced Materials & Nanotechnology Laboratory, National Research Center, El-Behooth St., Dokki, Cairo, Egypt
| |
Collapse
|
19
|
Kim CS, Pierre B, Ostermeier M, Looger LL, Kim JR. Enzyme stabilization by domain insertion into a thermophilic protein. Protein Eng Des Sel 2009; 22:615-23. [DOI: 10.1093/protein/gzp044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|