1
|
Liu H, Xu Q, Adu-Frimpong M, Chen Y, Li R, Xu F, Cao X, Tong S. In-depth analysis of active compounds targeting tropomyosin-related kinase A via constructed lipid raft @capillary monolith affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1251:124429. [PMID: 39721331 DOI: 10.1016/j.jchromb.2024.124429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
In order to enrich the selection of biological ligands, realize the miniaturization analysis, and broaden the application of monolith materials for active ingredients screening and separating, we sough to construct a lipid raft @capillary monolith microcolumn affinity chromatography model. Single factor experiments and various characterization methods, including scanning electron microscopy (SEM) and thermogravimetric analysis, were employed to investigate the polymerization of the monolith column under different material ratios to determine optimal preparation conditions. Subsequently, the lipid raft from U251 cells was integrated with the monolith materials based on epoxy-based covalent crosslinking principle and characterized through SEM and immunofluorescence methods. Afterwards, the retention of positive drug gefitinib, negative drug gemcitabine and four licorice standards solution on the prepared lipid raft monolith microcolumn was then detected via electrochemical detection. The results exhibited that there was no specific adsorption for any active compounds on the blank monolith materials. Significantly, the lipid raft monolith microcolumn packed with TrkA-target proteins could be successfully validated for positive drug gefitinib with a high affinity sorption efficiency of 51.2%. This work expands the range of the utilization of affinity chromatography carriers and the selection of biological ligands, providing a new idea for the screening of active ingredients.
Collapse
Affiliation(s)
- Hongbei Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Qiumin Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Michael Adu-Frimpong
- School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK 0215-5321, Ghana
| | - Yuchu Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Ran Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Fei Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xia Cao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Shanshan Tong
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Chi H, Tian S, Li X, Chen Y, Xu Q, Wang Q, Shi W, Adu-Frimpong M, Tong S. Construction of lipid raft-coupled agarose gels as bioaffinity chromatography materials and validation with tropomyosin-related kinase A-targeted drugs. J Chromatogr A 2023; 1691:463803. [PMID: 36731332 DOI: 10.1016/j.chroma.2023.463803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
In order to improve the separation process of affinity chromatography that has silica as the main carrier material, we sought to construct Lipid Rafts@CNBr-Sepharose 4B affinity chromatography model. We extracted the lipid rafts from U251 cells with a descaler method and sucrose density gradient centrifugation. Afterwards, it was discovered via immunofluorescence that the lipid rafts contain a large amount of tropomyosin-related kinase A (TrkA) protein. Also, agarose powder in the lyophilised state was pretreated, before the lipid rafts were coupled to the agarose gel in a coupling buffer of alkaline pH. CNBr-Sepharose 4B affinity gel packing was characterised using UV spectrophotometric, immunofluorescence and scanning electron microscopic techniques, wherein and the results showed that the lipid rafts were successfully coupled to the agarose gels. Three compounds were used to verify the specific sorption of Sepharose 4B and CNBr-Sepharose 4B, which showed no specific sorption on the materials. Of note, the prepared Lipid Rafts@CNBr-Sepharose 4B agarose gels packed with TrkA-rich target proteins could be successfully validated for the active drug gefitinib with high affinity sorption efficiency and eluted with good recovery and reproducibility. This study broadens the range of affinity chromatography carrier materials and provides a reference for research in active drug screening.
Collapse
Affiliation(s)
- Hao Chi
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Sheng Tian
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Xiu Li
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Yuchu Chen
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Qiumin Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Qixiao Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Wenwan Shi
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Michael Adu-Frimpong
- School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Shanshan Tong
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212000, China.
| |
Collapse
|
3
|
Screening assays for tyrosine kinase inhibitors:A review. J Pharm Biomed Anal 2022; 223:115166. [DOI: 10.1016/j.jpba.2022.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
|
4
|
Yu Q, Liao M, Sun C, Zhang Q, Deng W, Cao X, Wang Q, Omari-Siaw E, Bi S, Zhang Z, Yu J, Xu X. LBO-EMSC Hydrogel Serves a Dual Function in Spinal Cord Injury Restoration via the PI3K-Akt-mTOR Pathway. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48365-48377. [PMID: 34633177 DOI: 10.1021/acsami.1c12013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is critical to obtain an anti-inflammatory microenvironment when curing spinal cord injury (SCI). On the basis of this, we prepared Lycium barbarum oligosaccharide (LBO)-nasal mucosa-derived mesenchymal stem cells (EMSCs) fibronectin hydrogel for SCI restoration via inflammatory license effect and M2 polarization of microglias. LBO exhibited remarkable M2 polarization potential for microglia. However, EMSCs primed by LBO generated enhanced paracrine effects through the inflammatory license-like process. The observed dual function is likely based on the TNFR2 pathway. In addition, LBO-EMSC hydrogel possesses a synergistic effect on M2 polarization of microglia through the PI3K-Akt-mTOR signaling pathway. The obtained findings provide a simple approach for MSC-based therapies for SCI and shed more light on the role of TNFR2 on bidirectional regulation in tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Xia Cao
- Jiangsu University, 212013 Zhenjiang, China
| | | | | | - Shiqi Bi
- Affiliated Hospital of Jiangsu University, 212001 Zhenjiang, China
| | | | | | - Ximing Xu
- Jiangsu University, 212013 Zhenjiang, China
| |
Collapse
|
5
|
Ren YY, Zhang XR, Li TN, Zeng YJ, Wang J, Huang QW. Galla Chinensis, a Traditional Chinese Medicine: Comprehensive review of botany, traditional uses, chemical composition, pharmacology and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114247. [PMID: 34052353 DOI: 10.1016/j.jep.2021.114247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Galla chinensis (GC), a traditional Chinese medicine (TCM), has a wide range of pharmacological properties which have been widely used for more than 1400 years. Based on shape, GC is divided into two groups: jiaobei and dubei. It is a bitter, sour, cold and astringent substance which is usually used for treating diarrhea, constipation, bleeding, cough, vomiting, sweating, hemorrhoids, and anal and uterine prolapse. It is distributed in Japan, North Korea, and all parts of China. AIM OF STUDY This study was aimed at carrying out a comprehensive overview of the current status of research on Galla chinensis (GC) for better understanding of it characteristics, while providing a clear direction for future studies. It has aroused the interest of researchers, leading to development of medicinal value, expansion of its application, and provision of wider and more effective drug choices. This study was focused on the traditional uses, botany, chemical composition, pharmacology and toxicology of GC. Finally, the study focused on possible future research directions for GC. MATERIALS AND METHODS A comprehensive analysis was done based on academic papers, pharmaceutical monographs, ancient medicinal works, and drug standards of China. This review used Galla and Galla chinensis as keywords for retrieval of information on GC from online databases such as PubMed, Elsevier, CNKI, Web of Science, Google Scholar, SCI hub, and Baidu academic. RESULTS It was found that the chemical constituents of GC included tannins, phenolic acid, amino acids and fatty acid, with polyphenol compounds (especially tannins and gallic acid) as the distinct components. In vitro and in vivo studies revealed that GC exerted numerous biological effects such as anti-caries, antibacterial, antiviral, anticancer, and antioxidant effects. The therapeutic effect of GC was attributed mainly to the biological properties of its bioactive components. CONCLUSIONS GC is an important TCM which has potential benefit in the treatment of a variety of diseases. However, the relationship amongst the structure and biological activity of GC and its components, mechanism of action, toxicity, pharmacokinetics and target organs need to be further studied. Quality control and quality assurance programs for GC need to be further developed. There is need to study the dynamics associated with the accumulation of chemical compounds in GC as well as the original plants and aphid that form GC.
Collapse
Affiliation(s)
- Yuan-Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Xiao-Rui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Ting-Na Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Yi-Jia Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Qin-Wan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|
6
|
Chemical Composition and Attractant Activity of Volatiles from Rhus potaninii to The Spring Aphid Kaburagia rhusicola. Molecules 2020; 25:molecules25153412. [PMID: 32731414 PMCID: PMC7435823 DOI: 10.3390/molecules25153412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/04/2022] Open
Abstract
Rhus potaninii Maxim, a type of sumac, is an economically important tree widely cultivated in mountainous areas of western and central China. A gall, called the bellied gallnut, induced by the aphid, Kaburagia rhusicola Takagi, is important in the food, medical, and chemical industries in China. Volatiles from R. potaninii were found to attract K. rhusicola, but little is known about them. The chemical composition of these volatiles was investigated using GC–MS analysis and Y-tube olfactometer methods. Twenty-five compounds accounting for 55.3% of the volatiles were identified, with the highest proportion of 1-(4-ethylphenyl)ethanone (11.8%), followed by 1-(4-hydroxy-3-methylphenyl)ethanone (11.2%) and p-cymen-7-ol (7.1%). These findings provide a theoretical basis for the preparation of attractants and could eventually lead to increased bellied gallnut yield.
Collapse
|
7
|
Chitosan/gallnut tannins composite fiber with improved tensile, antibacterial and fluorescence properties. Carbohydr Polym 2019; 226:115311. [DOI: 10.1016/j.carbpol.2019.115311] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
|
8
|
Gao J, Yang X, Hu J, Yin W. Identification of Anticancer Compounds in Gallnuts Through PCA-constructed Secondary Metabolite Map. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.515.522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Guo J, Lin H, Wang J, Lin Y, Zhang T, Jiang Z. Recent advances in bio-affinity chromatography for screening bioactive compounds from natural products. J Pharm Biomed Anal 2019; 165:182-197. [DOI: 10.1016/j.jpba.2018.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023]
|
10
|
Gallnuts: A Potential Treasure in Anticancer Drug Discovery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4930371. [PMID: 29785193 PMCID: PMC5896229 DOI: 10.1155/2018/4930371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/17/2018] [Accepted: 02/21/2018] [Indexed: 12/18/2022]
Abstract
Introduction. In the discovery of more potent and selective anticancer drugs, the research continually expands and explores new bioactive metabolites coming from different natural sources. Gallnuts are a group of very special natural products formed through parasitic interaction between plants and insects. Though it has been traditionally used as a source of drugs for the treatment of cancerous diseases in traditional and folk medicinal systems through centuries, the anticancer properties of gallnuts are barely systematically reviewed. Objective. To evidence the traditional uses and phytochemicals and pharmacological mechanisms in anticancer aspects of gallnuts, a literature review was performed. Materials and Methods. The systematic review approach consisted of searching web-based scientific databases including PubMed, Web of Science, and Science Direct. The keywords for searching include gallnut, Galla Chinensis, Rhus chinensis, Rhus potaninii, Rhus punjabensis, nutgall, gall oak, Quercus infectoria, Quercus lusitanica, and galla turcica. Two reviewers extracted papers independently to remove the papers unrelated to the anticancer properties of gallnuts. Patents, abstracts, case reports, and abstracts in symposium and congress were excluded. Results and Conclusion. As a result, 14 articles were eligible to be evaluated. It is primarily evident that gallnuts contain a number of bioactive metabolites, which account for anticancer activities. The phytochemical and pharmacological studies reviewed strongly underpin a fundamental understanding of anticancer properties for gallnuts (Galla Chinensis and Galla Turcica) and support their ongoing clinical uses in China. The further bioactive compounds screening and evaluation, pharmacological investigation, and clinical trials are expected to progress gallnut-based development to finally transform the wild medicinal gallnuts to the valuable authorized anticancer drugs.
Collapse
|
11
|
Preparation of Galla Chinensis Oral Solution as well as Its Stability, Safety, and Antidiarrheal Activity Evaluation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1851459. [PMID: 28811824 PMCID: PMC5547719 DOI: 10.1155/2017/1851459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND OF THE STUDY As a widely used traditional medicine, Galla Chinensis is rich in tannins. However, there are few detailed studies about pharmaceutical preparations of Galla Chinensis tannin extract (GTE). In the present experiments, for better application and to investigate the possibility that Galla Chinensis tannin extract can be used as an antidiarrheal drug, we prepared Galla Chinensis oral solution (GOS). MATERIALS AND METHODS GOS was prepared with GTE, and its physicochemical and microbiological stability was evaluated. The oral acute toxicity of GOS was calculated by the 50% lethal dose (LD50). The antidiarrheal activity was determined in a castor oil-induced diarrhea model in mice through diarrhea symptoms, fluid accumulation ratio, and percentage of distance moved by charcoal meal. RESULTS The tannin content of GTE was 47.75%. GOS could endure a high temperature without a significant decrease of tannin content. After storage for six months, the tannin content of GOS was still more than 90%. GOS was determined to be nontoxic. Meanwhile, GOS showed significant antidiarrheal activity in a castor oil-induced diarrhea model in mice (P < 0.01). CONCLUSION The results suggested that GOS is an effective and stable antidiarrheal drug that can be used to complement other therapies.
Collapse
|
12
|
Zhang T, Chu J, Zhou X. Anti-carious Effects ofGalla chinensis: A Systematic Review. Phytother Res 2015; 29:1837-42. [PMID: 26331796 DOI: 10.1002/ptr.5444] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Tieting Zhang
- The Fourth Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450000 China
| | - Jinpu Chu
- The Fourth Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450000 China
| | - Xuedong Zhou
- State Key Laboratory of Dental Science; Sichuan University; Chengdu Sichuan 610041 China
| |
Collapse
|
13
|
Lipid raft biomaterial as a mass screening affinity tool for rapid identification of potential antitumor Chinese herbal medicine. Eur J Integr Med 2015. [DOI: 10.1016/j.eujim.2015.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Firempong CK, Cao X, Tong S, Yu J, Xu X. Prospects for multitarget lipid-raft-coated silica beads: a remarkable online biomaterial for discovering multitarget antitumor lead compounds. RSC Adv 2015. [DOI: 10.1039/c5ra08322b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Application of lipid raft biomaterial with multiple cancer-related receptors for screening novel multitarget antitumour lead compounds.
Collapse
Affiliation(s)
- Caleb Kesse Firempong
- Department of Pharmaceutics
- School of Pharmacy
- Centre for Nano Drug/Gene Delivery and Tissue Engineering
- Jiangsu University
- Zhenjiang
| | - Xia Cao
- Department of Pharmaceutics
- School of Pharmacy
- Centre for Nano Drug/Gene Delivery and Tissue Engineering
- Jiangsu University
- Zhenjiang
| | - Shanshan Tong
- Department of Pharmaceutics
- School of Pharmacy
- Centre for Nano Drug/Gene Delivery and Tissue Engineering
- Jiangsu University
- Zhenjiang
| | - Jiangnan Yu
- Department of Pharmaceutics
- School of Pharmacy
- Centre for Nano Drug/Gene Delivery and Tissue Engineering
- Jiangsu University
- Zhenjiang
| | - Ximing Xu
- Department of Pharmaceutics
- School of Pharmacy
- Centre for Nano Drug/Gene Delivery and Tissue Engineering
- Jiangsu University
- Zhenjiang
| |
Collapse
|