1
|
Machushynets N, Al Ayed K, Terlouw BR, Du C, Buijs NP, Willemse J, Elsayed SS, Schill J, Trebosc V, Pieren M, Alexander FM, Cochrane SA, Liles MR, Medema MH, Martin NI, van Wezel GP. Discovery and Derivatization of Tridecaptin Antibiotics with Altered Host Specificity and Enhanced Bioactivity. ACS Chem Biol 2024; 19:1106-1115. [PMID: 38602492 PMCID: PMC11106739 DOI: 10.1021/acschembio.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
The prevalence of multidrug-resistant (MDR) pathogens combined with a decline in antibiotic discovery presents a major challenge for health care. To refill the discovery pipeline, we need to find new ways to uncover new chemical entities. Here, we report the global genome mining-guided discovery of new lipopeptide antibiotics tridecaptin A5 and tridecaptin D, which exhibit unusual bioactivities within their class. The change in the antibacterial spectrum of Oct-TriA5 was explained solely by a Phe to Trp substitution as compared to Oct-TriA1, while Oct-TriD contained 6 substitutions. Metabolomic analysis of producer Paenibacillus sp. JJ-21 validated the predicted amino acid sequence of tridecaptin A5. Screening of tridecaptin analogues substituted at position 9 identified Oct-His9 as a potent congener with exceptional efficacy against Pseudomonas aeruginosa and reduced hemolytic and cytotoxic properties. Our work highlights the promise of tridecaptin analogues to combat MDR pathogens.
Collapse
Affiliation(s)
- Nataliia
V. Machushynets
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Karol Al Ayed
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Barbara R. Terlouw
- Bioinformatics
Group, Wageningen University, Wageningen 6700 PB, The Netherlands
| | - Chao Du
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Ned P. Buijs
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Joost Willemse
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Somayah S. Elsayed
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Julian Schill
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Vincent Trebosc
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Michel Pieren
- BioVersys
AG, c/o Technologiepark, Basel CH-4057, Switzerland
| | - Francesca M. Alexander
- School of
Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Stephen A. Cochrane
- School of
Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Mark R. Liles
- Department
of Biological Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Marnix H. Medema
- Bioinformatics
Group, Wageningen University, Wageningen 6700 PB, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Leiden 2333 BE, The Netherlands
- Department
of Microbial Ecology, Netherlands Institute
of Ecology, Wageningen 6700 PB, The Netherlands
| |
Collapse
|
2
|
de Medeiros LS, de Araújo Júnior MB, Peres EG, da Silva JCI, Bassicheto MC, Di Gioia G, Veiga TAM, Koolen HHF. Discovering New Natural Products Using Metabolomics-Based Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:185-224. [PMID: 37843810 DOI: 10.1007/978-3-031-41741-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The incessant search for new natural molecules with biological activities has forced researchers in the field of chemistry of natural products to seek different approaches for their prospection studies. In particular, researchers around the world are turning to approaches in metabolomics to avoid high rates of re-isolation of certain compounds, something recurrent in this branch of science. Thanks to the development of new technologies in the analytical instrumentation of spectroscopic and spectrometric techniques, as well as the advance in the computational processing modes of the results, metabolomics has been gaining more and more space in studies that involve the prospection of natural products. Thus, this chapter summarizes the precepts and good practices in the metabolomics of microbial natural products using mass spectrometry and nuclear magnetic resonance spectroscopy, and also summarizes several examples where this approach has been applied in the discovery of bioactive molecules.
Collapse
Affiliation(s)
- Lívia Soman de Medeiros
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil.
| | - Moysés B de Araújo Júnior
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Eldrinei G Peres
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | - Milena Costa Bassicheto
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | - Giordanno Di Gioia
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | - Thiago André Moura Veiga
- Grupo de Pesquisas LaBiORG - Laboratório de Química Bio-orgânica Otto Richard Gottlieb, Universidade Federal de São Paulo, Diadema, Brazil
| | | |
Collapse
|
3
|
Abstract
Actinomycetes are natural architects of numerous secondary metabolites including antibiotics. With increased multidrug-resistant (MDR) pathogens, antibiotics that can combat such pathogens are urgently required to improve the health care system globally. The characterization of actinomycetes available in Nepal is still very much untouched which is the reason why this paper showcases the characterization of actinomycetes from Nepal based on their morphology, 16S rRNA gene sequencing, and metabolic profiling. Additionally, antimicrobial assays and liquid chromatography-high resolution mass spectrometry (LC-HRMS) of ethyl acetate extracts were performed. In this study, we employed a computational-based dereplication strategy for annotating molecules which is also time-efficient. Molecular annotation was performed through the GNPS server, the SIRIUS platform, and the available databases to predict the secondary metabolites. The sequencing of the 16S rRNA gene revealed that the isolates BN6 and BN14 are closely related to Streptomyces species. BN14 showed broad-spectrum antibacterial activity with the zone of inhibition up to 30 mm against Staphylococcus aureus (MIC: 0.3051 µg/mL and MBC: 9.7656 µg/mL) and Shigella sonnei (MIC: 0.3051 µg/mL and MBC: 4.882 µg/mL). Likewise, BN14 also displayed significant inhibition to Acinetobacter baumannii, Klebsiella pneumoniae, and Salmonella typhi. GNPS approach suggested that the extracts of BN6 and BN14 consisted of diketopiperazines ((cyclo(D-Trp-L-Pro), cyclo(L-Leu-L-4-hydroxy-Pro), cyclo(L-Phe-D-Pro), cyclo(L-Trp-L-Pro), cyclo(L-Val-L-Pro)), and polypeptide antibiotics (actinomycin D and X2). Additional chemical scaffolds such as bacterial alkaloids (bohemamine, venezueline B, and G), anthramycin-type antibiotics (abbeymycin), lipase inhibitor (ebelactone B), cytocidal (oxopropaline D), antifungal and antitumor antibiotics (reductiomycin, streptimidone, deoxynybomycin), alaremycin, fumaramidmycin, anisomycin, and others were also annotated, which were further confirmed by using the SIRIUS platform, and literature survey. Thus, the bioprospecting of natural products from Streptomyces species from Nepal could be a potential source for the discovery of clinically significant and new antimicrobial agents in the future.
Collapse
|
4
|
Machushynets NV, Elsayed SS, Du C, Siegler MA, de la Cruz M, Genilloud O, Hankemeier T, van Wezel GP. Discovery of actinomycin L, a new member of the actinomycin family of antibiotics. Sci Rep 2022; 12:2813. [PMID: 35181725 PMCID: PMC8857259 DOI: 10.1038/s41598-022-06736-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 12/25/2022] Open
Abstract
Streptomycetes are major producers of bioactive natural products, including the majority of the naturally produced antibiotics. While much of the low-hanging fruit has been discovered, it is predicted that less than 5% of the chemical space of natural products has been mined. Here, we describe the discovery of the novel actinomycins L1 and L2 produced by Streptomyces sp. MBT27, via application of metabolic analysis and molecular networking. Actinomycins L1 and L2 are diastereomers, and the structure of actinomycin L2 was resolved using NMR and single crystal X-ray crystallography. Actinomycin L is formed via spirolinkage of anthranilamide to the 4-oxoproline moiety of actinomycin X2, prior to the condensation of the actinomycin halves. Such a structural feature has not previously been identified in naturally occurring actinomycins. Adding anthranilamide to cultures of the actinomycin X2 producer Streptomyces antibioticus, which has the same biosynthetic gene cluster as Streptomyces sp. MBT27, resulted in the production of actinomycin L. This supports a biosynthetic pathway whereby actinomycin L is produced from two distinct metabolic routes, namely those for actinomycin X2 and for anthranilamide. Actinomycins L1 and L2 showed significant antimicrobial activity against Gram-positive bacteria. Our work shows how new molecules can still be identified even in the oldest of natural product families.
Collapse
Affiliation(s)
- Nataliia V Machushynets
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Somayah S Elsayed
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Chao Du
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Mercedes de la Cruz
- Fundación MEDINA, Health Sciences Technology Park, Avda Conocimiento 34, 18016, Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Health Sciences Technology Park, Avda Conocimiento 34, 18016, Granada, Spain
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
5
|
Bio-Guided Isolation of Antimalarial Metabolites from the Coculture of Two Red Sea Sponge-Derived Actinokineospora and Rhodococcus spp. Mar Drugs 2021; 19:md19020109. [PMID: 33673168 PMCID: PMC7918646 DOI: 10.3390/md19020109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Coculture is a productive technique to trigger microbes’ biosynthetic capacity by mimicking the natural habitats’ features principally by competition for food and space and interspecies cross-talks. Mixed cultivation of two Red Sea-derived actinobacteria, Actinokineospora spheciospongiae strain EG49 and Rhodococcus sp. UR59, resulted in the induction of several non-traced metabolites in their axenic cultures, which were detected using LC–HRMS metabolomics analysis. Antimalarial guided isolation of the cocultured fermentation led to the isolation of the angucyclines actinosporins E (1), H (2), G (3), tetragulol (5) and the anthraquinone capillasterquinone B (6), which were not reported under axenic conditions. Interestingly, actinosporins were previously induced when the axenic culture of the Actinokineospora spheciospongiae strain EG49 was treated with signalling molecule N-acetyl-d-glucosamine (GluNAc); this finding confirmed the effectiveness of coculture in the discovery of microbial metabolites yet to be discovered in the axenic fermentation with the potential that could be comparable to adding chemical signalling molecules in the fermentation flask. The isolated angucycline and anthraquinone compounds exhibited in vitro antimalarial activity and good biding affinity against lysyl-tRNA synthetase (PfKRS1), highlighting their potential developability as new antimalarial structural motif.
Collapse
|
6
|
NMR-based metabolic profiling to follow the production of anti-phytopathogenic compounds in the culture of the marine strain Streptomyces sp. PNM-9. Microbiol Res 2020; 239:126507. [DOI: 10.1016/j.micres.2020.126507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
|
7
|
Muhamadali H, Simoens K, Xu Y, Nicolai B, Bernaerts K, Goodacre R. Evaluation of Sample Preparation Methods for Inter-Laboratory Metabolomics Investigation of Streptomyces lividans TK24. Metabolites 2020; 10:E379. [PMID: 32972026 PMCID: PMC7569812 DOI: 10.3390/metabo10090379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 01/11/2023] Open
Abstract
In the past two decades, metabolomics has proved to be a valuable tool with many potential applications in different areas of science. However, there are still some challenges that need to be addressed, particularly for multicenter studies. These challenges are mainly attributed to various sources of fluctuation and unwanted variations that can be introduced at pre-analytical, analytical, and/or post-analytical steps of any metabolomics experiment. Thus, this study aimed at using Streptomyces lividans TK24 as the model organism in a cross-laboratory experiment in Manchester and Leuven to evaluate the reproducibility of a standard sample preparation method, and determine the optimal sample format (cell extract or quenched biomass) required to preserve the metabolic profile of the cells during cross-lab sample transportation and storage. Principal component analysis (PCA) scores plot of the gas chromatography-mass spectrometry (GC-MS) data from both laboratories displayed clear growth-dependent clustering patterns which was in agreement with the Procrustes analysis findings. In addition, the data generated in Manchester displayed tight clustering of cell pellets (quenched biomass) and metabolite extracts, confirming the stability of both sample formats during the transportation and storage period.
Collapse
Affiliation(s)
- Howbeer Muhamadali
- Department of Biochemistry and Systems Biology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, UK; (H.M.); (Y.X.)
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Kenneth Simoens
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, Department of Chemical Engineering, KU Leuven (University of Leuven), Leuven Chem&Tech, Celestijnenlaan 200F Box 2424, 3001 Leuven, Belgium; (K.S.); (K.B.)
| | - Yun Xu
- Department of Biochemistry and Systems Biology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, UK; (H.M.); (Y.X.)
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Bart Nicolai
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven (University of Leuven), Willem de Croylaan 42 Box 2428, 3001 Leuven, Belgium;
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, Department of Chemical Engineering, KU Leuven (University of Leuven), Leuven Chem&Tech, Celestijnenlaan 200F Box 2424, 3001 Leuven, Belgium; (K.S.); (K.B.)
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, UK; (H.M.); (Y.X.)
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
8
|
Nguyen CT, Dhakal D, Pham VTT, Nguyen HT, Sohng JK. Recent Advances in Strategies for Activation and Discovery/Characterization of Cryptic Biosynthetic Gene Clusters in Streptomyces. Microorganisms 2020; 8:E616. [PMID: 32344564 PMCID: PMC7232178 DOI: 10.3390/microorganisms8040616] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Streptomyces spp. are prolific sources of valuable natural products (NPs) that are of great interest in pharmaceutical industries such as antibiotics, anticancer chemotherapeutics, immunosuppressants, etc. Approximately two-thirds of all known antibiotics are produced by actinomycetes, most predominantly by Streptomyces. Nevertheless, in recent years, the chances of the discovery of novel and bioactive compounds from Streptomyces have significantly declined. The major hindrance for obtaining such bioactive compounds from Streptomyces is that most of the compounds are not produced in significant titers, or the biosynthetic gene clusters (BGCs) are cryptic. The rapid development of genome sequencing has provided access to a tremendous number of NP-BGCs embedded in the microbial genomes. In addition, the studies of metabolomics provide a portfolio of entire metabolites produced from the strain of interest. Therefore, through the integrated approaches of different-omics techniques, the connection between gene expression and metabolism can be established. Hence, in this review we summarized recent advancements in strategies for activating cryptic BGCs in Streptomyces by utilizing diverse state-of-the-art techniques.
Collapse
Affiliation(s)
- Chung Thanh Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Van Thuy Thi Pham
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
| | - Jae-Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea; (C.T.N.); (D.D.); (V.T.T.P.); (H.T.N.)
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam 31460, Korea
| |
Collapse
|
9
|
Metabolic Fingerprinting with Fourier-Transform Infrared (FTIR) Spectroscopy: Towards a High-Throughput Screening Assay for Antibiotic Discovery and Mechanism-of-Action Elucidation. Metabolites 2020; 10:metabo10040145. [PMID: 32283661 PMCID: PMC7240953 DOI: 10.3390/metabo10040145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023] Open
Abstract
The discovery of antibiotics has been slowing to a halt. Phenotypic screening is once again at the forefront of antibiotic discovery, yet Mechanism-Of-Action (MOA) identification is still a major bottleneck. As such, methods capable of MOA elucidation coupled with the high-throughput screening of whole cells are required now more than ever, for which Fourier-Transform Infrared (FTIR) spectroscopy is a promising metabolic fingerprinting technique. A high-throughput whole-cell FTIR spectroscopy-based bioassay was developed to reveal the metabolic fingerprint induced by 15 antibiotics on the Escherichia coli metabolism. Cells were briefly exposed to four times the minimum inhibitory concentration and spectra were quickly acquired in the high-throughput mode. After preprocessing optimization, a partial least squares discriminant analysis and principal component analysis were conducted. The metabolic fingerprints obtained with FTIR spectroscopy were sufficiently specific to allow a clear distinction between different antibiotics, across three independent cultures, with either analysis algorithm. These fingerprints were coherent with the known MOA of all the antibiotics tested, which include examples that target the protein, DNA, RNA, and cell wall biosynthesis. Because FTIR spectroscopy acquires a holistic fingerprint of the effect of antibiotics on the cellular metabolism, it holds great potential to be used for high-throughput screening in antibiotic discovery and possibly towards a better understanding of the MOA of current antibiotics.
Collapse
|
10
|
Castellanos L, Naranjo-Gaybor SJ, Forero AM, Morales G, Wilson EG, Ramos FA, Choi YH. Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity. PHYTOCHEMISTRY 2020; 172:112272. [PMID: 32032827 DOI: 10.1016/j.phytochem.2020.112272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Banana passion fruit of the Passiflora genus, are commercially cultivated on a small to medium scale, mainly as edible fruits or as components of traditional herbal medicines. This subgenus comprises several species and hybrid specimens that grow readily in the wild. Due to their taxonomical complexity, many of these species have recently been reclassified (Ocampo Pérez and Coppens d'Eeckenbrugge, 2017), and their chemical profile has still to be determined. In this study, an 1H NMR-based platform was applied to the chemical profiling of seven wild species of the Passiflora subgenus, and UHPLC-DAD-MS was additionally used for the identification of phenolic compounds. A total of 59 compounds were detected including 26 O- and C-glycosidated flavonoids and polyphenols, nine organic acids, seven amino acids, GABA, sucrose, glucose, myo-inositol, and five other non-identified compounds. Two of the identified compounds are the previously undescribed C-glycosyl flavonoids, apigenin-4'-O-β-glucopyranosyl, 8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside. These C-glycosyl flavonoids were isolated to confirm their proposed structures by NMR and LCMS analysis. The PCA score plots obtained from the 1H NMR data of the studied Passiflora samples showed P. cumbalensis and P. uribei as the species with the most distinguishable chemical profile. In addition, a correlation analysis using OPLS-DA was conducted between 1H-NMR data and the quorum quenching activity (QQ) of Chromobacterium violaceum ATCC 31532. This analysis revealed P. lehmannii, and P. uribei extracts to be the most active, and apigenin-4'-O-β-glucopyranosyl, 8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside were identified as possibly responsible for the QQ activity. To confirm this, QQ activity of both compounds was tested against C. violaceum ATCC 3153. An inhibition of violacein production of 0.135 mM (100 μg/mL) and 0.472 mM (300 μg/mL) was observed for apigenin-4'-O-β-glucopyranosyl,8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside respectively, while bacterial growth was unaffected in both cases. Furthermore, both compounds showed the ability to inhibit the production of the toxoflavin of the phytopathogen Burkholderia glumae ATCC 33617.
Collapse
Affiliation(s)
- Leonardo Castellanos
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia; Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands.
| | - Sandra Judith Naranjo-Gaybor
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia; Universidad de las Fuerzas Armadas. ESPE Carrera de Ingeniería Agropecuaria Extensión Santo Domingo, Av. General Rumiñahui s/n, Sangolquí, Ecuador
| | - Abel M Forero
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Gustavo Morales
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Erica Georgina Wilson
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Freddy A Ramos
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands; College of Pharmacy, Kyung Hee University, 02447, Seoul, Republic of Korea
| |
Collapse
|
11
|
Zhang D, He Y, Ye Y, Ma Y, Zhang P, Zhu H, Xu N, Liang S. Little Antimicrobial Peptides with Big Therapeutic Roles. Protein Pept Lett 2019; 26:564-578. [PMID: 30799781 DOI: 10.2174/1573406415666190222141905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/05/2023]
Abstract
Antimicrobial Peptides (AMPs) are short amphipathic biological molecules generally with less than 100 amino acids. AMPs not only present high bioactivities against bacteria, fungi or protists-induced infections, but also play important roles in anticancer activity, immune response and inflammation regulation. AMPs are classified as ribosomally synthesized, non-ribosomally synthesized and post-translationally modified, non-ribosomally synthesized ones and several synthetic or semisynthetic peptides according to their synthesis with or without the involvement of ribosomes. The molecular characterization and bioactivity action mechanisms are summarized for several ribosomally synthesized AMPs and main non-ribosomally synthesized members (cyclopeptides, lipopeptides, glycopeptides, lipoglycopeptides). We also analyze challenges and new strategies to overcome drug resistance and application limitations for AMP discovery. In conclusion, the growing novel small molecular AMPs have huge therapeutic potentials of antibacterial, antiviral, anticancer and immunoregulatory bioactivities through new techniquesdriven drug discovery strategy including bioinformatics prediction, de novo rational design and biosynthesis.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yang Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yanni Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology, State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100034, China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.,Laboratory of Cell and Molecular Biology, State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100034, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University / Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| |
Collapse
|
12
|
An Isotopic Ratio Outlier Analysis Approach for Global Metabolomics of Biosynthetically Talented Actinomycetes. Metabolites 2019; 9:metabo9090181. [PMID: 31510039 PMCID: PMC6780544 DOI: 10.3390/metabo9090181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023] Open
Abstract
Actinomycetes are powerhouses of natural product biosynthesis. Full realization of this biosynthetic potential requires approaches for recognizing novel metabolites and determining mediators of metabolite production. Herein, we develop an isotopic ratio outlier analysis (IROA) ultra-high performance liquid chromatography-mass spectrometry (UHPLC/MS) global metabolomics strategy for actinomycetes that facilitates recognition of novel metabolites and evaluation of production mediators. We demonstrate this approach by determining impacts of the iron chelator 2,2′-bipyridyl on the Nocardiopsis dassonvillei metabolome. Experimental and control cultures produced metabolites with isotopic carbon signatures that were distinct from corresponding “standard” culture metabolites, which were used as internal standards for LC/MS. This provided an isotopic MS peak pair for each metabolite, which revealed the number of carbon atoms and relative concentrations of metabolites and distinguished biosynthetic products from artifacts. Principal component analysis (PCA) and random forest (RF) differentiated bipyridyl-treated samples from controls. RF mean decrease accuracy (MDA) values supported perturbation of metabolites from multiple amino acid pathways and novel natural products. Evaluation of bipyridyl impacts on the nocazine/XR334 diketopiperazine (DKP) pathway revealed upregulation of amino acid precursors and downregulation of late stage intermediates and products. These results establish IROA as a tool in the actinomycete natural product chemistry arsenal and support broad metabolic consequences of bipyridyl.
Collapse
|
13
|
Extreme Environment Streptomyces: Potential Sources for New Antibacterial and Anticancer Drug Leads? Int J Microbiol 2019; 2019:5283948. [PMID: 31354829 PMCID: PMC6636559 DOI: 10.1155/2019/5283948] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 01/20/2023] Open
Abstract
Antimicrobial resistance (AR) is recognized as one of the greatest threats to public health and in global concern. Consequently, the increased morbidity and mortality, which are associated with multidrug resistance bacteria, urgently require the discovery of novel and more efficient drugs. Conversely, cancer is a growing complex human disease that demands new drugs with no or fewer side effects. Most of the drugs currently used in the health care systems were of Streptomyces origin or their synthetic forms. Natural product researches from Streptomyces have been genuinely spectacular over the recent years from extreme environments. It is because of technical advances in isolation, fermentation, spectroscopy, and genomic studies which led to the efficient recovering of Streptomyces and their new chemical compounds with distinct activities. Expanding the use of the last line of antibiotics and demand for new drugs will continue to play an essential role for the potent Streptomyces from previously unexplored environmental sources. In this context, deep-sea, desert, cryo, and volcanic environments have proven to be a unique habitat of more extreme, and of their adaptation to extreme living, environments attribute to novel antibiotics. Extreme Streptomyces have been an excellent source of a new class of compounds which include alkaloids, angucycline, macrolide, and peptides. This review covers novel drug leads with antibacterial and cytotoxic activities isolated from deep-sea, desert, cryo, and volcanic environment Streptomyces from 2009 to 2019. The structure and chemical classes of the compounds, their relevant bioactivities, and the sources of organisms are presented.
Collapse
|
14
|
Study of in vitro interaction between Fusarium verticillioides and Streptomyces sp. using metabolomics. Folia Microbiol (Praha) 2019; 65:303-314. [PMID: 31250362 DOI: 10.1007/s12223-019-00725-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
The Streptomyces sp. strain AV05 isolated from an organic amendment was found to impact both growth and fumonisin production of Fusarium verticillioides during in vitro direct confrontation. In order to investigate the interactions between the Streptomyces sp. strain AV05 and F. verticillioides, a metabolomic approach was used. The study of the endometabolomes of the microorganisms was carried out in two different conditions: the microorganisms were cultivated alone or in confrontation. The aim of this study was to examine the modifications of the endometabolome of F. verticillioides in confrontation with the Streptomyces strain. The metabolites involved in these modifications were identified using 2D NMR. Many metabolites were found to be overproduced in confrontation assays with the Streptomyces strain, notably 16 proteinogenic amino acids, inosine, and uridine. This suggested that fungal metabolic pathways such as protein synthesis have been affected due to interaction. Thus, metabolomic studies, as well as proteomics or transcriptomics, are useful for deciphering the mechanisms of interactions between biological control agents and mycotoxigenic fungi. This comprehension is one of the key elements of the improvement of the selection and use of antagonistic agents.
Collapse
|
15
|
Isolation of depsipeptides and optimization for enhanced production of valinomycin from the North-Western Himalayan cold desert strain Streptomyces lavendulae. J Antibiot (Tokyo) 2019; 72:617-624. [PMID: 31073236 DOI: 10.1038/s41429-019-0183-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/06/2019] [Accepted: 03/25/2019] [Indexed: 11/08/2022]
Abstract
Exploration of microbial dynamics of Streptomyces lavendulae ACR-DA1, a psychrotrophic isolate from the North-Western Himalayan cold desert, was carried out using matrix-assisted laser desorbtion ionisation-time of flight mass spectrometer. Valinomycin was found as a major produce and cyclic depsipeptide montanastatin as a minor produce. The yield of the valinomycin was found to be 0.3 mg l-1 in submerged growth condition at the batch scale. Miniaturization of optimization experiments was adept to maximize the production using the expeditious and efficient technique of intact cell mass spectrometry. The present study showed that using optimized conditions and growing the culture in synthetic mineral base starch medium at 10 °C enhanced the production to 19.4 mg l-1. Our results demonstrated 64-fold increase in yield from the wild-type S. lavendulae ACR-DA1 strain using a simple and economical downstream process.
Collapse
|
16
|
Pan H, Tian X, Shao M, Xie Y, Huang H, Hu J, Ju J. Genome mining and metabolic profiling illuminate the chemistry driving diverse biological activities of Bacillus siamensis SCSIO 05746. Appl Microbiol Biotechnol 2019; 103:4153-4165. [DOI: 10.1007/s00253-019-09759-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
|
17
|
Machushynets NV, Wu C, Elsayed SS, Hankemeier T, van Wezel GP. Discovery of novel glycerolated quinazolinones from Streptomyces sp. MBT27. J Ind Microbiol Biotechnol 2019; 46:483-492. [PMID: 30729343 PMCID: PMC6403205 DOI: 10.1007/s10295-019-02140-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022]
Abstract
Actinobacteria are a major source of novel bioactive natural products. A challenge in the screening of these microorganisms lies in finding the favorable growth conditions for secondary metabolite production and dereplication of known molecules. Here, we report that Streptomyces sp. MBT27 produces 4-quinazolinone alkaloids in response to elevated levels of glycerol, whereby quinazolinones A (1) and B (2) form a new sub-class of this interesting family of natural products. Global Natural Product Social molecular networking (GNPS) resulted in a quinazolinone-related network that included anthranilic acid (3), anthranilamide (4), 4(3H)-quinazolinone (5), and 2,2-dimethyl-1,2-dihydroquinazolin-4(3H)-one (6). Actinomycins D (7) and X2 (8) were also identified in the extracts of Streptomyces sp. MBT27. The induction of quinazolinone production by glycerol combined with biosynthetic insights provide evidence that glycerol is integrated into the chemical scaffold. The unprecedented 1,4-dioxepane ring, that is spiro-fused into the quinazolinone backbone, is most likely formed by intermolecular etherification of two units of glycerol. Our work underlines the importance of varying the growth conditions for the discovery of novel natural products and for understanding their biosynthesis.
Collapse
Affiliation(s)
- Nataliia V Machushynets
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Changsheng Wu
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands. .,State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Somayah S Elsayed
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
18
|
Tortorella E, Tedesco P, Palma Esposito F, January GG, Fani R, Jaspars M, de Pascale D. Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives. Mar Drugs 2018; 16:md16100355. [PMID: 30274274 PMCID: PMC6213577 DOI: 10.3390/md16100355] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
The increasing emergence of new forms of multidrug resistance among human pathogenic bacteria, coupled with the consequent increase of infectious diseases, urgently requires the discovery and development of novel antimicrobial drugs with new modes of action. Most of the antibiotics currently available on the market were obtained from terrestrial organisms or derived semisynthetically from fermentation products. The isolation of microorganisms from previously unexplored habitats may lead to the discovery of lead structures with antibiotic activity. The deep-sea environment is a unique habitat, and deep-sea microorganisms, because of their adaptation to this extreme environment, have the potential to produce novel secondary metabolites with potent biological activities. This review covers novel antibiotics isolated from deep-sea microorganisms. The chemical classes of the compounds, their bioactivities, and the sources of organisms are outlined. Furthermore, the authors report recent advances in techniques and strategies for the exploitation of deep-sea microorganisms.
Collapse
Affiliation(s)
- Emiliana Tortorella
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
| | - Pietro Tedesco
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, INSA, 31400 Toulouse, France.
| | - Fortunato Palma Esposito
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
- Stazione Zoologica "Anthon Dorn", Villa Comunale, I-80121 Naples, Italy.
| | - Grant Garren January
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino, I-50019 Florence, Italy.
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, Scotland AB24 3UE, UK.
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
- Stazione Zoologica "Anthon Dorn", Villa Comunale, I-80121 Naples, Italy.
| |
Collapse
|
19
|
Du C, van Wezel GP. Mining for Microbial Gems: Integrating Proteomics in the Postgenomic Natural Product Discovery Pipeline. Proteomics 2018; 18:e1700332. [PMID: 29708658 PMCID: PMC6175363 DOI: 10.1002/pmic.201700332] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/09/2018] [Indexed: 12/23/2022]
Abstract
Natural products (NPs) are a major source of compounds for medical, agricultural, and biotechnological industries. Many of these compounds are of microbial origin, and, in particular, from Actinobacteria or filamentous fungi. To successfully identify novel compounds that correlate to a bioactivity of interest, or discover new enzymes with desired functions, systematic multiomics approaches have been developed over the years. Bioinformatics tools harness the rapidly expanding wealth of genome sequence information, revealing previously unsuspected biosynthetic diversity. Varying growth conditions or application of elicitors are applied to activate cryptic biosynthetic gene clusters, and metabolomics provide detailed insights into the NPs they specify. Combining these technologies with proteomics-based approaches to profile the biosynthetic enzymes provides scientists with insights into the full biosynthetic potential of microorganisms. The proteomics approaches include enrichment strategies such as employing activity-based probes designed by chemical biology, as well as unbiased (quantitative) proteomics methods. In this review, the opportunities and challenges in microbial NP research are discussed, and, in particular, the application of proteomics to link biosynthetic enzymes to the molecules they produce, and vice versa.
Collapse
Affiliation(s)
- Chao Du
- Microbial Biotechnology & Health Programme Institute of BiologyLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
| | - Gilles P. van Wezel
- Microbial Biotechnology & Health Programme Institute of BiologyLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
| |
Collapse
|
20
|
Nai C, Meyer V. From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology. Trends Microbiol 2018; 26:538-554. [DOI: 10.1016/j.tim.2017.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 02/07/2023]
|
21
|
Yeung PK. Metabolomics and Biomarkers for Drug Discovery. Metabolites 2018; 8:metabo8010011. [PMID: 29385049 PMCID: PMC5876001 DOI: 10.3390/metabo8010011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 01/22/2023] Open
Abstract
Metabolomics and biomarkers are increasingly used in drug discovery and development, and are applied to personalized medicine. Progress in these research areas has increased our understanding of disease pathology and improved therapeutic strategies for many diseases with unmet challenges. Further advances will ultimately result in the development of better drugs and breakthrough therapies, which will benefit millions of patients suffering from chronic and life-threatening diseases worldwide.
Collapse
Affiliation(s)
- Pollen K Yeung
- Pharmacy and Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
22
|
Tian P, Cao P, Hu D, Wang D, Zhang J, Wang L, Zhu Y, Gao Q. Comparative metabolomics reveals the mechanism of avermectin production enhancement by S-adenosylmethionine. ACTA ACUST UNITED AC 2017; 44:595-604. [DOI: 10.1007/s10295-016-1883-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/30/2016] [Indexed: 11/24/2022]
Abstract
Abstract
It was found that S-adenosylmethionine (SAM) could effectively improve avermectin titer with 30–60 μg/mL addition to FH medium. To clearly elucidate the mechanism of SAM on intracellular metabolites of Streptomyces avermitilis, a GC–MS-based comparative metabolomics approach was carried out. First, 230 intracellular metabolites were identified and 14 of them remarkably influenced avermectin biosynthesis were discriminative biomarkers between non-SAM groups and SAM-treated groups by principal components analysis (PCA) and partial least squares (PLS). Based on further key metabolic pathway analyses, these biomarkers, such as glucose, oxaloacetic acid, fatty acids (in soybean oil), threonine, valine, and leucine, were identified as potentially beneficial precursors and added in medium. Compared with single-precursor feeding, the combined feeding of the precursors and SAM markedly increased the avermectin titer. The co-feeding approach not only directly verified our hypothesis on the mechanism of SAM by comparative metabolomics, but also provided a novel strategy to increase avermectin production.
Collapse
Affiliation(s)
- Pingping Tian
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Peng Cao
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Dong Hu
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Depei Wang
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Jian Zhang
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Lin Wang
- 0000 0000 9735 6249 grid.413109.e School of Computer Sciences and Information Engineering Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Yan Zhu
- 0000 0000 9735 6249 grid.413109.e Logistics Service Group Tianjin University of Science and Technology Tianjin People’s Republic of China
| | - Qiang Gao
- grid.413109.e 0000 0000 9735 6249 Key Laboratory of Industrial Fermentation Microbiology Ministry of Education, Tianjin Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology Tianjin People’s Republic of China
| |
Collapse
|
23
|
Wu C, Du C, Ichinose K, Choi YH, van Wezel GP. Discovery of C-Glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 by a Combined NMR-Based Metabolomics and Bioinformatics Workflow. JOURNAL OF NATURAL PRODUCTS 2017; 80:269-277. [PMID: 28128554 PMCID: PMC5373568 DOI: 10.1021/acs.jnatprod.6b00478] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 06/06/2023]
Abstract
Mining of microbial genomes has revealed that actinomycetes harbor far more biosynthetic potential for bioactive natural products than anticipated. Activation of (cryptic) biosynthetic gene clusters and identification of the corresponding metabolites has become a focal point for drug discovery. Here, we applied NMR-based metabolomics combined with bioinformatics to identify novel C-glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 and to elucidate the biosynthetic pathway. Following activation of the cryptic qin gene cluster for a type II polyketide synthase (PKS) by constitutive expression of its pathway-specific activator, bioinformatics coupled to NMR profiling facilitated the chromatographic isolation and structural elucidation of qinimycins A-C (1-3). The intriguing structural features of the qinimycins, including 8-C-glycosylation, 5,14-epoxidation, and 13-hydroxylation, distinguished these molecules from the model pyranonaphthoquinones actinorhodin, medermycin, and granaticin. Another novelty lies in the unusual fusion of a deoxyaminosugar to the pyranonaphthoquinone backbone during biosynthesis of the antibiotics BE-54238 A and B (4, 5). Qinimycins showed weak antimicrobial activity against Gram-positive bacteria. Our work shows the utility of combining bioinformatics, targeted activation of cryptic gene clusters, and NMR-based metabolic profiling as an effective pipeline for the discovery of microbial natural products with distinctive skeletons.
Collapse
Affiliation(s)
- Changsheng Wu
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
- Natural
Products Laboratory, Institute of Biology, Leiden University, Sylviusweg
72 2333 BE Leiden, The Netherlands
| | - Chao Du
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| | - Koji Ichinose
- Research
Institute of Pharmaceutical Sciences, Musashino
University, Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Young Hae Choi
- Natural
Products Laboratory, Institute of Biology, Leiden University, Sylviusweg
72 2333 BE Leiden, The Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
24
|
Sarmiento-Vizcaíno A, González V, Braña AF, Palacios JJ, Otero L, Fernández J, Molina A, Kulik A, Vázquez F, Acuña JL, García LA, Blanco G. Pharmacological Potential of Phylogenetically Diverse Actinobacteria Isolated from Deep-Sea Coral Ecosystems of the Submarine Avilés Canyon in the Cantabrian Sea. MICROBIAL ECOLOGY 2017; 73:338-352. [PMID: 27614749 DOI: 10.1007/s00248-016-0845-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Marine Actinobacteria are emerging as an unexplored source for natural product discovery. Eighty-seven deep-sea coral reef invertebrates were collected during an oceanographic expedition at the submarine Avilés Canyon (Asturias, Spain) in a range of 1500 to 4700 m depth. From these, 18 cultivable bioactive Actinobacteria were isolated, mainly from corals, phylum Cnidaria, and some specimens of phyla Echinodermata, Porifera, Annelida, Arthropoda, Mollusca and Sipuncula. As determined by 16S rRNA sequencing and phylogenetic analyses, all isolates belong to the phylum Actinobacteria, mainly to the Streptomyces genus and also to Micromonospora, Pseudonocardia and Myceligenerans. Production of bioactive compounds of pharmacological interest was investigated by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) techniques and subsequent database comparison. Results reveal that deep-sea isolated Actinobacteria display a wide repertoire of secondary metabolite production with a high chemical diversity. Most identified products (both diffusible and volatiles) are known by their contrasted antibiotic or antitumor activities. Bioassays with ethyl acetate extracts from isolates displayed strong antibiotic activities against a panel of important resistant clinical pathogens, including Gram-positive and Gram-negative bacteria, as well as fungi, all of them isolated at two main hospitals (HUCA and Cabueñes) from the same geographical region. The identity of the active extracts components of these producing Actinobacteria is currently being investigated, given its potential for the discovery of pharmaceuticals and other products of biotechnological interest.
Collapse
Affiliation(s)
- Aida Sarmiento-Vizcaíno
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Verónica González
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Alfredo F Braña
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Juan J Palacios
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Luis Otero
- Servicio de Microbiología Hospital de Cabueñes, Gijón, Spain
| | - Jonathan Fernández
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Axayacatl Molina
- Departamento de Biología de Organismos y Sistemas. Área de Ecología, Universidad de Oviedo, Oviedo, Spain
| | - Andreas Kulik
- Microbial Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Fernando Vázquez
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006, Oviedo, Spain
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - José L Acuña
- Departamento de Biología de Organismos y Sistemas. Área de Ecología, Universidad de Oviedo, Oviedo, Spain
| | - Luis A García
- Departamento de Ingeniería Química y Tecnología del Medio Ambiente. Área de Ingeniería Química, Universidad de Oviedo, Oviedo, Spain
| | - Gloria Blanco
- Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
25
|
Rakshith D, Santosh P, Pradeep TP, Gurudatt DM, Baker S, Yashavantha Rao HC, Pasha A, Satish S. Application of Bioassay-Guided Fractionation Coupled with a Molecular Approach for the Dereplication of Antimicrobial Metabolites. Chromatographia 2016. [DOI: 10.1007/s10337-016-3188-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Frédérich M, Pirotte B, Fillet M, de Tullio P. Metabolomics as a Challenging Approach for Medicinal Chemistry and Personalized Medicine. J Med Chem 2016; 59:8649-8666. [PMID: 27295417 DOI: 10.1021/acs.jmedchem.5b01335] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
"Omics" sciences have been developed to provide a holistic point of view of biology and to better understand the complexity of an organism as a whole. These systems biology approaches can be examined at different levels, starting from the most fundamental, i.e., the genome, and finishing with the most functional, i.e., the metabolome. Similar to how genomics is applied to the exploration of DNA, metabolomics is the qualitative and quantitative study of metabolites. This emerging field is clearly linked to genomics, transcriptomics, and proteomics. In addition, metabolomics provides a unique and direct vision of the functional outcome of an organism's activities that are required for it to survive, grow, and respond to internal and external stimuli or stress, e.g., pathologies and drugs. The links between metabolic changes, patient phenotype, physiological and/or pathological status, and treatment are now well established and have opened a new area for the application of metabolomics in the drug discovery process and in personalized medicine.
Collapse
Affiliation(s)
- Michel Frédérich
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege , Quartier Hôpital, Avenue Hippocrate 15, B-4000 Liege, Belgium
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege , Quartier Hôpital, Avenue Hippocrate 15, B-4000 Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege , Quartier Hôpital, Avenue Hippocrate 15, B-4000 Liege, Belgium
| | - Pascal de Tullio
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege , Quartier Hôpital, Avenue Hippocrate 15, B-4000 Liege, Belgium
| |
Collapse
|
27
|
Weber T, Kim HU. The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol 2016; 1:69-79. [PMID: 29062930 PMCID: PMC5640684 DOI: 10.1016/j.synbio.2015.12.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/10/2015] [Accepted: 12/26/2015] [Indexed: 01/02/2023] Open
Abstract
Natural products are among the most important sources of lead molecules for drug discovery. With the development of affordable whole-genome sequencing technologies and other ‘omics tools, the field of natural products research is currently undergoing a shift in paradigms. While, for decades, mainly analytical and chemical methods gave access to this group of compounds, nowadays genomics-based methods offer complementary approaches to find, identify and characterize such molecules. This paradigm shift also resulted in a high demand for computational tools to assist researchers in their daily work. In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http://www.secondarymetabolites.org) is introduced to provide a one-stop catalog and links to these bioinformatics resources. In addition, an outlook is presented how the existing tools and those to be developed will influence synthetic biology approaches in the natural products field.
Collapse
Key Words
- A, adenylation domain
- Antibiotics
- BGC, biosynthetic gene cluster
- Bioinformatics
- Biosynthesis
- C, condensation domain
- GPR, gene-protein-reaction
- HMM, hidden Markov model
- LC, liquid chromatography
- MS, mass spectrometry
- NMR, nuclear magnetic resonance
- NRP, non-ribosomally synthesized peptide
- NRPS
- NRPS, non-ribosomal peptide synthetase
- Natural product
- PCP, peptidyl carrier protein
- PK, polyketide
- PKS
- PKS, polyketide synthase
- RiPP, ribosomally and post-translationally modified peptide
- SVM, support vector machine
Collapse
Affiliation(s)
- Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970 Hørsholm, Denmark
| | - Hyun Uk Kim
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970 Hørsholm, Denmark.,BioInformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
28
|
Wu C, Du C, Gubbens J, Choi YH, van Wezel GP. Metabolomics-Driven Discovery of a Prenylated Isatin Antibiotic Produced by Streptomyces Species MBT28. JOURNAL OF NATURAL PRODUCTS 2015; 78:2355-2363. [PMID: 26438963 DOI: 10.1021/acs.jnatprod.5b00276] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Actinomycetes are a major source of antimicrobials, anticancer compounds, and other medically important products, and their genomes harbor extensive biosynthetic potential. Major challenges in the screening of these microorganisms are to activate the expression of cryptic biosynthetic gene clusters and the development of technologies for efficient dereplication of known molecules. Here we report the identification of a previously unidentified isatin-type antibiotic produced by Streptomyces sp. MBT28, following a strategy based on NMR-based metabolomics combined with the introduction of streptomycin resistance in the producer strain. NMR-guided isolation by tracking the target proton signal resulted in the characterization of 7-prenylisatin (1) with antimicrobial activity against Bacillus subtilis. The metabolite-guided genome mining of Streptomyces sp. MBT28 combined with proteomics identified a gene cluster with an indole prenyltransferase that catalyzes the conversion of tryptophan into 7-prenylisatin. This study underlines the applicability of NMR-based metabolomics in facilitating the discovery of novel antibiotics.
Collapse
Affiliation(s)
| | | | - Jacob Gubbens
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | |
Collapse
|