1
|
Bas TG, Duarte V. Biosimilars in the Era of Artificial Intelligence-International Regulations and the Use in Oncological Treatments. Pharmaceuticals (Basel) 2024; 17:925. [PMID: 39065775 PMCID: PMC11279612 DOI: 10.3390/ph17070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This research is based on three fundamental aspects of successful biosimilar development in the challenging biopharmaceutical market. First, biosimilar regulations in eight selected countries: Japan, South Korea, the United States, Canada, Brazil, Argentina, Australia, and South Africa, represent the four continents. The regulatory aspects of the countries studied are analyzed, highlighting the challenges facing biosimilars, including their complex approval processes and the need for standardized regulatory guidelines. There is an inconsistency depending on whether the biosimilar is used in a developed or developing country. In the countries observed, biosimilars are considered excellent alternatives to patent-protected biological products for the treatment of chronic diseases. In the second aspect addressed, various analytical AI modeling methods (such as machine learning tools, reinforcement learning, supervised, unsupervised, and deep learning tools) were analyzed to observe patterns that lead to the prevalence of biosimilars used in cancer to model the behaviors of the most prominent active compounds with spectroscopy. Finally, an analysis of the use of active compounds of biosimilars used in cancer and approved by the FDA and EMA was proposed.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1781421, Chile;
| | | |
Collapse
|
2
|
Mok TC, Mok CC. Non-TNF biologics and their biosimilars in rheumatoid arthritis. Expert Opin Biol Ther 2024; 24:599-613. [PMID: 38766765 DOI: 10.1080/14712598.2024.2358165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory rheumatic disease that affects both the articular and extra-articular structures, leading to significant joint damage, disability and excess mortality. The treatment algorithm of RA has changed tremendously in the past 1-2 decades because of the emergence of novel biological therapies that target different mechanisms of action in addition to TNFα. AREAS COVERED This article summarizes the evidence and safety of the non-TNF biological DMARDs in the treatment of RA, including those that target B cells, T-cell co-stimulation, interleukin (IL)-6 and granulocyte-monocyte colony-stimulating factor (GM-CSF). The targeted synthetic DMARDs such as the Janus kinase inhibitors are not included. The availability of the less costly biosimilars has enabled more patients to receive biological therapy earlier in the course of the disease. The evidence for the non-TNF biosimilar compounds in RA is also reviewed. EXPERT OPINION There are unmet needs of developing novel therapeutic agents to enhance the response rate and provide more options for difficult-to-treat RA. These include the newer generation biologic and targeted synthetic DMARDs. A personalized treatment strategy in RA requires evaluation of the cellular, cytokine, genomic and transcriptomic profile that would predict treatment response to biologic or targeted DMARDs of different mechanisms of action.
Collapse
Affiliation(s)
- Tsz Ching Mok
- Department of Medicine, Ruttonjee Hospital, Hong Kong, China
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, China
| |
Collapse
|
3
|
Mascarenhas-Melo F, Diaz M, Gonçalves MBS, Vieira P, Bell V, Viana S, Nunes S, Paiva-Santos AC, Veiga F. An Overview of Biosimilars-Development, Quality, Regulatory Issues, and Management in Healthcare. Pharmaceuticals (Basel) 2024; 17:235. [PMID: 38399450 PMCID: PMC10892806 DOI: 10.3390/ph17020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Biological therapies have transformed high-burden treatments. As the patent and exclusivity period for biological medicines draws to a close, there is a possibility for the development and authorization of biosimilars. These products boast comparable levels of safety, quality, and effectiveness to their precursor reference products. Biosimilars, although similar to reference products, are not identical copies and should not be considered generic substitutes for the original. Their development and evaluation involve a rigorous step-by-step process that includes analytical, functional, and nonclinical evaluations and clinical trials. Clinical studies conducted for biosimilars aim to establish similar efficacy, safety, and immunogenicity, rather than demonstrating a clinical benefit, as with the reference product. However, although the current knowledge regarding biosimilars has significantly increased, several controversies and misconceptions still exist regarding their immunogenicity, extrapolation, interchangeability, substitution, and nomenclature. The development of biosimilars stimulates market competition, contributes toward healthcare sustainability, and allows for greater patient access. However, maximizing the benefits of biosimilars requires cooperation between regulators and developers to ensure that patients can benefit quickly from access to these new therapeutic alternatives while maintaining high standards of quality, safety, and efficacy. Recognizing the inherent complexities of comprehending biosimilars fully, it is essential to focus on realistic approaches, such as fostering open communication between healthcare providers and patients, encouraging informed decision-making, and minimizing risks. This review addresses the regulatory and manufacturing requirements for biosimilars and provides clinicians with relevant insights for informed prescribing.
Collapse
Affiliation(s)
- Filipa Mascarenhas-Melo
- LAQV-REQUIMTE, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Higher School of Health, Polytechnic Institute of Guarda, 6300-307 Guarda, Portugal
| | - Mariana Diaz
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (M.D.); (M.B.S.G.)
| | - Maria Beatriz S. Gonçalves
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (M.D.); (M.B.S.G.)
| | - Pedro Vieira
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (S.V.); or (S.N.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Coimbra Health School, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
| | - Victoria Bell
- Laboratory of Social Pharmacy and Public Health, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Sofia Viana
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (S.V.); or (S.N.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Coimbra Health School, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (P.V.); (S.V.); or (S.N.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Coimbra Health School, Polytechnic Institute of Coimbra, 3046-854 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- LAQV-REQUIMTE, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (M.D.); (M.B.S.G.)
| | - Francisco Veiga
- LAQV-REQUIMTE, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Drug Development and Technology Laboratory, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (M.D.); (M.B.S.G.)
| |
Collapse
|
4
|
Pedro F, Veiga F, Mascarenhas-Melo F. Impact of GAMP 5, data integrity and QbD on quality assurance in the pharmaceutical industry: How obvious is it? Drug Discov Today 2023; 28:103759. [PMID: 37660982 DOI: 10.1016/j.drudis.2023.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
In the pharmaceutical industry, it is essential to ensure the safety and efficacy of medicinal products. Therefore a robust quality assurance framework is needed. This manuscript examines the impact of GAMP 5 and data integrity (DI) on quality assurance, while also highlighting the role of quality by design (QbD) principles. GAMP 5 is a widely used framework for validating automated systems that establishes quality assurance practices. DI guarantees the reliability of data collected throughout various stages of drug development. The integration of QbD principles promotes a systematic approach to development that emphasizes a deep understanding of critical quality attributes, risk management, and continuous improvement. With their implementation, organizations are able to meet regulatory requirements and provide safe medications to patients worldwide.
Collapse
Affiliation(s)
- Francisca Pedro
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Drug Development and Technology Laboratory, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Heinemann L, Davies M, Home P, Forst T, Vilsbøll T, Schnell O. Understanding Biosimilar Insulins - Development, Manufacturing, and Clinical Trials. J Diabetes Sci Technol 2023; 17:1649-1661. [PMID: 35818669 PMCID: PMC10658691 DOI: 10.1177/19322968221105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A wave of expiring patents for first-generation insulin analogues has created opportunities in the global insulin market for highly similar versions of these products, biosimilar insulins. Biologics are generally large, complex molecules produced through biotechnology in a living system, such as a microorganism, plant cell, or animal cell. Since manufacturing processes of biologics vary, biosimilars cannot be exact copies of their reference product but must exhibit a high degree of functional and structural similarity. Biosimilarity is proven by analytical approaches in comparative assessments, preclinical cell-based and animal studies, as well as clinical studies in humans facilitating the accumulation of evidence across all assessments. The approval of biosimilars follows detailed regulatory pathways derived from those of their reference products and established by agencies such as the European Medicines Agency and the US Food and Drug Administration. Regulatory authorities impose requirements to ensure that biosimilars meet high standards of quality, safety, and efficacy and are highly similar to their reference product. PURPOSE This review aims to aid clinical understanding of the high standards of development, manufacturing, and regulation of biosimilar insulins. METHODS Recent relevant studies indexed by PubMed and regulatory documents were included. CONCLUSIONS Driven by price competition, the emergence of biosimilar insulins may help expand global access to current insulin analogues. To maximize the impact of the advantage for falling retail costs of biosimilar insulins compared with that of reference insulins, healthcare professionals and insulin users must gain further awareness and confidence.
Collapse
Affiliation(s)
- Lutz Heinemann
- Science Consulting in Diabetes GmbH, Kaarst, Deutschland
| | - Melanie Davies
- University of Leicester, Leicester General Hospital, Leicester, UK
| | - Philip Home
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas Forst
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Oliver Schnell
- Forschergruppe Diabetes e.V., Neuherberg, Munich, Germany
| |
Collapse
|
6
|
Kulasekararaj A, Brodsky R, Kulagin A, Jang JH. Biosimilars in rare diseases: a focus on paroxysmal nocturnal hemoglobinuria. Haematologica 2023; 108:1232-1243. [PMID: 36519328 PMCID: PMC10153517 DOI: 10.3324/haematol.2022.281562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Biologics, a class of medicines grown in and purified from genetically engineered cell cultures, have transformed the management of many cancers and rare diseases, such as paroxysmal nocturnal hemoglobinuria. As prescription drug spending has increased and exclusivity periods have expired, manufacturers have developed biosimilars-biologics that may be more affordable and highly similar to a licensed biological therapeutic, with no clinically meaningful differences in terms of safety or efficacy. With biosimilars gaining regulatory approval around the globe and broadening patient access to biologics, this review aims to help rare disease healthcare providers familiarize themselves with biosimilars, understand their development and regulatory approval process, and address practical considerations that may facilitate their use.
Collapse
Affiliation(s)
- Austin Kulasekararaj
- Department of Haematological Medicine, King's College London School of Medicine, London, United Kingdom. ORCID 0000-0003-3180-3570
| | - Robert Brodsky
- Division of Hematology, Johns Hopkins Medicine, Baltimore, MD.
| | - Alexander Kulagin
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg, Russia. ORCID 0000-0002-9589-4136.
| | - Jun Ho Jang
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine.
| |
Collapse
|
7
|
Bana AAK, Mehta P, Ramnani KAK. Physical Instabilities of Therapeutic Monoclonal Antibodies: A Critical Review. Curr Drug Discov Technol 2022; 19:e240622206367. [PMID: 35748546 DOI: 10.2174/1570163819666220624092622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
The proteinaceous nature of monoclonal antibodies (mAbs) makes them highly sensitive to various physical and chemical conditions, thus leading to instabilities that are classified as physical and chemical instabilities. In this review, we are discussing in detail the physical instability of mAbs because a large number of articles previously published solely focus on the chemical aspect of the instability with little coverage on the physical side. The physical instabilities of mAbs are classified into denaturation and aggregation (precipitation, visible and subvisible particles). The mechanism involved in their formation is discussed in the article, along with the pathways correlating the denaturation of mAb or the formation of aggregates to immunogenicity. Further equations like Gibbs-Helmholtz involved in detecting and quantifying denaturation are discussed, along with various factors causing the denaturation. Moreover, questions related to aggregation like the types of aggregates and the pathway involved in their formation are answered in this article. Factors influencing the physical stability of the mAbs by causing denaturation or formation of aggregates involving the structure of the protein, concentration of mAbs, pH of the protein and the formulations, excipients involved in the formulations, salts added to the formulations, storage temperature, light and UV radiation exposure and processing factors are mentioned in this article. Finally, the analytical approaches used for detecting and quantifying the physical instability of mAbs at all levels of structural conformation like far and near UV, infrared spectroscopy, capillary electrophoresis, LC-MS, microflow imagining, circular dichroism and peptide mapping are discussed.
Collapse
Affiliation(s)
- Arpit Arun K Bana
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | | |
Collapse
|
8
|
Petric Z, Goncalves J, Paixao P. Under the Umbrella of Clinical Pharmacology: Inflammatory Bowel Disease, Infliximab and Adalimumab, and a Bridge to an Era of Biosimilars. Pharmaceutics 2022; 14:1766. [PMID: 36145514 PMCID: PMC9505802 DOI: 10.3390/pharmaceutics14091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (MAbs) have revolutionized the treatment of many chronic inflammatory diseases, including inflammatory bowel disease (IBD). IBD is a term that comprises two quite similar, yet distinctive, disorders-Crohn's disease (CD) and ulcerative colitis (UC). Two blockbuster MAbs, infliximab (IFX) and adalimumab (ADL), transformed the pharmacological approach of treating CD and UC. However, due to the complex interplay of pharmacology and immunology, MAbs face challenges related to their immunogenicity, effectiveness, and safety. To ease the burden of IBD and other severe diseases, biosimilars have emerged as a cost-effective alternative to an originator product. According to the current knowledge, biosimilars of IFX and ADL in IBD patients are shown to be as safe and effective as their originators. The future of biosimilars, in general, is promising due to the potential of making the health care system more sustainable. However, their use is accompanied by misconceptions regarding their effectiveness and safety, as well as by controversy regarding their interchangeability. Hence, until a scientific consensus is achieved, scientific data on the long-term effectiveness and safety of biosimilars are needed.
Collapse
Affiliation(s)
- Zvonimir Petric
- Department of Pharmacological Sciences, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-004 Lisboa, Portugal
| | - Joao Goncalves
- Biopharmaceutical and Molecular Biotechnology Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-004 Lisboa, Portugal
| | - Paulo Paixao
- Department of Pharmacological Sciences, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-004 Lisboa, Portugal
| |
Collapse
|
9
|
Iqbal Z, Sadaf S. Commercial Low Molecular Weight Heparins - Patent Ecosystem and Technology Paradigm for Quality Characterization. J Pharm Innov 2022; 18:1-33. [PMID: 35915630 PMCID: PMC9330979 DOI: 10.1007/s12247-022-09665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Heparin is a subject of ever-growing interest for laboratory researchers and pharmaceutical industry. One of the driving factors is its critical life-saving drug status, which during the COVID-19 pandemic has assumed a central role in disease treatment and/or prevention. Apart, heparin is one amongst few drugs enjoying a "demand constant" status. In 2020, heparin market size was valued to US$6.5 bn., and given the ongoing stability in the COVID-19 health crisis, it is expected to reach US$11.43 bn. by 2027 with yearly growth rate momentum (CAGR) of 3.9% during the forecast period (Pepi et al., Mol Cell Proteomics 20:100,025, 2021). As patent is a limited monopoly, every year, many patents on low molecular weight heparin (LMWH; a chemically or enzymatically degraded product of unfractionated heparin) are losing market exclusivity worldwide, inviting the generic/biosimilar drug manufacturers to capture market share with cheaper drug products. By tracking patent expiration, drugs in patent litigation, regulatory setbacks for innovator companies (such as those seeking data exclusivity or patent term extension), or other unexpected events affecting market demand and competition, generics can make investment decisions in manufacturing off-patent LMWH drug products of commercial significance. However, given the US Food and Drug Administration (FDA), European Medicine Agency (EMA), Drug Regulatory Authority of Pakistan (DRAP), and other regulatory authorities scientifically rigorous standards for generic/biosimilar LMWH drug products marketing approval, the market is secured and momentous for drug makers that could demonstrate through scientific and clinical dataset that the generic/biosimilar LMWH drug product is of the same quality and purity as the innovator drug product. This study presents an overview of the patent landscape of commercially available LMWHs and advanced analytical techniques for their structural and biochemical characterization for quality control and quality assurance during manufacturing and post-marketing. The study also covers FDA, EMA, Health Canada, and DRAP's current approaches to evaluating the generic/biosimilar LMWH drug products for quality, safety including immunogenicity, and efficacy.
Collapse
Affiliation(s)
- Zarina Iqbal
- IP and Litigation Department, PakPat World Intellectual Property Protection Services, Lahore, Pakistan
| | - Saima Sadaf
- Biopharmaceutical and Biomarkers Discovery Lab, School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590 Pakistan
| |
Collapse
|
10
|
Streamlining breast cancer and colorectal cancer biosimilar regulations to improve treatment access in Latin America: an expert panel perspective. Lancet Oncol 2022; 23:e348-e358. [DOI: 10.1016/s1470-2045(22)00121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/20/2022]
|
11
|
Conran CA, Moreland LW. A review of biosimilars for rheumatoid arthritis. Curr Opin Pharmacol 2022; 64:102234. [PMID: 35552095 DOI: 10.1016/j.coph.2022.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Biologics are effective, though costly, medications for the treatment of rheumatoid arthritis (RA). Biosimilars are medications that have no clinically meaningful differences when compared with their corresponding reference biologics but cost significantly less. The U.S. Food and Drug Administration and the European Medication Agency have approved biosimilars for adalimumab, etanercept, infliximab, and rituximab for the treatment of RA. Streamlined approval processes are expected to expedite biosimilar development while maintaining strict safety and efficacy standards. Encouragingly, many analyses have demonstrated the potential for massive healthcare savings if biosimilars are used over biologics. Challenges to biosimilar uptake, including patient and provider hesitancy, can likely be overcome with the education of all stakeholders within healthcare systems.
Collapse
Affiliation(s)
- Carly A Conran
- Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, 12631 East 17th Avenue, Aurora, CO 80045, USA.
| | - Larry W Moreland
- Department of Medicine, Division of Rheumatology, University of Colorado Denver - Anschutz Medical Campus, 12631 East 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Schnell O, Battelino T, Bergenstal R, Blüher M, Böhm M, Brosius F, Carr RD, Ceriello A, Forst T, Giorgino F, Guerci B, Heerspink HJL, Itzhak B, Ji L, Kosiborod M, Lalić N, Lehrke M, Marx N, Nauck M, Rodbard HW, Rosano GMC, Rossing P, Rydén L, Santilli F, Schumm-Draeger PM, Vandvik PO, Vilsbøll T, Wanner C, Wysham C, Standl E. Report from the CVOT Summit 2021: new cardiovascular, renal, and glycemic outcomes. Cardiovasc Diabetol 2022; 21:50. [PMID: 35395808 PMCID: PMC8990484 DOI: 10.1186/s12933-022-01481-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
The 7th Cardiovascular Outcome Trial (CVOT) Summit on Cardiovascular, Renal, and Glycemic Outcomes, was held virtually on November 18-19, 2021. Pursuing the tradition of the previous summits, this reference congress served as a platform for in-depth discussion and exchange on recently completed CVOTs. This year's focus was placed on the outcomes of EMPEROR-Preserved, FIGARO-DKD, AMPLITUDE-O, SURPASS 1-5, and STEP 1-5. Trial implications for diabetes and obesity management and the impact on new treatment algorithms were highlighted for endocrinologists, diabetologists, cardiologists, nephrologists, and general practitioners. Discussions evolved from outcome trials using SGLT2 inhibitors as therapy for heart failure, to CVOTs with nonsteroidal mineralocorticoid receptor antagonists and GLP-1 receptor agonists. Furthermore, trials for glycemic and overweight/obesity management, challenges in diabetes management in COVID-19, and novel guidelines and treatment strategies were discussed.Trial registration The 8th Cardiovascular Outcome Trial Summit will be held virtually on November 10-11, 2022 ( http://www.cvot.org ).
Collapse
Affiliation(s)
- Oliver Schnell
- Forschergruppe Diabetes e. V., Helmholtz Center Munich, Ingolstaedter Landstraße 1, 85764 Munich, Germany
| | - Tadej Battelino
- University Medical Center, Ljubljana, Slovenia
- University Children’s Hospital, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Richard Bergenstal
- International Diabetes Center at Park Nicollet, Health Partners, Minneapolis, MN USA
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Saarland University, Homburg, Germany
| | - Frank Brosius
- College of Medicine, University of Arizona, Tuscon, AZ USA
| | | | | | - Thomas Forst
- CRS Clinical Research Services Mannheim GmbH, Mannheim, Germany
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Bruno Guerci
- Department of Endocrinology Diabetology and Nutrition, Nancy University Hospital, Nancy, France
- Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Hiddo J. L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Baruch Itzhak
- Clalit Health Services and Technion Faculty of Medicine, Haifa, Israel
| | - Linong Ji
- Peking University People’s Hospital, Xicheng District, Beijing, China
| | - Mikhail Kosiborod
- Cardiometabolic Center of Excellence, University of Missouri-Kansas City, Kansas City, MO USA
| | - Nebojša Lalić
- Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Michael Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rydén
- Department of Medicine K2, Karolinska Institute, Stockholm, Sweden
| | - Francesca Santilli
- Department of Medicine and Aging, Hospital and, University of Chieti, Chieti, Italy
| | | | - Per Olav Vandvik
- Department of Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Tina Vilsbøll
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerupn, Denmark
| | | | - Carol Wysham
- Section of Endocrinology and Metabolism, MultiCare Rockwood Clinic, Spokane, WA USA
| | - Eberhard Standl
- Forschergruppe Diabetes e. V., Helmholtz Center Munich, Ingolstaedter Landstraße 1, 85764 Munich, Germany
| |
Collapse
|
13
|
Gasteiger C, Petrie KJ. Moving forward: Implementing health psychology research to improve patient acceptance of biosimilars. Res Social Adm Pharm 2022; 18:3860-3863. [PMID: 35339394 DOI: 10.1016/j.sapharm.2022.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 12/25/2022]
Abstract
As more biosimilars enter the pharmaceutical market, patient acceptance remains a significant barrier to their uptake. Psychological factors, such as negative expectations, are important causes of patient hesitancy. As a result, patients can develop nocebo responses following a transition, discontinue biosimilar treatment early, or have poor adherence. These negative outcomes may offset some of the cost-saving potential of biosimilars. Key healthcare professionals such as pharmacists, physicians, and nurses already play a noteworthy role in educating and transitioning patients. However, given the psychological aspect of biosimilar acceptance, it is logical for healthcare professionals and researchers to draw on research and theory from health psychology. This commentary outlines how a multidisciplinary approach can add to the understanding of the mechanisms behind patient resistance to biosimilars and help engage patients in the transitioning process. It also explores how health psychology strategies that have been successful in similar areas can be translated to help conduct more effective transitions. Future directions in research are discussed.
Collapse
Affiliation(s)
- Chiara Gasteiger
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Keith J Petrie
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Sharman JP, Kirchhoff CF, Rifkin RM. Analytical similarity as base for rituximab biosimilars in lymphoid malignancies in the clinic: a PF-05280586 case study. Future Oncol 2022; 18:1499-1510. [DOI: 10.2217/fon-2021-0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The availability of biosimilars in oncology has provided an opportunity for increased patient access to biologic therapies. However, healthcare professional perceptions concerning the relatively limited clinical data sufficient to support their regulatory approval may contribute to varied uptake and use. We review key aspects of the development program for the rituximab biosimilar PF-05280586 (Ruxience™) that supported its approval for lymphoid malignancies, to illustrate the rationale for an abbreviated clinical program. In particular, we describe the extensive analytical assessment, comprising sensitive techniques that established similarity with the reference product in key product attributes, underlying structure, function, potency, safety and quality, which formed the foundation for a successful development program, culminating in a confirmatory comparative clinical trial in patients with follicular lymphoma.
Collapse
Affiliation(s)
- Jeff P Sharman
- Willamette Valley Cancer Institute & Research Center, US Oncology, Eugene, OR 97401, USA
| | | | - Robert M Rifkin
- Rocky Mountain Cancer Centers, US Oncology Research, Denver, CO 80218, USA
| |
Collapse
|
15
|
Singh P, Desai PN, Dutta V. Rising biosimilars in the Indian biopharmaceutical industry: emerging challenges and way forward. TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT 2021. [DOI: 10.1080/09537325.2021.1994139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Pallavi Singh
- DST-Centre for Policy Research, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, India
| | - Pranav N. Desai
- Centre for Research in Environment, Science and Technology Policy (CREST) and Centre for Studies in Science Policy, Jawaharlal Nehru University, New Delhi, India
| | - Venkatesh Dutta
- DST-Centre for Policy Research, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, India
- Department of Environmental Science, School of Environmental Science, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, India
| |
Collapse
|
16
|
Galina AC, Sarzi D, de Medeiros LC, Sampaio ALF, Leta J. The promising drugs included in WHO's Solidarity Project: a choice based in scientific knowledge and institutional competencies. Mem Inst Oswaldo Cruz 2021; 116:e200603. [PMID: 34495083 PMCID: PMC8475511 DOI: 10.1590/0074-02760200603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In March 2020, the World Health Organization (WHO) launched the Solidarity Program, probably the largest global initiative to encourage and support research in four promising drugs, named Remdesivir, Hydroxychloroquine, β Interferon and the combination Lopinavir / Ritonavir, to reduce the mortality of Coronavirus disease 2019 (COVID-19). OBJECTIVES Considering the potential impact of Solidarity Program to restrain the current pandemic, the present study aims to investigate whether it was designed upon indicators of scientific productivity, defined as the level of the production of new scientific knowledge and of the institutional capabilities, estimated in terms of scientific publications and technological agreements. METHODS The scientific documents on Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Coronavirus were retrieved from Scopus database while the technological agreements on coronavirus were obtained through Cortellis. As for the institutions and countries, we have considered the data on author's affiliations in both set of data. For comparison, we included the analysis of documents related with other drugs or therapies, such as vaccines and antibodies, which were listed in a Clarivate's report on coronaviruses research. FINDINGS Most of the analysis refers to documents on Coronavirus, the largest group. The number of documents related to WHO's drugs are almost five times higher than in the other groups. This subset of documents involves the largest and most diverse number of institutions and countries. As for agreements, we observed a smaller number of institutions involved in it, suggesting differences between countries in terms of technical and human capabilities to develop basic and/or clinical research on coronavirus and to develop new forms or products to treat or to prevent the disease. MAIN CONCLUSIONS Hence, the results shown in this study illustrate that decisions taken by an international scientific body, as WHO, were mainly based in scientific knowledge and institutional competencies.
Collapse
Affiliation(s)
- Andréia Cristina Galina
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Educação, Gestão e Difusão em Biociências, Rio de Janeiro, RJ, Brasil
| | - Deise Sarzi
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Educação, Gestão e Difusão em Biociências, Rio de Janeiro, RJ, Brasil
| | | | - André Luiz Franco Sampaio
- Fundação Oswaldo Cruz-Fiocruz, Instituto de Tecnologia em Fármacos-Farmanguinhos, Departamento de Farmacologia, Rio de Janeiro, RJ, Brasil
| | - Jacqueline Leta
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Educação, Gestão e Difusão em Biociências, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
17
|
Gasteiger C, den Broeder AA, Stewart S, Gasteiger N, Scholz U, Dalbeth N, Petrie KJ. The mode of delivery and content of communication strategies used in mandatory and non-mandatory biosimilar transitions: a systematic review with meta-analysis. Health Psychol Rev 2021; 17:148-168. [PMID: 34409923 DOI: 10.1080/17437199.2021.1970610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Effective patient-provider communication is crucial to promote shared decision-making. However, it is unclear how to explain treatment changes to ensure patient acceptance, such as when transitioning from a bio-originator to a biosimilar. This review investigates communication strategies used to educate patients on transitioning to biosimilars and explores whether the willingness to transition and treatment persistence differs for the delivery (verbal or written) and the amount of information provided. MEDLINE, Embase, Scopus, and relevant conference databases were systematically searched. Communication strategies from 33 studies (88% observational cohort studies) published from 2012 to 2020 were synthesized and willingness to transition, persistence, and subjective adverse events explored. Patients only received information verbally in 11 studies. The remaining 22 studies also provided written information. Cost-saving was the main reason provided for the transition. Patients were most willing to transition when receiving written and verbal information (χ2 = 5.83, p = .02) or written information that only addressed a few (3-5) concerns (χ2 = 16.08, p < .001). There was no significant difference for persistence or subjective adverse events (p's > .05). Few randomized controlled trials have been conducted. Available data shows more willingness to transition when patients received written and verbal information. Initial documents should contain basic information and consultations or telephone calls used to address concerns.
Collapse
Affiliation(s)
- Chiara Gasteiger
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Sarah Stewart
- Bone & Joint Research Group, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Norina Gasteiger
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Urte Scholz
- Department of Psychology- Applied Social and Health Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program 'Dynamics of Healthy Aging', University of Zurich, Zurich, Switzerland
| | - Nicola Dalbeth
- Department of Rheumatology, Auckland District Health Board, Auckland, New Zealand.,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Keith J Petrie
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Ditani AS, Mallick PP, Anup N, Tambe V, Polaka S, Sengupta P, Rajpoot K, Tekade RK. Biosimilars accessible in the market for the treatment of cancer. J Control Release 2021; 336:112-129. [PMID: 34126171 DOI: 10.1016/j.jconrel.2021.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022]
Abstract
Biosimilars are the biological product clinically identical to a biologic reference standard regarding their strength, purity, and safety. A large segment of biosimilars has been developed for the treatment of cancer. This review aims to discuss various facets of biosimilars and explicates on biosimilars accessible in the market for cancer clinical intervention. It also illustrates the outcomes of recent clinical trial studies concerning biosimilars. Further, it also crosstalk the safety profiles, regulatory approval requirements, and allied challenges therein. The work will be of significant interest to researchers working in the field of biologics and biosimilars.
Collapse
Affiliation(s)
- Aayushi S Ditani
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Pragyan Paramita Mallick
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Neelima Anup
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Suryanarayana Polaka
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Kuldeep Rajpoot
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
19
|
Narayanan R, Hariprasad SM, Sheth J. Biosimilars for the Treatment of Retinal Diseases. Ophthalmic Surg Lasers Imaging Retina 2021; 52:242-246. [PMID: 34044720 DOI: 10.3928/23258160-20210429-01] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Honavar SG. From Biologics to Biosimilars and Biobetters - Democratization of High-end Therapeutics. Indian J Ophthalmol 2021; 69:207-208. [PMID: 33463558 PMCID: PMC7933873 DOI: 10.4103/ijo.ijo_150_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Santosh G Honavar
- Editor, Indian Journal of Ophthalmology, Centre for Sight, Road No 2, Banjara Hills, Hyderabad, India E-mail:
| |
Collapse
|
21
|
Kristoff CJ, Bwanali L, Veltri LM, Gautam GP, Rutto PK, Newton EO, Holland LA. Challenging Bioanalyses with Capillary Electrophoresis. Anal Chem 2020; 92:49-66. [PMID: 31698907 PMCID: PMC6995690 DOI: 10.1021/acs.analchem.9b04718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Courtney J. Kristoff
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Gayatri P. Gautam
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Patrick K. Rutto
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ebenezer O. Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
22
|
Tripathi NK, Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol 2019; 7:420. [PMID: 31921823 PMCID: PMC6932962 DOI: 10.3389/fbioe.2019.00420] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases, along with cancers, are among the main causes of death among humans worldwide. The production of therapeutic proteins for treating diseases at large scale for millions of individuals is one of the essential needs of mankind. Recent progress in the area of recombinant DNA technologies has paved the way to producing recombinant proteins that can be used as therapeutics, vaccines, and diagnostic reagents. Recombinant proteins for these applications are mainly produced using prokaryotic and eukaryotic expression host systems such as mammalian cells, bacteria, yeast, insect cells, and transgenic plants at laboratory scale as well as in large-scale settings. The development of efficient bioprocessing strategies is crucial for industrial production of recombinant proteins of therapeutic and prophylactic importance. Recently, advances have been made in the various areas of bioprocessing and are being utilized to develop effective processes for producing recombinant proteins. These include the use of high-throughput devices for effective bioprocess optimization and of disposable systems, continuous upstream processing, continuous chromatography, integrated continuous bioprocessing, Quality by Design, and process analytical technologies to achieve quality product with higher yield. This review summarizes recent developments in the bioprocessing of recombinant proteins, including in various expression systems, bioprocess development, and the upstream and downstream processing of recombinant proteins.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|