1
|
Lourêdo AAM, Pereira HH, Bonfilio R, Santos MG. Online restricted access molecularly imprinted solid phase extraction coupled with electrospray ionization-tandem mass spectrometry for determination of mebendazole and albendazole in milk samples. J Chromatogr A 2024; 1737:465466. [PMID: 39476776 DOI: 10.1016/j.chroma.2024.465466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/10/2024]
Abstract
Multifunctional materials, such as restricted access molecularly imprinted polymers covered with bovine serum albumin (RAMIP-BSA), are effective alternatives for sample preparation techniques. This material selectively adsorbs analytes while excluding macromolecules, enhancing the analysis's efficiency. Among analytical techniques, ESI-MS/MS (Electrospray Ionization-Tandem Mass Spectrometry) has successfully identified and quantified various molecules, including trace-level drugs. Therefore, we proposed, for the first time, an integrated online extraction/analysis system that combines the benefits of RAMIP-BSA and ESI-MS/MS for analyzing mebendazole (MBZ) and albendazole (ABZ) in milk samples without the need for chromatographic separation. Initially, a RAMIP selective for MBZ was synthesized using the bulk method with methacrylic acid and glycidyl methacrylate. Then, the polymer was covered with bovine serum albumin. Subsequently, this adsorbent was packed in a small column and coupled with an ESI-MS/MS instrument in an online configuration. Milli-Q water was used as the loading and reconditioning mobile phases, and a solution of formic acid in methanol (1:100 v/v) was employed as the elution phase. The system enabled simultaneous extraction and determination of MBZ and ABZ in milk samples. The method exhibited linearity between 15.0 and 125.0 μg L-1 for MBZ and 10.0 and 125.0 μg L-1 for ABZ (with a correlation coefficient exceeding 0.99). The limits of quantification were 15.0 and 10.0 μg L-1 for MBZ and ABZ, respectively. Good precision and accuracy were achieved. The developed method was used to analyze MBZ and ABZ in real milk samples and proved to be a viable alternative to conventional sample preparation and chromatographic techniques.
Collapse
Affiliation(s)
- Amanda Aparecida Marques Lourêdo
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Helton Hanchuck Pereira
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Rudy Bonfilio
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Mariane Gonçalves Santos
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil.
| |
Collapse
|
2
|
Chang L, Du S, Wu X, Zhang J, Gan Z. Analysis, Occurrence and Exposure Evaluation of Antibiotic and Anthelmintic Residues in Whole Cow Milk from China. Antibiotics (Basel) 2023; 12:1125. [PMID: 37508221 PMCID: PMC10376884 DOI: 10.3390/antibiotics12071125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
An optimized QuEChERS method for the simultaneous extraction of 26 antibiotics and 19 anthelmintics in whole cow milk was established, followed by UHPLC-MS/MS analysis. Briefly, 20 mL acetonitrile with 1 g disodium hydrogen citrate, 2 g sodium citrate, 4 g anhydrous MgSO4, and 1 g sodium chloride were added to 10 g milk for target chemical extraction, followed by 50 mg anhydrous MgSO4 for purification. Satisfactory recoveries were obtained using the modified QuEChERS method, with recoveries of the antibiotics ranging from 79.7 to 117.2%, with the exception of norfloxacin, which was at 53.4%, while those for anthelmintics were in the range of 73.1-105.1%. The optimized QuEChERS method presented good precision, with relative standard deviations ranging from 7.2 to 18.6% for both antibiotics and anthelmintics. The method was successfully applied to analyze the antibiotics and anthelmintics in 56 whole cow milk samples from China. Briefly, the detection frequencies and concentrations of most of the antibiotics and anthelmintics were low in the whole cow milk samples, with concentrations ranging from below LOD to 4296.8 ng/kg. Fenbendazole, febantel, enrofloxacin, levofloxacin, sulfadiazine, and sulfamethoxazole were the predominant drug residues in the whole cow milk samples. Spatial distribution was found for those antibiotics and anthelmintics with detection frequency higher than 50%, especially for the antibiotics, indicating regional differences in drug application. Based on the current study, exposure to antibiotics and anthelmintics through whole cow milk consumption are lower than the acceptable daily intake values suggested by the China Institute of Veterinary Drug Control. However, long-term exposure to low doses of antibiotics and anthelmintics still needs attention and merits further study.
Collapse
Affiliation(s)
- Liming Chang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sishi Du
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojiao Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Mishra S, Mishra S, Patel SS, Singh SP, Kumar P, Khan MA, Awasthi H, Singh S. Carbon nanomaterials for the detection of pesticide residues in food: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119804. [PMID: 35926736 DOI: 10.1016/j.envpol.2022.119804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In agricultural fields, pesticides are widely used, but their residual presence in the environment poses a threat to humans, animals, insects, and ecosystems. The overuse of pesticides for pest control, enhancement of crop yield, etc. leaves behind a significant residual amount in the environment. Various robust, reliable, and reusable methods using a wide class of composites have been developed for the monitoring and controlling of pesticides. Researchers have discovered that carbon nanomaterials have a wide range of characteristics such as high porosity, conductivity and easy electron transfer that can be successfully used to detect pesticide residues from food. This review emphasizes the role of carbon nanomaterials in the field of pesticide residue analysis in different food matrices. The carbon nanomaterials including carbon nanotubes, carbon dots, carbon nanofibers, graphene/graphene oxides, and activated carbon fibres are discussed in the review. In addition, the review examines future prospects in this research area to help improve detection techniques for pesticides analysis.
Collapse
Affiliation(s)
- Smriti Mishra
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India
| | - Shivangi Mishra
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Shiv Singh Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Resources Management and Rural Technology, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh- 462026, India
| | - Sheelendra Pratap Singh
- Pesticide Toxicology Laboratory & Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India; Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Pradip Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Green Engineered Materials and Additive Manufacturing, Council of Scientific and Industrial Research- Advanced Materials and Processes Research Institute, Bhopal - 462026, India
| | - Mohd Akram Khan
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himani Awasthi
- Hygia Institute of Pharmaceutical Education and Research, Lucknow-226020, India
| | - Shiv Singh
- Industrial Waste Utilization, Nano and Biomaterial Division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Gupta DS, Bharate SS. Techniques for analytical estimation of COVID-19 clinical candidate, niclosamide in pharmaceutical and biomedical samples. SEPARATION SCIENCE PLUS 2022; 5:SSCP371. [PMID: 36249323 PMCID: PMC9538213 DOI: 10.1002/sscp.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/09/2022]
Abstract
Niclosamide is a well-known broad-spectrum antiparasitic drug used for human as well as veterinary tapeworm infections. Recently, it attracted attention as an antiviral agent for treating coronavirus disease 2019. It is administered orally in humans to treat tapeworm infections. Furthermore, it is a registered pesticide and molluscicide to control infections in the aquaculture industry. Its chronic environmental exposure has potential toxicities when such contaminated seafood is consumed. Therefore, monitoring its residual concentration in food products (seafood, water, water waste, etc.) and pharmaceuticals (active pharmaceutical ingredients, bulk drugs, and formulations) is imperative. The present review critically investigates the sophisticated techniques employed for analyzing niclosamide, its degradation products, and metabolites in various samples and matrices. The future scope for green analytical methods, green sample extraction and preparation is also deliberated.
Collapse
Affiliation(s)
- Deepank S. Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology ManagementSVKM's NMIMSV.L. Mehta Road, Vile Parle (W)Mumbai400056India
| | - Sonali S. Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology ManagementSVKM's NMIMSV.L. Mehta Road, Vile Parle (W)Mumbai400056India
| |
Collapse
|
5
|
Elencovan V, Yahaya N, Samad NA, Zain NNM. Evaluation of green silicone surfactant-based vortex assisted dispersive liquid-liquid microextraction for sample preparation of organophosphorus pesticide residues in honey and fruit sample. J Sep Sci 2022; 45:2865-2876. [PMID: 35661411 DOI: 10.1002/jssc.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
A vortex assisted surfactant enhanced emulsification liquid-liquid microextraction based on non-ionic silicone surfactant was successfully developed for the determination of organophosphorus pesticides in food samples coupled to gas chromatography-mass spectrometry. A new type of non-ionic silicone surfactant composed of polysiloxane chains was employed as a green emulsifier to facilitate the emulsification of extraction solvent into the sample matrix, thereby intensifying the mass transfer of target analytes into the organic phase. The variables that affect the extraction were systematically optimized: 80 μL of hexane and 0.5% (v/v) of silicone surfactant were used as extraction solvent and surfactant respectively, the solution was mixed well under vortex agitation for 1 min with the addition of 4% (w/v) sodium sulfate. Under optimum conditions, the linearity of the method was obtained in the range of 0.1 - 200 μg/kg with good coefficient of determination varying from 0.9986 to 0.9996. The LOD and LOQ were in between 0.008 - 0.1 μg/kg and 0.02 - 0.3 μg/kg, respectively. Application of the proposed method to real samples gave satisfactory recovery values (80 - 118%) for the target analytes. The suggested approach has also proven to be convenient, expeditious and environmentally benign. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vasagee Elencovan
- Toxicology Department, Advanced Medical and Dental Institute, Universiti Sains Malaysia
| | - Noorfatimah Yahaya
- Toxicology Department, Advanced Medical and Dental Institute, Universiti Sains Malaysia
| | - Nozlena Abdul Samad
- Toxicology Department, Advanced Medical and Dental Institute, Universiti Sains Malaysia
| | | |
Collapse
|
6
|
Elencovan V, Joseph J, Yahaya N, Abdul Samad N, Raoov M, Lim V, Zain NNM. Exploring a novel deep eutectic solvents combined with vortex assisted dispersive liquid-liquid microextraction and its toxicity for organophosphorus pesticides analysis from honey and fruit samples. Food Chem 2022; 368:130835. [PMID: 34416487 DOI: 10.1016/j.foodchem.2021.130835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 08/08/2021] [Indexed: 01/06/2023]
Abstract
A novel deep eutectic solvents (DES) was successfully applied as an emulsifier in vortex assisted liquid-liquid microextraction (VALLME) coupled with gas chromatography-mass spectrometry for the determination of organophosphorus pesticides in honey and fruit samples. Based on the result of toxicity study, DES provides new opportunities for the safe delivery and application. The predominant parameters affecting extraction efficiency were thoroughly optimized and studied in detail. Under optimum parameters, the calibration curve was determined in the concentration range of 0.1 to 200 µgL-1 with excellent determination coefficients values of 0.9989 to 0.9999. Limit of detection and limit of quantification were found to be 0.01 - 0.09 µgL-1 and 0.03 - 0.2 µgL-1, respectively. Application of the developed method to honey and fruit samples gave acceptable recovery values 83 - 109% with relative standard deviation below than 9.5%. The suggested approach has also proven to be simple, cost-effective, rapid, and non-toxic in nature.
Collapse
Affiliation(s)
- Vasagee Elencovan
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Julia Joseph
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
7
|
Pretreatment and determination methods for benzimidazoles: An update since 2005. J Chromatogr A 2021; 1644:462068. [PMID: 33836299 DOI: 10.1016/j.chroma.2021.462068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023]
Abstract
Benzimidazoles, commonly used as pesticides and veterinary drugs, have posed a threat to human health and the environment due to unreasonable use and lack of valid regulation. Therefore, an up-to-date and comprehensive summary of the pretreatment and analytical approaches in different substrates is urgently needed. The present review consequently updates and covers various newly developed pretreatment methods (e.g., cationic micellar precipitation, magnetic-solid phase extraction, hollow fiber liquid phase microextraction, disperse liquid-liquid microextraction-solidified floating organic drop, stir cake sorptive extraction, solid phase microextraction method, QuEChERS, and molecular imprinted polymer-based methods) since 2005. The review also elaborates and discusses different determination methods (e.g., newly developed HPLC and related methods, improved spectrofluorimetry methods, capillary electrophoresis, and the electrochemical sensor). Furthermore, some critical points and prospects are highlighted, to describe the trends in this area.
Collapse
|
8
|
Liang G, Guo X, Tan X, Mai S, Chen Z, Zhai H. Molecularly imprinted monolithic column based on functionalized β-cyclodextrin and multi-walled carbon nanotubes for selective recognition of benzimidazole residues in citrus samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Green and simple analytical method to determine benzimidazoles in milk samples by using salting-out assisted liquid-liquid extraction and capillary liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1091:46-52. [DOI: 10.1016/j.jchromb.2018.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/13/2018] [Accepted: 05/17/2018] [Indexed: 11/22/2022]
|
10
|
Ultra-high performance liquid chromatography with fluorescence detection following salting-out assisted liquid–liquid extraction for the analysis of benzimidazole residues in farm fish samples. J Chromatogr A 2018; 1543:58-66. [DOI: 10.1016/j.chroma.2018.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 11/22/2022]
|
11
|
Tejada-Casado C, Moreno-González D, del Olmo-Iruela M, García-Campaña AM, Lara FJ. Coupling sweeping-micellar electrokinetic chromatography with tandem mass spectrometry for the therapeutic monitoring of benzimidazoles in animal urine by dilute and shoot. Talanta 2017; 175:542-549. [DOI: 10.1016/j.talanta.2017.07.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 01/04/2023]
|
12
|
Mainero Rocca L, Gentili A, Pérez-Fernández V, Tomai P. Veterinary drugs residues: a review of the latest analytical research on sample preparation and LC-MS based methods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:766-784. [PMID: 28278127 DOI: 10.1080/19440049.2017.1298846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The world population is increasing and there is a growing demand for food, leading to intensification of farming methods and a requirement for more coadjuvants. Potential high profits sometimes lead to fraudulent use of drugs and pesticides. Veterinary drugs in particular can pose a real risk to human health if their residues are allowed to enter the food chain. Parent drugs and their metabolites can occur in foodstuffs individually or as multicomponent mixtures with enhanced adverse effects. In order to protect consumer safety, the European Union has established lists of forbidden substances, maximum residue limits for authorised drugs and precise criteria for confirmation analyses and interpretation of the results. Due to their nature and potential danger, the 'best available technique' should always be applied. Following this principle, this review examines the procedures and techniques applied to monitoring pharmaceutical products of major concern (e.g. anthelmintics, NSAIDs, corticosteroids, coccidiostats) in foods of animal origin, discussing advances over the past five years and future trends in the field of food safety. Our goal was both to focus attention on this important topic and to provide a selection of the most relevant recent papers on drug residues in foodstuffs.
Collapse
Affiliation(s)
- Lucia Mainero Rocca
- a Department of Chemistry, Faculty of Mathematical, Physical and Natural Science , 'Sapienza' University of Rome , Rome , Italy
| | - Alessandra Gentili
- a Department of Chemistry, Faculty of Mathematical, Physical and Natural Science , 'Sapienza' University of Rome , Rome , Italy
| | - Virginia Pérez-Fernández
- a Department of Chemistry, Faculty of Mathematical, Physical and Natural Science , 'Sapienza' University of Rome , Rome , Italy
| | - Pierpaolo Tomai
- a Department of Chemistry, Faculty of Mathematical, Physical and Natural Science , 'Sapienza' University of Rome , Rome , Italy
| |
Collapse
|
13
|
Rapid ion-pair liquid chromatographic method for the determination of fenbendazole marker residue in fermented dairy products. Food Chem 2017; 221:884-890. [DOI: 10.1016/j.foodchem.2016.11.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/20/2016] [Accepted: 11/18/2016] [Indexed: 11/18/2022]
|
14
|
Tejada-Casado C, Moreno-González D, Lara FJ, García-Campaña AM, del Olmo-Iruela M. Determination of benzimidazoles in meat samples by capillary zone electrophoresis tandem mass spectrometry following dispersive liquid–liquid microextraction. J Chromatogr A 2017; 1490:212-219. [DOI: 10.1016/j.chroma.2017.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/05/2017] [Accepted: 02/11/2017] [Indexed: 12/23/2022]
|
15
|
Tejada-Casado C, Hernández-Mesa M, del Olmo-Iruela M, García-Campaña AM. Capillary electrochromatography coupled with dispersive liquid-liquid microextraction for the analysis of benzimidazole residues in water samples. Talanta 2016; 161:8-14. [DOI: 10.1016/j.talanta.2016.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023]
|
16
|
Chen Y, Yang J, Li Z, Li R, Ruan W, Zhuang Z, Zhao B. Experimental and density functional theory study of Raman and SERS spectra of 5-amino-2-mercaptobenzimidazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:344-348. [PMID: 26335062 DOI: 10.1016/j.saa.2015.08.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/19/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulations were employed to study 5-amino-2-mercaptobenzimidazole (5-A-2MBI) molecules. Ag colloids were used as SERS substrates which were prepared by using hydroxylamine hydrochloride as reducing agent. Raman vibration modes and SERS characteristic peaks of 5-A-2MBI were assigned with the aid of DFT calculations. The molecular electrostatic potential (MEP) of 5-A-2MBI was used to discuss the possible adsorption behavior of 5-A-2MBI on Ag colloids. The spectral analysis showed that 5-A-2MBI molecules were slightly titled via the sulfur atoms adhering to the surfaces of Ag substrates. The obtained SERS spectral intensity decreased when lowering the 5-A-2MBI concentrations. A final detection limit on the concentration of 5×10(-7) mol · L(-1) was gained. SERS proved to be a simple, fast and reliable method for the detection and characterization of 5-A-2MBI molecules.
Collapse
Affiliation(s)
- Yufeng Chen
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157012, China
| | - Jin Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Zonglong Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Ran Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Weidong Ruan
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| | - Zhiping Zhuang
- College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157012, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| |
Collapse
|