1
|
Xu L, Zhang X, Xiao S, Li X, Jiang H, Wang Z, Sun B, Zhao Y. Panaxadiol as a major metabolite of AD-1 can significantly inhibit the proliferation and migration of breast cancer cells: In vitro and in vivo study. Bioorg Chem 2021; 116:105392. [PMID: 34619469 DOI: 10.1016/j.bioorg.2021.105392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Previous studies have shown that 20 (R)-25-methoxyl-dammarane-3β, 12β, 20 triol (AD-1) can inhibit various cancer cell lines. This study aimed to explore the effect and mechanism of AD-1 metabolite M2 (Panaxadiol; PD) on breast cancer cells of nude mice. Five AD-1 metabolites were isolated and identified using various chromatographic techniques. PD was the main component. In vitro results showed that PD could inhibit the proliferation and migration of MDA-MB-231 cells by inducing G1-phase arrest. In addition, PD down-regulated the expression of Cyclin D1, cdk2, cdk4, cdk6, P-p38, and MMP9, and up-regulated p21 and p27. In vivo results showed that PD could effectively reduce the volume, weight, and migration of breast cancer Transcriptomics analyzed 491 differentially expressed genes by GO and KEGG enrichment. RT-PCR verification confirmed that the significant down-regulation of MMP9 was consistent with transcriptomics results. In further research showed that PD regulated the protein expression of P-p38 and MMP9 in MAPK pathway. In summary, in vivo and in vitro studies showed that PD significantly inhibit the occurrence and development of breast cancer, possibly through the MAPK pathway.
Collapse
Affiliation(s)
- Lei Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shengnan Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaofei Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Jiang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziyi Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Liu J, Nile SH, Xu G, Wang Y, Kai G. Systematic exploration of Astragalus membranaceus and Panax ginseng as immune regulators: Insights from the comparative biological and computational analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153077. [PMID: 31477352 DOI: 10.1016/j.phymed.2019.153077] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/18/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Immune system plays a decisive role for defending various pathogenic microorganisms. Astragalus membranaceus (AM) and Panax ginseng (PG) are two tonic herbs used in traditional Chinese medicine (TCM) as immune booster and help to control diseases with their healthy synergistic effect on immune system. PURPOSE This study was aimed to investigate the promote effect and molecular mechanisms of AM and PG on immune system as booster and to control the target diseases using animal and computational systematic study. METHODS Computational models including absorption, distribution, metabolism, and elimination (ADME) with weighted ensemble similarity (WES) algorithm-based models and ClueGo network analysis were used to find the potential bioactive compounds targets and pathways, which were responsible for immune regulation. Viscera index analysis, proliferation activity of splenic lymphocytes and cytotoxic activity of NK cells assays were performed to validate the effect of AM and PG on immune system of long-term administrated mice. Metabonomic study of mice plasma was conducted to investigate effect of AM and PG on the endogenous metabolic perturbations, together with correlation analysis. RESULTS AM and PG simultaneously showed the ability to strengthen the immune system function including enhancement of spleen and thymus index, proliferation of splenic lymphocytes and cytotoxic activity of NK cells. Besides, the different molecular mechanisms of AM and PG on immune regulation were also investigated by analyzing the potential bioactive compounds, enzymes actions and pathways. Quercetin, formononetin and kaempferol were the main immune-related compounds in AM, while ginsenoside Ra1, ginsenoside Rh1 and kaempferol in PG. About 10 target proteins were found close to immune regulation, including acetylcholinesterase (ACHE, common target in AM and PG), sphingosine kinase 1(SPHK1), cytidine deaminase (CDA), and Choline O-acetyltransferase (CHAT). Glycerophospholipid metabolism was regulated in both AM and PG groups. Pyrimidine metabolism and sphingolipid metabolism were considered as the special pathway in AM groups. Energy metabolism and glycerolipid metabolism were the special pathways in PG groups. CONCLUSION A novel comprehensive molecular mechanism analysis method was established and applied to clarify the scientific connotation of AM and PG as immune regulation, with similar herbal tonic effect provided in clinical practice of TCM, which can provide a new line of research for drug development (immune booster) using AM and PG.
Collapse
Affiliation(s)
- Junqiu Liu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Guoliang Xu
- Research Center for Differentiation and Development of Basic Theory of TCM, University of Jiangxi TCM, Nanchang, PR China
| | - Yuesheng Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
3
|
Wang M, Li H, Liu W, Cao H, Hu X, Gao X, Xu F, Li Z, Hua H, Li D. Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: Biological activity and structural modification. Eur J Med Chem 2020; 189:112087. [PMID: 32007667 DOI: 10.1016/j.ejmech.2020.112087] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Based on the definite therapeutic benefits, such as neuroprotective, cardioprotective, anticancer, anti-diabetic and so on, the Panax genus which contains many valuable plants, including ginseng (Panax ginseng C.A. Meyer), notoginseng (Panax notoginseng) and American ginseng (Panax quinquefolius L.), attracts research focus. Actually, the biological and pharmacological effects of the Panax genus are mainly attributed to the abundant ginsenosides. However, the low membrane permeability and the gastrointestinal tract influence seriously limit the absorption and bioavailability of ginsenosides. The acid or base hydrolysates of ginsenosides, 20 (R,S)-panaxadiol and 20 (R,S)-protopanaxadiol showed improved bioavailability and diverse pharmacological activities. Moreover, relative stable skeletons and active hydroxyl group at C-3 position and other reactive sites are suitable for structural modification to improve biological activities. In this review, the pharmacological activities of panaxadiol, protopanaxadiol and their structurally modified derivatives are comprehensively summarized.
Collapse
Affiliation(s)
- Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
4
|
Li W, Polachi N, Wang X, Chu Y, Wang Y, Tian M, Li D, Zhou D, Zhou S, Ju A, Li Y, Zhang Y, Chen M, Huang L, Liu C. A quality marker study on salvianolic acids for injection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 44:138-147. [PMID: 29544864 DOI: 10.1016/j.phymed.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/22/2017] [Accepted: 02/05/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND The quality of Chinese medicine (CM) has being an active and challenging research area for CM. Prof. Chang-Xiao Liu et al first proposed the concept of quality marker (Q-Marker) for the quality evaluation and control on CM. This article describe the exploratory studies of Q-Marker in salvianolic acids for injection (SAI) based on this new concept. PURPOSE This study was designed to screen Q-Marker of SAI and establish its quality control method based on the concept of CM Q-Marker. METHODS Based on the concept of CM Q-Marker, the SAI was investigated for the identification of chemical components and their sources. The pharmacological effects on cerebral ischemia and reperfusion induced injury in rats were also investigated. Furthermore, the target cell extracts and pharmacokinetic studies were conducted to screen Q-Markers. Finally, the fingerprints and determination based on Q-Markers were established to assess the quality of SAI more effectively. RESULTS Overall, 20 constituents in SAI were identified. It was found that salvianolic acid B (SA-B), rosmarinic acid (RA), lithospermic acid (LA), salvianolic acid D (SA-D) and salvianolic acid Y (SA-Y) are major chemical components of SAI. Based on chemical components identifications, analysis of their sources, target cell extracts and pharmacokinetic studies, four phenolic acids, namely SA-B, RA, LA and SA-D, were screened and determined as effective Q-Markers of SAI. CONCLUSION This study demonstrated that the described method is a powerful approach for detecting Q-Markers, which can be used as control index for the quality assessment of CM.
Collapse
Affiliation(s)
- Wei Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing - 100700, China; Center for Post-doctoral Research, China Academy of Chinese Medical Sciences, Beijing - 100700, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin - 300410, China; Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin - 300410, China.
| | - Navaneethakrishnan Polachi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin - 300193, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin - 300410, China; Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin - 300410, China
| | - Xiangyang Wang
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin - 300410, China; Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin - 300410, China
| | - Yang Chu
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin - 300410, China; Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin - 300410, China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin - 300193, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin - 300410, China; Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin - 300410, China
| | - Meng Tian
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin - 300193, China; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin - 300410, China; Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin - 300410, China
| | - Dekun Li
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin - 300410, China; Tianjin Tasly Pride Pharmaceutical Co., Ltd., Tianjin - 300410, China
| | - Dazheng Zhou
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin - 300410, China; Tianjin Tasly Pride Pharmaceutical Co., Ltd., Tianjin - 300410, China
| | - Shuiping Zhou
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin - 300410, China; Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin - 300410, China
| | - Aichun Ju
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Pharmaceutical Group Co., Ltd., Tianjin - 300410, China; Tianjin Tasly Pride Pharmaceutical Co., Ltd., Tianjin - 300410, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin - 300193, China
| | - Yanjun Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin - 300193, China
| | - Min Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing - 100700, China; Center for Post-doctoral Research, China Academy of Chinese Medical Sciences, Beijing - 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing - 100700, China; Center for Post-doctoral Research, China Academy of Chinese Medical Sciences, Beijing - 100700, China.
| | - Changxiao Liu
- The State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin - 300193, China.
| |
Collapse
|
5
|
Geng C, Wang CH, Hu H, Gao XP, Gong AH, Lin YW, Fan XS, Li H, Yin JY. Development and validation of an UPLC-Q/TOF-MS assay for the quantitation of neopanaxadiol in beagle dog plasma: Application to a pharmacokinetic study. Biomed Chromatogr 2016; 31. [PMID: 27790730 DOI: 10.1002/bmc.3878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 01/30/2023]
Abstract
Neopanaxadiol (NPD), the main panaxadiol constituent of Panax ginseng C. A. Meyer (Araliaceae), has been regarded as the active component for the treatment of Alzheimer's disease. However, few references are available about pharmacokinetic evaluation for NPD. Accordingly, a rapid and sensitive method for quantitative analysis of NPD in beagle dog plasma based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry was developed and validated. Analytes were extracted from plasma by liquid-liquid extraction and chromatographic separation was achieved on an Agilent Zorbax Stable Bond C18 column. Detection was performed in the positive ion mode using multiple reaction monitoring of the transitions both at m/z 461.4 → 425.4 for NPD and internal standard of panaxadiol. All validation parameters, such as lower limit of quantitation, linearity, specificity, precision, accuracy, extraction recovery, matrix effect and stability, were within acceptable ranges and the method was appropriate for multitude sample determination. After oral intake, NPD was slowly absorbed and eliminated from circulatory blood system and corresponding plasma exposure was low. Application of this quantitative method will yield the first pharmacokinetic profile after oral administration of NPD to beagle dog. The information obtained here will be useful to understand the pharmacological effects of NPD.
Collapse
Affiliation(s)
- Cong Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Chun-Hong Wang
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, People's Republic of China
| | - Hong Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Xiao-Ping Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Ai-Hua Gong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Ying-Wei Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, People's Republic of China
| | - Xiu-Shuang Fan
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, People's Republic of China
| | - Heng Li
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, People's Republic of China
| | - Jian-Yuan Yin
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, People's Republic of China
| |
Collapse
|
6
|
Geng C, Yin J, Yu X, Yang Y, Liu J, Sun D, Chen F, Wei Z, Meng Q, Liu J. Structural identification of neopanaxadiol metabolites in rats by ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:283-294. [PMID: 26411626 DOI: 10.1002/rcm.7107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/01/2014] [Accepted: 11/24/2014] [Indexed: 06/05/2023]
Abstract
RATIONALE Neopanaxadiol (NPD) is one of the major ginsenosides in Panax ginseng C. A. Meyer (Araliaceae) that has been suggested to be a drug candidate against Alzheimer's disease. However, few data are available regarding its metabolism in rats. METHODS In this study, a method of ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/QTOFMS) was developed to identify major metabolites of NPD in the stomach, intestine, urine and feces of rats, with the aim of determining the main metabolic pathways of NPD in rats after oral administration. RESULTS UPLC/QTOFMS revealed two metabolites in the stomach of rats, one metabolite in the intestine and two metabolites in feces. One metabolite, named M2, was isolated and purified from rats feces, which was identified as (20S,22S)-dammar-22,25-epoxy-3β,12β,20-triol based on extensive NMR spectroscopy and mass spectrometry data. The main metabolites of NPD in rats were the products of epoxidation, dehydrogenation and hydroxylation. NPD was predominantly metabolized by 20,22-double-bond epoxidation and rearrangement to yield an expoxidation product (M2). CONCLUSIONS Based on the profiles of the metabolites, possible metabolic pathways of NPD in rats were proposed for the first time. This study provides new and available information on the metabolism of NPD, which is indispensable for further research on metabolic pathways of dammarane ginsengenins in vivo.
Collapse
Affiliation(s)
- Cong Geng
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, P.R. China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medicine University, 467 Zhongshan Road, Dalian, 116023, P.R. China
| | - Jianyuan Yin
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, P.R. China
| | - Xiuhua Yu
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, P.R. China
- Chinese Medicine Research Center, The Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Road, Changchun, 130000, P.R. China
| | - Yuxia Yang
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, P.R. China
| | - Jingyan Liu
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, P.R. China
| | - Dandan Sun
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, P.R. China
| | - Fanbo Chen
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, P.R. China
| | - Zhonglin Wei
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P.R. China
| | - Qin Meng
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, P.R. China
| | - Jihua Liu
- Department of Natural Products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, P.R. China
| |
Collapse
|
7
|
Geng C, Yin JY, Yu XH, Liu JY, Yang YX, Sun DY, Meng Q, Wei ZL, Liu JH. Tissue distribution and excretion study of neopanaxadiol in rats by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2014; 29:333-40. [DOI: 10.1002/bmc.3274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Cong Geng
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - Jian-yuan Yin
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - Xiu-hua Yu
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
- Chinese Medicine Research Center; The Affiliated Hospital To Changchun University of Chinese Medicine; 1478 Gongnong Road Changchun 130021 People's Republic of China
| | - Jing-yan Liu
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - Yu-xia Yang
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - De-ya Sun
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - Qin Meng
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| | - Zhong-lin Wei
- College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 People's Republic of China
| | - Ji-hua Liu
- Department of Natural products Chemistry, College of Pharmacy; Jilin University; 1266 Fujin Road Changchun 130021 People's Republic of China
| |
Collapse
|