1
|
Mou S, Savchenko V, Filz V, Böttcher T, DeShazer D. Burkholderia pseudomallei produces 2-alkylquinolone derivatives important for host virulence and competition with bacteria that employ naphthoquinones for aerobic respiration. Front Microbiol 2024; 15:1474033. [PMID: 39469462 PMCID: PMC11513363 DOI: 10.3389/fmicb.2024.1474033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Melioidosis is caused by Burkholderia pseudomallei, an opportunistic Gram-negative pathogen that inhabits soil and water in tropical and subtropical regions. B. pseudomallei infections often occur following contact with contaminated water or soil or by inhalation of contaminated dust and water droplets. There is limited knowledge about how B. pseudomallei is able to survive in harsh environmental conditions and compete with the microbes that inhabit these niches. Previous research demonstrated that 3-methyl-2-alkylquinolones (MAQs), and their corresponding N-oxides (MAQNOs), are produced by B. pseudomallei and provide a competitive advantage when grown in the presence of Gram-positive bacteria. In this study, 39 Gram-negative environmental bacteria in the Pseudomonadota and Bacteroidota phyla were isolated and characterized. Intriguingly, B. pseudomallei inhibited 71% of bacteria in the phylum Bacteroidota in zone of inhibition and coculture competition assays, but no Pseudomonadota isolates were similarly inhibited. Transposon mutagenesis was utilized to identify B. pseudomallei genes required for the inhibition of Sphingobacterium sp. ST4, a representative member of the Bacteroidota. Three mutations mapped to hmqA-G, the locus encoding 2-alkylquinolone derivatives, and two mutations were identified in scmR, a gene encoding a quorum-sensing controlled LysR-type transcriptional regulator. B. pseudomallei strains with deletion mutations in hmqD and scmR were unable to produce 2-alkylquinolone derivatives or inhibit Bacteroidota isolates in competition assays. RAW264.7 murine macrophage cells were infected with B. pseudomallei 1026b and 1026b ΔhmqD and there was a 94-fold reduction in the number of intracellular 1026b ΔhmqD bacteria relative to 1026b. The 50% lethal dose (LD50) of 1026b and 1026b ΔhmqD in BALB/c mice was determined to be 3 x 105 colony forming units (CFU) and > 1 x 106 CFU, respectively. Taken together, the results indicate that the products of the B. pseudomallei hmqA-G locus are important for intracellular replication in murine macrophages, virulence in a mouse model of melioidosis, and competition with bacteria that utilize naphthoquinones for aerobic respiration.
Collapse
Affiliation(s)
- Sherry Mou
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Viktoriia Savchenko
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Verena Filz
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Böttcher
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - David DeShazer
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
2
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
3
|
Jiao Y, Li Y, Dou W, Zhang W, Liu H. Biochar alleviates the crop failure of rice production induced by low-nitrogen cultivation mode by regulating the soil microbes taxa composition. Arch Microbiol 2023; 205:361. [PMID: 37902877 DOI: 10.1007/s00203-023-03700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023]
Abstract
To improve the nitrogen utilization efficiency and a series of environmental problems caused by excessive application of nitrogen fertilizer, actual agricultural production often reduced the usage ratio of nitrogen fertilizer. However, the reduction in nitrogen fertilizer not only affects the soil microenvironment but also leads to adverse effects on rice yield. Due to its unique properties, biochar can regulate soil nutrient distribution and significantly affect soil microbial community structure/functions. To further understand the effects of different levels of biochar on soil nutrient indicators, soil microorganisms and crop growth under the nitrogen-reduction condition, our experiment with four groups was set up as followed: 0%, 2.5% and 5% biochar application rates with 99 kg/hm2 nitrogen fertilizer and one control group (the actual fertilizer standard used in the field:110 kg/hm2) without no exogenous biochar supplement. The rice yield and soil nutrient indexes were observed, and the differences between groups were analyzed based on multiple comparisons. 16S ribosomal RNA and ITS sequencing were used to analyze the community structure of soil bacteria and fungi. Redundancy analysis was performed to obtain the correlation relationships between microbial community marker species, soil nutrient indexes, and rice yield. Path analysis was used to determine the mechanism by which soil nutrient indexes affect rice yield. The results showed that a higher application rate of biochar led to a significant increased trend in the soil pH, organic matter and total nitrogen content. In addition, a high concentration of biochar under nitrogen-reduction condition decreased the soil bacterial diversity but elevated the fungal diversity. Different concentrations of biochar resulted in these changes in the relative abundance of soil bacteria/fungi but did not alter the dominant species taxa. Taken together, appropriate usage for biochar under the nitrogen-reduction background could induce alteration in soil nutrient indicators, microbial communities and crop yields. These results provide a theoretical basis for exploring scientific, green and efficient fertilization strategies in the rice cultivation industry. Notably, the interaction relationship between rhizosphere microorganisms in rice and soil microbial taxa are not yet clear, so further research on its detailed effects on rice production is needed. In addition, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for the physiological functions of the soil microbes could only predict the potential metabolic pathways. Therefore, the next-generation metagenome techonology might be performed to explore detailed metabolic differences and accurate taxa alteration at the "species" level.
Collapse
Affiliation(s)
- Yan Jiao
- School of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Yutao Li
- School of Life Science, Northeast Normal University, Changchun, 130117, China
| | - Wanyu Dou
- School of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Zhang
- School of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Hui Liu
- School of Engineering, Northeast Agricultural University, Harbin, 150030, China.
- School of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Orababa OQ, Adesida SA, Peters RF, AbdulGanniyu Z, Olakojo O, Abioye A. Showing the limitations of available phenotypic assays to detect Burkholderia pseudomallei from clinical specimens in Nigeria. Access Microbiol 2023; 5:000604.v5. [PMID: 37970086 PMCID: PMC10634492 DOI: 10.1099/acmi.0.000604.v5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
The genus Burkholderia comprises Gram-negative bacteria that are metabolically complex and versatile, often thriving in hostile settings. Burkholderia pseudomallei , the causative agent of melioidosis, is a prominent member of the genus and a clinical pathogen in tropical and sub-tropical regions. This pathogen is well known for its multidrug resistance and possible bioweapon potential. There is currently no report of the pathogen from clinical specimens in Nigeria, which might be due to misdiagnosis with phenotypic assays. This study aims to explore the accuracy of the use of phenotypic assays to diagnose B. pseudomallei in Nigeria. Two hundred and seventeen clinical samples and 28 Gram-negative clinical isolates were collected and analysed using Ashdown's selective agar and monoclonal antibody-based latex agglutination. Species-level identification was achieved using the analytical profile index (API) 20NE system. The susceptibility of the isolates to nine different antimicrobial agents was determined using the disc diffusion method. A total of seventy-four culture-positive isolates were obtained using Ashdown's selective agar. Twenty-two of these isolates were believed to be B. pseudomallei through the monoclonal antibody-based latex agglutination test and the API 20NE system subsequently identified 14 isolates as Burkholderia . The predominant Burkholderia species was B. cepacia with an isolation rate of 30.8 % (8/26). No isolate was distinctively identified as B. pseudomallei but five isolates were strongly suspected to be B. pseudomallei with similarity indices ranging from 81.9-91.3 %. Other bacterial species with definitive identity include Aeromonas sp., Sphingomonas sp. and Pseudomonas aeruginosa . The antibiotic susceptibility results revealed an overall resistance to amoxicillin-clavullanic acid of 71.4 %, to cefepime of 33.3 %, to trimethoprim-sulfamethoxazole of 38.1 %, to piperacillin-tazobactam of 33.3 %, to imipenem of 66.7 %, to doxycycline of 57.1% and to ceftazidime of 66.7 %. The highest intermediate resistance was observed for cefepime and piperacillin-tazobactam with a value of 66.7 % each, while there was no intermediate resistance for gentamicin, colistin and imipenem. Our findings, therefore, show that phenotypic assays alone are not sufficient in the diagnosis of melioidosis. Additionally, they provide robust support for present and future decisions to expand diagnostic capability for melioidosis beyond phenotypic assays in low-resource settings.
Collapse
Affiliation(s)
- Oluwatosin Qawiyy Orababa
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Nigeria
- Present address: School of Life Sciences, Gibbet Hill campus, University of Warwick, Coventry, UK
| | - Solayide A. Adesida
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Nigeria
| | - Rebecca F. Peters
- Department of Medical Microbiology and Parasitology, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| | - Zainab AbdulGanniyu
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Nigeria
| | - Olawale Olakojo
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Nigeria
| | - Adefunke Abioye
- Lagos State Biobank, Mainland Hospital, Yaba, Lagos, Nigeria
| |
Collapse
|
5
|
Wood PL, Erol E. Construction of a Bacterial Lipidomics Analytical Platform: Pilot Validation with Bovine Paratuberculosis Serum. Metabolites 2023; 13:809. [PMID: 37512516 PMCID: PMC10383236 DOI: 10.3390/metabo13070809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Lipidomics analyses of bacteria offer the potential to detect and monitor infections in a host since many bacterial lipids are not present in mammals. To evaluate this omics approach, we first built a database of bacterial lipids for representative Gram-positive and Gram-negative bacteria. Our lipidomics analysis of the reference bacteria involved high-resolution mass spectrometry and electrospray ionization with less than a 1.0 ppm mass error. The lipidomics profiles of bacterial cultures clearly distinguished between Gram-positive and Gram-negative bacteria. In the case of bovine paratuberculosis (PTB) serum, we monitored two unique bacterial lipids that we also monitored in Mycobacterium avian subspecies PTB. These were PDIM-B C82, a phthiodiolone dimycocerosate, and the trehalose monomycolate hTMM 28:1, constituents of the bacterial cell envelope in mycolic-containing bacteria. The next step will be to determine if lipidomics can detect subclinical PTB infections which can last 2-to-4 years in bovine PTB. Our data further suggest that it will be worthwhile to continue building our bacterial lipidomics database and investigate the further utility of this approach in other infections of veterinary and human clinical interest.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA
| | - Erdal Erol
- Department of Veterinary Science, Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
6
|
Gonzales M, Plener L, Armengaud J, Armstrong N, Chabrière É, Daudé D. Lactonase-mediated inhibition of quorum sensing largely alters phenotypes, proteome, and antimicrobial activities in Burkholderia thailandensis E264. Front Cell Infect Microbiol 2023; 13:1190859. [PMID: 37333853 PMCID: PMC10272358 DOI: 10.3389/fcimb.2023.1190859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Burkholderia thailandensis is a study model for Burkholderia pseudomallei, a highly virulent pathogen, known to be the causative agent of melioidosis and a potential bioterrorism agent. These two bacteria use an (acyl-homoserine lactone) AHL-mediated quorum sensing (QS) system to regulate different behaviors including biofilm formation, secondary metabolite productions, and motility. Methods Using an enzyme-based quorum quenching (QQ) strategy, with the lactonase SsoPox having the best activity on B. thailandensis AHLs, we evaluated the importance of QS in B. thailandensis by combining proteomic and phenotypic analyses. Results We demonstrated that QS disruption largely affects overall bacterial behavior including motility, proteolytic activity, and antimicrobial molecule production. We further showed that QQ treatment drastically decreases B. thailandensis bactericidal activity against two bacteria (Chromobacterium violaceum and Staphylococcus aureus), while a spectacular increase in antifungal activity was observed against fungi and yeast (Aspergillus niger, Fusarium graminearum and Saccharomyces cerevisiae). Discussion This study provides evidence that QS is of prime interest when it comes to understanding the virulence of Burkholderia species and developing alternative treatments.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Gene&GreenTK, Marseille, France
| | | | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | |
Collapse
|
7
|
The Global Regulator MftR Controls Virulence and Siderophore Production in Burkholderia thailandensis. J Bacteriol 2022; 204:e0023722. [PMID: 36286517 PMCID: PMC9664960 DOI: 10.1128/jb.00237-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens face iron limitation in a host environment. To overcome this challenge, they produce siderophores, small iron-chelating molecules.
Collapse
|
8
|
Burkholderia pseudomallei JW270 Is Lethal in the Madagascar Hissing Cockroach Infection Model and Can Be Utilized at Biosafety Level 2 to Identify Putative Virulence Factors. Infect Immun 2022; 90:e0015922. [PMID: 35862734 PMCID: PMC9387215 DOI: 10.1128/iai.00159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is classified by the CDC as a tier 1 select agent, and work involving it must be performed in a biosafety level 3 (BSL-3) laboratory. Three BSL-2 surrogate strains derived from B. pseudomallei 1026b, a virulent clinical isolate, have been removed from the CDC select agent list. These strains, Bp82, B0011, and JW270, are highly attenuated in rodent models of melioidosis and cannot be utilized to identify virulence determinants because of their high 50% lethal dose (LD50). We previously demonstrated that the Madagascar hissing cockroach (MHC) is a tractable surrogate host to study the innate immune response against Burkholderia. In this study, we found that JW270 maintains its virulence in MHCs. This surprising result indicates that it may be possible to identify potential virulence genes in JW270 by using MHCs at BSL-2. We tested this hypothesis by constructing JW270 mutations in genes that are required (hcp1) or dispensable (hcp2) for B. pseudomallei virulence in rodents. JW270 Δhcp1 was avirulent in MHCs and JW270 Δhcp2 was virulent, suggesting that MHCs can be used at BSL-2 for the discovery of important virulence factors. JW270 ΔBPSS2185, a strain harboring a mutation in a type IV pilin locus (TFP8) required for full virulence in BALB/c mice, was also found to be attenuated in MHCs. Finally, we demonstrate that the hmqA-G locus, which encodes the production of a family of secondary metabolites called 4-hydroxy-3-methyl-2-alkylquinolines, is important for JW270 virulence in MHCs and may represent a novel virulence determinant.
Collapse
|
9
|
Trottmann F, Ishida K, Ishida-Ito M, Kries H, Groll M, Hertweck C. Pathogenic bacteria remodel central metabolic enzyme to build a cyclopropanol warhead. Nat Chem 2022; 14:884-890. [PMID: 35906404 PMCID: PMC9359912 DOI: 10.1038/s41557-022-01005-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
Bacteria of the Burkholderia pseudomallei (BP) group pose a global health threat, causing the infectious diseases melioidosis, a common cause of pneumonia and sepsis, and glanders, a contagious zoonosis. A trait of BP bacteria is a conserved gene cluster coding for the biosynthesis of polyketides (malleicyprols) with a reactive cyclopropanol unit that is critical for virulence. Enzymes building this warhead represent ideal targets for antivirulence strategies but the biochemical basis of cyclopropanol formation is unknown. Here we describe the formation of the malleicyprol warhead. We show that BurG, an unusual NAD+-dependent member of the ketol-acid reductoisomerase family, constructs the strained cyclopropanol ring. Biochemical assays and a suite of eight crystal structures of native and mutated BurG with bound analogues and inhibitors provide snapshots of each step of the complex reaction mechanism, involving a concealed oxidoreduction and a C-S bond cleavage. Our findings illustrate a remarkable case of neofunctionalisation, where a biocatalyst from central metabolism has been evolutionarily repurposed for warhead production in pathogens.
Collapse
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Mie Ishida-Ito
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Michael Groll
- Center for Protein Assemblies, Chemistry Department, Technical University Munich, Garching, Germany.
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
10
|
Aiosa N, Sinha A, Jaiyesimi OA, da Silva RR, Branda SS, Garg N. Metabolomics Analysis of Bacterial Pathogen Burkholderia thailandensis and Mammalian Host Cells in Co-culture. ACS Infect Dis 2022; 8:1646-1662. [PMID: 35767828 DOI: 10.1021/acsinfecdis.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Tier 1 HHS/USDA Select Agent Burkholderia pseudomallei is a bacterial pathogen that is highly virulent when introduced into the respiratory tract and intrinsically resistant to many antibiotics. Transcriptomic- and proteomic-based methodologies have been used to investigate mechanisms of virulence employed by B. pseudomallei and Burkholderia thailandensis, a convenient surrogate; however, analysis of the pathogen and host metabolomes during infection is lacking. Changes in the metabolites produced can be a result of altered gene expression and/or post-transcriptional processes. Thus, metabolomics complements transcriptomics and proteomics by providing a chemical readout of a biological phenotype, which serves as a snapshot of an organism's physiological state. However, the poor signal from bacterial metabolites in the context of infection poses a challenge in their detection and robust annotation. In this study, we coupled mammalian cell culture-based metabolomics with feature-based molecular networking of mono- and co-cultures to annotate the pathogen's secondary metabolome during infection of mammalian cells. These methods enabled us to identify several key secondary metabolites produced by B. thailandensis during infection of airway epithelial and macrophage cell lines. Additionally, the use of in silico approaches provided insights into shifts in host biochemical pathways relevant to defense against infection. Using chemical class enrichment analysis, for example, we identified changes in a number of host-derived compounds including immune lipids such as prostaglandins, which were detected exclusively upon pathogen challenge. Taken together, our findings indicate that co-culture of B. thailandensis with mammalian cells alters the metabolome of both pathogen and host and provides a new dimension of information for in-depth analysis of the host-pathogen interactions underlying Burkholderia infection.
Collapse
Affiliation(s)
- Nicole Aiosa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Anupama Sinha
- Biotechnology & Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Olakunle A Jaiyesimi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Ricardo R da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café─Vila Monte Alegre, 14040-903 Ribeirão Preto-SP, Brazil
| | - Steven S Branda
- Systems Biology, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Borlee GI, Mangalea MR, Martin KH, Plumley BA, Golon SJ, Borlee BR. Disruption of c-di-GMP Signaling Networks Unlocks Cryptic Expression of Secondary Metabolites during Biofilm Growth in Burkholderia pseudomallei. Appl Environ Microbiol 2022; 88:e0243121. [PMID: 35357191 PMCID: PMC9040570 DOI: 10.1128/aem.02431-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
The regulation and production of secondary metabolites during biofilm growth of Burkholderia spp. is not well understood. To learn more about the crucial role and regulatory control of cryptic molecules produced during biofilm growth, we disrupted c-di-GMP signaling in Burkholderia pseudomallei, a soilborne bacterial saprophyte and the etiologic agent of melioidosis. Our approach to these studies combined transcriptional profiling with genetic deletions that targeted key c-di-GMP regulatory components to characterize responses to changes in temperature. Mutational analyses and conditional expression studies of c-di-GMP genes demonstrates their contribution to phenotypes such as biofilm formation, colony morphology, motility, and expression of secondary metabolite biosynthesis when grown as a biofilm at different temperatures. RNA-seq analysis was performed at various temperatures in a ΔII2523 mutant background that is responsive to temperature alterations resulting in hypobiofilm- and hyperbiofilm-forming phenotypes. Differential regulation of genes was observed for polysaccharide biosynthesis, secretion systems, and nonribosomal peptide and polyketide synthase (NRPS/PKS) clusters in response to temperature changes. Deletion mutations of biosynthetic gene clusters (BGCs) 2, 11, 14 (syrbactin), and 15 (malleipeptin) in parental and ΔII2523 backgrounds also reveal the contribution of these BGCs to biofilm formation and colony morphology in addition to inhibition of Bacillus subtilis and Rhizoctonia solani. Our findings suggest that II2523 impacts the regulation of genes that contribute to biofilm formation and competition. Characterization of cryptic BGCs under different environmental conditions will allow for a better understanding of the role of secondary metabolites in the context of biofilm formation and microbe-microbe interactions. IMPORTANCE Burkholderia pseudomallei is a saprophytic bacterium residing in the environment that switches to a pathogenic lifestyle during infection of a wide range of hosts. The environmental cues that serve as the stimulus to trigger this change are largely unknown. However, it is well established that the cellular level of c-di-GMP, a secondary signal messenger, controls the switch from growth as planktonic cells to growth as a biofilm. Disrupting the signaling mediated by c-di-GMP allows for a better understanding of the regulation and the contribution of the surface associated and secreted molecules that contribute to the various lifestyles of this organism. The genome of B. pseudomallei also encodes cryptic biosynthetic gene clusters predicted to encode small molecules that potentially contribute to growth as a biofilm, adaptation, and interactions with other organisms. A better understanding of the regulation of these molecules is crucial to understanding how this versatile pathogen alters its lifestyle.
Collapse
Affiliation(s)
- Grace I. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mihnea R. Mangalea
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kevin H. Martin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Brooke A. Plumley
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Samuel J. Golon
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Bradley R. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
12
|
Heo AY, Koo YM, Choi HW. Biological Control Activity of Plant Growth Promoting Rhizobacteria Burkholderia contaminans AY001 against Tomato Fusarium Wilt and Bacterial Speck Diseases. BIOLOGY 2022; 11:biology11040619. [PMID: 35453817 PMCID: PMC9028202 DOI: 10.3390/biology11040619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Burkholderia contaminans belongs to B. cepacia complex (Bcc), those of which are found in various environmental conditions. In this study, a novel strain AY001 of B. contaminans (AY001) was identified from the rhizosphere soil sample. AY001 showed (i) various plant growth-promoting rhizobacteria (PGPR)-related traits, (ii) antagonistic activity against different plant pathogenic fungi, (iii) suppressive activity against tomato Fusarium wilt disease, (iv) induced systemic acquired resistance (ISR)-triggering activity, and (v) production of various antimicrobial and plant immune-inducing secondary metabolites. These results suggest that AY001 is, indeed, a successful PGPR, and it can be practically used in tomato cultivation to alleviate biotic and abiotic stresses. However, further safety studies on the use of AY001 will be needed to ensure its safe use in the Agricultural system. Abstract Plant growth promoting rhizobacteria (PGPR) is not only enhancing plant growth, but also inducing resistance against a broad range of pathogens, thus providing effective strategies to substitute chemical products. In this study, Burkholderia contaminans AY001 (AY001) is isolated based on its broad-spectrum antifungal activity. AY001 not only inhibited fungal pathogen growth in dual culture and culture filtrate assays, but also showed various PGPR traits, such as nitrogen fixation, phosphate solubilization, extracellular protease production, zinc solubilization and indole-3-acetic acid (IAA) biosynthesis activities. Indeed, AY001 treatment significantly enhanced growth of tomato plants and enhanced resistance against two distinct pathogens, F. oxysporum f.sp. lycopersici and Pseudomonas syringae pv. tomato. Real-time qPCR analyses revealed that AY001 treatment induced jasmonic acid/ethylene-dependent defense-related gene expression, suggesting its Induced Systemic Resistance (ISR)-eliciting activity. Gas chromatography–mass spectrometry (GC-MS) analysis of culture filtrate of AY001 revealed production of antimicrobial compounds, including di(2-ethylhexyl) phthalate and pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl). Taken together, our newly isolated AY001 showed promising PGPR and ISR activities in tomato plants, suggesting its potential use as a biofertilizer and biocontrol agent.
Collapse
Affiliation(s)
- A Yeong Heo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Division of Forest Insect Pests & Diseases, National Institute of Forest Science, Seoul 02455, Korea
| | - Young Mo Koo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
| | - Hyong Woo Choi
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Correspondence: ; Tel.: +82-54-820-5509
| |
Collapse
|
13
|
Horwitz SM, Blue TC, Ambarian JA, Hoshino S, Seyedsayamdost MR, Davis KM. Structural insights into inhibition of the drug target dihydroorotate dehydrogenase by bacterial hydroxyalkylquinolines. RSC Chem Biol 2022; 3:420-425. [PMID: 35441142 PMCID: PMC8984913 DOI: 10.1039/d1cb00255d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Hydroxyalkylquinolines (HAQs) are ubiquitious natural products but their interactions with associated protein targets remain elusive. We report X-ray crystal structures of two HAQs in complex with dihydroorotate dehydrogenase (DHODH). Our results reveal the structural basis of DHODH inhibition by HAQs and open the door to downstream structure-activity relationship studies.
Collapse
Affiliation(s)
| | - Tamra C Blue
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | | | - Shotaro Hoshino
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | | | | |
Collapse
|
14
|
Mou S, Jenkins CC, Okaro U, Dhummakupt ES, Mach PM, DeShazer D. The Burkholderia pseudomallei hmqA-G Locus Mediates Competitive Fitness against Environmental Gram-Positive Bacteria. Microbiol Spectr 2021; 9:e0010221. [PMID: 34160272 PMCID: PMC8552763 DOI: 10.1128/spectrum.00102-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
Burkholderia pseudomallei is an opportunistic pathogen that is responsible for the disease melioidosis in humans and animals. The microbe is a tier 1 select agent because it is highly infectious by the aerosol route, it is inherently resistant to multiple antibiotics, and no licensed vaccine currently exists. Naturally acquired infections result from contact with contaminated soil or water sources in regions of endemicity. There have been few reports investigating the molecular mechanism(s) utilized by B. pseudomallei to survive and persist in ecological niches harboring microbial competitors. Here, we report the isolation of Gram-positive bacteria from multiple environmental sources and show that ∼45% of these isolates are inhibited by B. pseudomallei in head-to-head competition assays. Two competition-deficient B. pseudomallei transposon mutants were identified that contained insertion mutations in the hmqA-G operon. This large biosynthetic gene cluster encodes the enzymes that produce a family of secondary metabolites called 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs). Liquid chromatography and mass spectrometry conducted on filter-sterilized culture supernatants revealed five HMAQs and N-oxide derivatives that were produced by the parental strain but were absent in an isogenic hmqD deletion mutant. The results demonstrate that B. pseudomallei inhibits the growth of environmental Gram-positive bacteria in a contact-independent manner via the production of HMAQs by the hmqA-G operon. IMPORTANCE Burkholderia pseudomallei naturally resides in water, soil, and the rhizosphere and its success as an opportunistic pathogen is dependent on the ability to persist in these harsh habitats long enough to come into contact with a susceptible host. In addition to adapting to limiting nutrients and diverse chemical and physical challenges, B. pseudomallei also has to interact with a variety of microbial competitors. Our research shows that one of the ways in which B. pseudomallei competes with Gram-positive environmental bacteria is by exporting a diverse array of closely related antimicrobial secondary metabolites.
Collapse
Affiliation(s)
- Sherry Mou
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Conor C. Jenkins
- Excet Inc., Springfield, Virginia, USA
- DEVCOM Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | - Udoka Okaro
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | | | - Phillip M. Mach
- DEVCOM Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | - David DeShazer
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
15
|
Bach E, Passaglia LMP, Jiao J, Gross H. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 2021; 48:121-160. [PMID: 34346791 DOI: 10.1080/1040841x.2021.1946009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Junjing Jiao
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Nagamalla S, Johnson DK, Sathyamoorthi S. Sulfamate-tethered aza-Wacker approach towards analogs of Bactobolin A. Med Chem Res 2021; 30:1348-1357. [PMID: 37860778 PMCID: PMC10586517 DOI: 10.1007/s00044-021-02724-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Here, we describe an approach towards analogs of the potent antibiotic Bactobolin A. Sulfamate-tethered aza-Wacker cyclization reactions furnish key synthons, which we envision can be elaborated into analogs of Bactobolin A. Docking studies show that the C4 epimer of Bactobolin A and the C4/C6 diastereomer interact with different residues of the 23S rRNA (bacterial ribosome 50S subunit) than the natural product, suggesting that these molecules could be valuable tool compounds for fundamental studies of the bacterial translational machinery.
Collapse
Affiliation(s)
- Someshwar Nagamalla
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - David K. Johnson
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
17
|
Presence of the Hmq System and Production of 4-Hydroxy-3-Methyl-2-Alkylquinolines Are Heterogeneously Distributed between Burkholderia cepacia Complex Species and More Prevalent among Environmental than Clinical Isolates. Microbiol Spectr 2021; 9:e0012721. [PMID: 34132614 PMCID: PMC8552760 DOI: 10.1128/spectrum.00127-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) comprises several species of closely related, versatile bacteria. Some Bcc strains produce 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs), analogous to the 4-hydroxy-2-alkylquinolines of Pseudomonas aeruginosa. Using in silico analyses, we previously estimated that the hmqABCDEFG operon, which encodes enzymes involved in the biosynthesis of HMAQs, is carried by about one-third of Bcc strains, with considerable inter- and intraspecies variability. In the present study, we investigated by PCR, using consensus primers, the distribution of hmqABCDEFG in a collection of 312 Bcc strains (222 of clinical and 90 of environmental origins) belonging to 18 Bcc species. We confirmed that this operon is not distributed evenly among Bcc species. Among the 30% of strains bearing the hmqABCDEFG operon, we found that 92% of environmental isolates and 82% of clinically isolated Bcc strains produce levels of HMAQs detectable by liquid chromatography-mass spectrometry in at least one of the tested culture conditions. Among the hmqABCDEFG-positive but HMAQ-negative strains, none expressed the hmqA gene under the specified culture conditions. Interestingly, the hmqABCDEFG operon is more prevalent among plant root environment species (e.g., Burkholderia ambifaria and Burkholderia cepacia) and absent in species commonly found in chronically colonized individuals with cystic fibrosis (e.g., Burkholderia cenocepacia and Burkholderia multivorans), suggesting a role for the Hmq system in niche adaptation. We investigated the impact of the Hmq system on plant growth promotion and found that Pisum sativum root development by B. ambifaria required a functional HMAQ system. IMPORTANCE Environmental bacteria belonging to the various closely related species forming the Burkholderia cepacia complex (Bcc) can infect plants and animals, including humans. Their pathogenicity is regulated by intercellular communication, or quorum sensing, allowing them to collaborate instead of acting individually. Bcc organisms generally exploit interacting quorum sensing systems based on N-acyl-homoserine lactones as signaling molecules. Several Bcc strains also carry an hmqABCDEFG operon responsible for the biosynthesis of 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs), molecules analogous to the Pseudomonas quinolone signal (PQS) system of P. aeruginosa. Our finding that the prevalences of the Hmq system and HMAQ production are very different between various Bcc species suggests a key role in niche adaptation or pathogenicity. This is supported by a significant reduction in plant growth promotion in the absence of HMAQ production for a beneficial Bcc strain.
Collapse
|
18
|
Baltz RH, Kao K, Link AJ, Marsili E, Reguera G, Shao Z, Vandamme EJ, Jeffries TW, Gonzalez R. Introduction to Special Issue on "Frontiers in Industrial Microbiology and Biotechnology 2020". J Ind Microbiol Biotechnol 2020; 47:621-622. [PMID: 33123834 DOI: 10.1007/s10295-020-02322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Katy Kao
- Department of Chemical and Materials Engineering, San Jose State University, San Jose, CA, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Enrico Marsili
- Department of Chemical and Materials Engineering, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | | | | | - Ramon Gonzalez
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, USA.
| |
Collapse
|