1
|
Skowronkova N, Adamek M, Zvonkova M, Matyas J, Adamkova A, Dlabaja S, Buran M, Sevcikova V, Mlcek J, Volek Z, Cernekova M. Optimizing Low-Cost Gas Analysis with a 3D Printed Column and MiCS-6814 Sensor for Volatile Compound Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:6594. [PMID: 39460075 PMCID: PMC11511080 DOI: 10.3390/s24206594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
This paper explores an application of 3D printing technology on the food industry. Since its inception in the 1980s, 3D printing has experienced a huge rise in popularity. This study uses cost-effective, flexible, and sustainable components that enable specific features of certain gas chromatography. This study aims to optimize the process of gas detection using a 3D printed separation column and the MiCS-6814 sensor. The principle of the entire device is based on the idea of utilizing a simple capillary chromatographic column manufactured by 3D printing for the separation of samples into components prior to their measurement using inexpensive chemiresistive sensors. An optimization of a system with a 3D printed PLA block containing a capillary, a mixing chamber, and a measuring chamber with a MiCS-6814 sensor was performed. The optimization distributed the sensor output signal in the time domain so that it was possible to distinguish the peak for the two most common alcohols, ethanol and methanol. The paper further describes some optimization types and their possibilities.
Collapse
Affiliation(s)
- Nela Skowronkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (N.S.); (M.Z.); (A.A.); (V.S.)
| | - Martin Adamek
- Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, 760 05 Zlin, Czech Republic; (M.A.); (S.D.)
| | - Magdalena Zvonkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (N.S.); (M.Z.); (A.A.); (V.S.)
| | - Jiri Matyas
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic;
| | - Anna Adamkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (N.S.); (M.Z.); (A.A.); (V.S.)
| | - Stepan Dlabaja
- Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, 760 05 Zlin, Czech Republic; (M.A.); (S.D.)
| | - Martin Buran
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic;
| | - Veronika Sevcikova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (N.S.); (M.Z.); (A.A.); (V.S.)
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (N.S.); (M.Z.); (A.A.); (V.S.)
| | - Zdenek Volek
- Department of Nutritional Physiology and Animal Product Quality, Institute of Animal Science, Pratelstvi 815, 104 00 Prague, Czech Republic;
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Martina Cernekova
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova, 275, 760 01 Zlin, Czech Republic;
| |
Collapse
|
2
|
Poljanec N, Mravljak R, Podgornik A. Influence of porosity and microstructure on compression behavior of methacrylate polymers in flow-through applications. J Sep Sci 2024; 47:e2300767. [PMID: 38801756 DOI: 10.1002/jssc.202300767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 05/29/2024]
Abstract
Mechanical properties of a material play a pivotal role in its performance when such porous material is used in a flow-through mode. This study delves into the effect of porosity and microstructure on the compressibility of methacrylate polymer, focusing on two distinct microstructures: cauliflower and high internal phase emulsion. Samples with various porosities yet identical chemical composition were prepared and their Young's modulus was measured. The effect of porosity on Young's modulus was described by an exponential law model with the cauliflower microstructure exhibiting an exponent of 3.61, while the high internal phase emulsion of only 1.86. A mathematical analysis of the compression caused by a liquid flow unveiled significant disparities in the porosity threshold where minimal compression is observed, being around 0.45 for the cauliflower while there is monotone decrease in compression with porosity increase for the high internal phase emulsion microstructure. Evaluating exponent integer values between 1 and 5 over entire porosity range reveals that the porosity where the minimal compression occurs increases with a decrease in exponent value, being approximately 0.33 for n = 5, 0.4 for n = 4, 0.55 for n = 3, 0.65 for n = 2 while no minimum occurs for n = 1. These findings indicate that lower exponent value results in lower compression under identical experimental conditions.
Collapse
Affiliation(s)
- Nikola Poljanec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Mravljak
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Podgornik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Rezaei H, Matin AA. 3D-printed solid phase microextraction fiber based on Co-Al layered double hydroxide nanosheets; application in determination of phenolic acids in fruit juice samples. Food Chem 2024; 437:137894. [PMID: 37922802 DOI: 10.1016/j.foodchem.2023.137894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
3D printing technology has attracted great attention in various fields of science and technology. Application of this technology in manufacturing analytical tools is developing fast. High precision in manufacturing designed objects, fast production and low cost also green production approach by using biodegradable materials like polylactic acid is promising bright future in scientific researches. The development of new approaches in improving the functional groups of the surface of 3D printed objects in order to make 3D printed parts more functional with conventional 3D printed materials, causes the entry of many advanced materials in this field. In this study, a novel solid phase microextraction fiber was prepared based on Co-Al layered double hydroxide (LDH) nanosheets in-situ growth on 3D-printed aluminum-polylactic acid (PLA) composite and its application for determination of phenolic acids (PAs) including vanillic acid (VA), ferulic acid (FA), p-coumaric acid (p-CA), p-hydroxybenzoic acid (HBA), protocatechuic acid (PCA) and caffeic acid (CA) in fruit juice samples was investigated. The proposed fiber was prepared via a robust one-step hydrothermal synthesis of Co-Al LDH on an anodized 3D-printed Al-PLA fiber. Factors crucial for the extraction, including pH, extraction and desorption time and ionic strength were explored in detail. Under the optimal experimental conditions, for all PAs except PCA, LOD, LOQ and LDR were obtained as 0.03, 0.1 and 0.1-100.0 µgL-1, respectively. For PCA, LOD, LOQ and LDR were obtained as 0.15, 0.50 and 0.5-100.0 µgL-1, respectively.
Collapse
Affiliation(s)
- Hadiseh Rezaei
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amir Abbas Matin
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
4
|
Johnson TF, Conti M, Iacoviello F, Shearing PR, Pullen J, Dimartino S, Bracewell DG. Evaluating 3D-printed bioseparation structures using multi-length scale tomography. Anal Bioanal Chem 2023; 415:5961-5971. [PMID: 37522918 PMCID: PMC10556175 DOI: 10.1007/s00216-023-04866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
X-ray computed tomography was applied in imaging 3D-printed gyroids used for bioseparation in order to visualize and characterize structures from the entire geometry down to individual nanopores. Methacrylate prints were fabricated with feature sizes of 500 µm, 300 µm, and 200 µm, with the material phase exhibiting a porous substructure in all cases. Two X-ray scanners achieved pixel sizes from 5 µm to 16 nm to produce digital representations of samples across multiple length scales as the basis for geometric analysis and flow simulation. At the gyroid scale, imaged samples were visually compared to the original computed-aided designs to analyze printing fidelity across all feature sizes. An individual 500 µm feature, part of the overall gyroid structure, was compared and overlaid between design and imaged volumes, identifying individual printed layers. Internal subvolumes of all feature sizes were segmented into material and void phases for permeable flow analysis. Small pieces of 3D-printed material were optimized for nanotomographic imaging at a pixel size of 63 nm, with all three gyroid samples exhibiting similar geometric characteristics when measured. An average porosity of 45% was obtained that was within the expected design range, and a tortuosity factor of 2.52 was measured. Applying a voidage network map enabled the size, location, and connectivity of pores to be identified, obtaining an average pore size of 793 nm. Using Avizo XLAB at a bulk diffusivity of 7.00 × 10-11 m2s-1 resulted in a simulated material diffusivity of 2.17 × 10-11 m2s-1 ± 0.16 × 10-11 m2s-1.
Collapse
Affiliation(s)
- Thomas F. Johnson
- Department of Biochemical Engineering, University College London, Bernard Katz, London, WC1E 6BT UK
| | - Mariachiara Conti
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL UK
| | - Francesco Iacoviello
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - Paul R. Shearing
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - James Pullen
- Fujifilm Diosynth Technologies, Belasis Avenue, Billingham, TS23 1LH UK
| | - Simone Dimartino
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL UK
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz, London, WC1E 6BT UK
| |
Collapse
|
5
|
Medina DAV, Cardoso AT, Borsatto JVB, Lanças FM. Open tubular liquid chromatography: Recent advances and future trends. J Sep Sci 2023; 46:e2300373. [PMID: 37582640 DOI: 10.1002/jssc.202300373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
Nano-liquid chromatography (nanoLC) is gaining significant attention as a primary analytical technique across various scientific domains. Unlike conventional high-performance LC, nanoLC utilizes columns with inner diameters (i.ds.) usually ranging from 10 to 150 μm and operates at mobile phase flow rates between 10 and 1000 nl/min, offering improved chromatographic performance and detectability. Currently, most exploration of nanoLC has focused on particle-packed columns. Although open tubular LC (OTLC) can provide superior performance, optimized OTLC columns require very narrow i.ds. (< 10 μm) and demand challenging instrumentation. At the moment, these challenges have limited the success of OTLC. Nevertheless, remarkable progress has been made in developing and utilizing OTLC systems featuring narrow columns (< 2 μm). Additionally, significant efforts have been made to explore larger columns (10-75 μm i.d), demonstrating practical applicability in many situations. Due to their perceived advantages, interest in OTLC has resurged in the last two decades. This review provides an updated outlook on the latest developments in OTLC, focusing on instrumental challenges, achievements, and advancements in column technology. Moreover, it outlines selected applications that illustrate the potential of OTLC for performing targeted and untargeted studies.
Collapse
Affiliation(s)
- Deyber Arley Vargas Medina
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Alessandra Timoteo Cardoso
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - João Victor Basolli Borsatto
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Fernando Mauro Lanças
- Departamento de Química e Física Molecular, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
Chen JR, Tsai WH, Su CK. TiO 2 nanoparticle-Coated 3D-Printed porous monoliths enabling highly sensitive speciation of inorganic Cr, As, and Se. Anal Chim Acta 2023; 1271:341489. [PMID: 37328240 DOI: 10.1016/j.aca.2023.341489] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Post-printing functionalization can enhance the functionality and applicability of analytical devices manufactured using three-dimensional printing (3DP) technologies. In this study we developed a post-printing foaming-assisted coating scheme-through respective treatments with a formic acid (30%, v/v) solution and a sodium bicarbonate (0.5%, w/v) solution incorporating titanium dioxide nanoparticles (TiO2 NPs; 1.0%, w/v)-for in situ fabrication of TiO2 NP-coated porous polyamide monoliths in 3D-printed solid phase extraction columns, thereby enhancing the extraction efficiencies of Cr(III), Cr(VI), As(III), As(V), Se(IV), and Se(VI) for speciation of inorganic Cr, As, and Se species in high-salt-content samples when using inductively coupled plasma mass spectrometry. After optimizing the experimental conditions, the 3D-printed solid phase extraction columns with the TiO2 NP-coated porous monoliths extracted these species with 5.0- to 21.9-fold enhancements, relative to those obtained with the uncoated monolith, with absolute extraction efficiencies ranging from 84.5 to 98.3% and method detection limits ranging from 0.7 to 32.3 ng L-1. We validated the reliability of this multi-elemental speciation method through determination of these species in four reference materials [CASS-4 (nearshore seawater), SLRS-5 (river water), 1643f (fresh water), and Seronorm Trace Elements Urine L-2 (human urine); relative errors between certified and measured concentrations: 5.6 to +4.0%] and spike analyses of seawater, river water, agriculture waste, and human urine samples (spike recoveries: 96-104%; relative standard deviations of these measured concentrations all below 4.3%). Our results demonstrate that post-printing functionalization has great potential for future applicability in 3DP-enabling analytical methods.
Collapse
Affiliation(s)
- Jyun-Ran Chen
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC
| | - Wen-Hsiu Tsai
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC.
| |
Collapse
|
7
|
Adamek M, Mlcek J, Skowronkova N, Zvonkova M, Jasso M, Adamkova A, Skacel J, Buresova I, Sebestikova R, Cernekova M, Buckova M. 3D Printed Fused Deposition Modeling (FDM) Capillaries for Chemiresistive Gas Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:6817. [PMID: 37571598 PMCID: PMC10422458 DOI: 10.3390/s23156817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
This paper discusses the possible use of 3D fused deposition modeling (FDM) to fabricate capillaries for low-cost chemiresistive gas sensors that are often used in various applications. The disadvantage of these sensors is low selectivity, but 3D printed FDM capillaries have the potential to increase their selectivity. Capillaries with 1, 2 and 3 tiers with a length of 1.5 m, 3.1 m and 4.7 m were designed and manufactured. Food and goods available in the general trade network were used as samples (alcohol, seafood, chicken thigh meat, acetone-free nail polish remover and gas from a gas lighter) were also tested. The "Vodka" sample was used as a standard for determining the effect of capillary parameters on the output signal of the MiCS6814 sensor. The results show the shift of individual parts of the signal in time depending on the parameters of the capillary and the carrier air flow. A three-tier capillary was chosen for the comparison of gas samples with each other. The graphs show the differences between individual samples, not only in the height of the output signal but also in its time characteristic. The tested 3D printed FDM capillaries thus made it possible to characterize the output response by also using an inexpensive chemiresistive gas sensor in the time domain.
Collapse
Affiliation(s)
- Martin Adamek
- Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511, 760 05 Zlin, Czech Republic;
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic;
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (N.S.); (M.Z.); (M.J.); (M.B.)
| | - Nela Skowronkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (N.S.); (M.Z.); (M.J.); (M.B.)
| | - Magdalena Zvonkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (N.S.); (M.Z.); (M.J.); (M.B.)
| | - Miroslav Jasso
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (N.S.); (M.Z.); (M.J.); (M.B.)
| | - Anna Adamkova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (N.S.); (M.Z.); (M.J.); (M.B.)
| | - Josef Skacel
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic;
| | - Iva Buresova
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (I.B.); (R.S.)
| | - Romana Sebestikova
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (I.B.); (R.S.)
| | - Martina Cernekova
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic;
| | - Martina Buckova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 760 01 Zlin, Czech Republic; (N.S.); (M.Z.); (M.J.); (M.B.)
| |
Collapse
|
8
|
Heuer C, Preuß J, Habib T, Enders A, Bahnemann J. 3D printing in biotechnology-An insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics. Eng Life Sci 2022; 22:744-759. [PMID: 36514534 PMCID: PMC9731604 DOI: 10.1002/elsc.202100081] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Since its invention in the 1980s, 3D printing has evolved into a versatile technique for the additive manufacturing of diverse objects and tools, using various materials. The relative flexibility, straightforwardness, and ability to enable rapid prototyping are tremendous advantages offered by this technique compared to conventional methods for miniaturized and microfluidic systems fabrication (such as soft lithography). The development of 3D printers exhibiting high printer resolution has enabled the fabrication of accurate miniaturized and microfluidic systems-which have, in turn, substantially reduced both device sizes and required sample volumes. Moreover, the continuing development of translucent, heat resistant, and biocompatible materials will make 3D printing more and more useful for applications in biotechnology in the coming years. Today, a wide variety of 3D-printed objects in biotechnology-ranging from miniaturized cultivation chambers to microfluidic lab-on-a-chip devices for diagnostics-are already being deployed in labs across the world. This review explains the 3D printing technologies that are currently used to fabricate such miniaturized microfluidic devices, and also seeks to offer some insight into recent developments demonstrating the use of these tools for biotechnological applications such as cell culture, separation techniques, and biosensors.
Collapse
Affiliation(s)
- Christopher Heuer
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | | | - Taieb Habib
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Anton Enders
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Janina Bahnemann
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
- Cell Culture TechnologyFaculty of TechnologyBielefeld UniversityBielefeldGermany
| |
Collapse
|
9
|
Grinias JP, Godinho JM. Liquid Chromatography Column Design and Dimensional Analysis of the van Deemter Equation. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.kh7671g4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The fundamental mechanisms of band broadening are usually introduced to students through the van Deemter equation. Dimensional analysis of this equation can give physical meaning to the equation coefficients and enhance our understanding relative to qualitative descriptions. This approach can also guide improvements to future liquid chromatography (LC) column designs.
Collapse
|
10
|
Guo Y, Ali W, Schneider A, Salma A, Mayer‐Gall T, Gutmann JS, Fernandez Lahore HM. Megaporous monolithic adsorbents for bioproduct recovery as prepared on the basis of nonwoven fabrics. Electrophoresis 2022; 43:1387-1398. [DOI: 10.1002/elps.202100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/04/2022] [Accepted: 04/03/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yijia Guo
- Life Sciences & Chemistry Jacobs University Bremen gGmbH Bremen Germany
| | - Wael Ali
- Deutschen Textilforschungszentrum Nord‐West gGmbH Krefeld Germany
- Department of Physical Chemistry and Center for Nanointegration (CENIDE) University of Duisburg‐Essen Essen Germany
| | - Anna Schneider
- Life Sciences & Chemistry Jacobs University Bremen gGmbH Bremen Germany
| | - Alaa Salma
- Deutschen Textilforschungszentrum Nord‐West gGmbH Krefeld Germany
| | - Thomas Mayer‐Gall
- Deutschen Textilforschungszentrum Nord‐West gGmbH Krefeld Germany
- Department of Physical Chemistry and Center for Nanointegration (CENIDE) University of Duisburg‐Essen Essen Germany
| | - Jochen S. Gutmann
- Deutschen Textilforschungszentrum Nord‐West gGmbH Krefeld Germany
- Department of Physical Chemistry and Center for Nanointegration (CENIDE) University of Duisburg‐Essen Essen Germany
| | - Hector Marcelo Fernandez Lahore
- Life Sciences & Chemistry Jacobs University Bremen gGmbH Bremen Germany
- Unit Biotechnologies Department of Environmental Research and Innovation Luxembourg Institute of Science and Technology Esch‐sur‐Alzette Luxembourg
| |
Collapse
|
11
|
Dimartino S, Galindo-Rodriguez GR, Simon U, Conti M, Sarwar MS, Athi Narayanan SM, Jiang Q, Christofi N. Flexible material formulations for 3D printing of ordered porous beds with applications in bioprocess engineering. BIORESOUR BIOPROCESS 2022; 9:20. [PMID: 38647837 PMCID: PMC10992019 DOI: 10.1186/s40643-022-00511-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 3D printing is revolutioning many industrial sectors and has the potential to enhance also the biotechnology and bioprocessing fields. Here, we propose a new flexible material formulation to 3D print support matrices with complex, perfectly ordered morphology and with tuneable properties to suit a range of applications in bioprocess engineering. FINDINGS Supports were fabricated using functional monomers as the key ingredients, enabling matrices with bespoke chemistry, such as charged groups, chemical moieties for further functionalization, and hydrophobic/hydrophilic groups. Other ingredients, e.g. crosslinkers and porogens, can be employed to fabricate supports with diverse characteristics of their porous network, providing an opportunity to further regulate the mechanical and mass transfer properties of the supports. Through this approach, we fabricated and demonstrated the operation of Schoen gyroid columns with (I) positive and negative charges for ion exchange chromatography, (II) enzyme bioreactors with immobilized trypsin to catalyse hydrolysis, and (III) bacterial biofilm bioreactors for fuel desulphurization. CONCLUSIONS This study demonstrates a simple, cost-effective, and flexible fabrication of customized 3D printed supports for different biotechnology and bioengineering applications.
Collapse
Affiliation(s)
- Simone Dimartino
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK.
| | | | - Ursula Simon
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK
| | - Mariachiara Conti
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK
| | - M Sulaiman Sarwar
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK
| | | | - Qihao Jiang
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3DW, UK
| | - Nick Christofi
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| |
Collapse
|
12
|
Gritti F, Nawada S. On the road towards highly efficient and large volume three-dimensional-printed liquid chromatography columns ? J Sep Sci 2022; 45:3232-3240. [PMID: 35143712 DOI: 10.1002/jssc.202100962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
The current performance of commercially packed LC columns is limited by the random structure of the packed bed and by the wall-to-center heterogeneity of its structure. The minimum reduced plate heights observed are not smaller than 1.4 whereas they could theoretically be as low as 0.1 for dense and perfectly ordered packings of spheres. To bridge this gap, a wide inner diameter column with an ordered macroporous structure is printed in three dimensions by stereolithography of poly(ethylene glycol diacrylate) resin. Feature sizes below 100 μm are achieved by combining conventional polymer stereolithography with photolithography using photomasks. A layer-by-layer polymerization is performed by alternating two distinct photomasks having horizontally and vertically oriented patterns. Despite the inevitable printing imperfections, minimum reduced plate heights around unity are measured for non-retained analytes. The next challenges for the successful printing of highly efficient and large volume LC columns are threefold: reducing the feature size down to below 10 μm, keeping minimum the unevenness of the flow channel dimensions, and tackling additive manufacturing of silica aerogels at such small feature sizes for higher mechanical stability and broader range of retention/selectivity than those delivered by polymer materials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Core Research/Fundamentals, 34 Maple Street, Milford, MA, 01757, USA
| | - Suhas Nawada
- Universiteit van Amsterdam, Van 't Hoff Institute for Molecular Sciences, Science Park 904, Amsterdam, 1098, The Netherlands
| |
Collapse
|
13
|
Matheuse F, Vanmol K, Van Erps J, De Malsche W, Ottevaere H, Desmet G. On the potential use of two-photon polymerization to 3D print chromatographic packed bed supports. J Chromatogr A 2021; 1663:462763. [PMID: 34968955 DOI: 10.1016/j.chroma.2021.462763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
The continuous quest for chromatographic supports offering kinetic performance properties superior to that of the packed bed of spheres has pushed the field to consider alternative formats such as for example monolithic and pillar array columns. This quest seems bound to culminate in the use of 3D printing technology, as this intrinsically offers the possibility to produce supports with a perfect uniformity and with a size and shape that is fully optimized for the chromatographic separation process. However, to be competitive with the current state-of-the-art, structures with sub-micron feature sizes are required. The present contribution therefore investigates the use of the 3D printing technology with the highest possible resolution available today, i.e., two-photon polymerization (2PP). It is shown that 2PP printing is capable of achieving the required ≤ 1 µm printing resolution. Depending on the laser scan speed, the lower limit through-pore size for a tetrahedral skeleton monolith with a theoretical 80% external porosity was found to be at 800 nm, when printing at a scan speed of 50 mm/s with a laser power of 10%. For a scan speed of 10 mm/s, the minimal through-pore size dropped to 500 nm. However, this very high resolution comes at the cost of excessively long printing times. The total printing time for a column volume equivalent to that of a typical nano-LC column (75 µm i.d. cylindrical tube with length L = 15 cm) has been determined to correspond to 330 and 470 h for the 50 mm/s and the 10 mm/s scan speed respectively. Other issues remaining to be solved are the need to clad the printed skeleton with a suitable mesoporous layer for chromatographic retention and the need to add a top-wall to the printed channels after the removal of the non-polymerized resin. It is therefore concluded that 2PP printing is not ready yet to replace the existing column fabrication methods.
Collapse
Affiliation(s)
- Fréderick Matheuse
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Koen Vanmol
- Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Jürgen Van Erps
- Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Wim De Malsche
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heidi Ottevaere
- Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Brussels, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
14
|
Glasco DL, Ho NHB, Mamaril AM, Bell JG. 3D Printed Ion-Selective Membranes and Their Translation into Point-of-Care Sensors. Anal Chem 2021; 93:15826-15831. [PMID: 34812620 DOI: 10.1021/acs.analchem.1c03762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This technical note describes a method for fabricating ion-selective membranes (ISMs) for use in potentiometric sensing by using 3D printing technology. Here, we demonstrate the versatility of this approach by fabricating ISMs and investigating their performance in both liquid-contact and solid-contact ion-selective electrode (ISE) configurations. Using 3D printed ISMs resulted in highly stable (drift of ∼17 μV/h) and highly reproducible (<1 mV deviation) measurements. Furthermore, we show the seamless translation of these membranes into reliable, carbon fiber- and paper-based potentiometric sensors for applications at the point-of-care. To highlight the modifiability of this approach, we fabricated sensors for bilirubin, an important biomarker of liver health; benzalkonium, a common preservative used in the pharmaceutical industry; and potassium, an important blood electrolyte. The ability to mass produce sensors using 3D printing is an attractive advantage over conventional methods, while also decreasing the time and cost associated with sensor fabrication.
Collapse
Affiliation(s)
- Dalton L Glasco
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Nguyen H B Ho
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Art Matthew Mamaril
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Jeffrey G Bell
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
15
|
Abdulhussain N, Nawada S, Schoenmakers P. Latest Trends on the Future of Three-Dimensional Separations in Chromatography. Chem Rev 2021; 121:12016-12034. [PMID: 33878259 PMCID: PMC8517953 DOI: 10.1021/acs.chemrev.0c01244] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/26/2022]
Abstract
Separation and characterization of complex mixtures are of crucial importance in many fields, where extremely high separation power is required. Three-dimensional separation techniques can offer a path toward achieving high peak capacities. In this Review, online three-dimensional separation systems are discussed, including three-dimensional gas chromatography, and hyphenated combinations of two-dimensional gas chromatography with liquid chromatography or supercritical-fluid chromatography. Online comprehensive two-dimensional liquid chromatography provides detailed information on complex samples and the need for higher peak capacities is pushing researchers toward online three-dimensional liquid chromatography. In this review, an overview of the various combinations are provided and we discuss and compare their potential performance, advantages, perspectives, and results obtained during the most recent 10-15 years. Finally, the Review will discuss a novel approach of spatial three-dimensional liquid separation to increase peak capacity.
Collapse
Affiliation(s)
- Noor Abdulhussain
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park, 1098 XH, Amsterdam, The Netherlands
- The
Centre for Analytical Sciences Amsterdam (CASA), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Suhas Nawada
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park, 1098 XH, Amsterdam, The Netherlands
- The
Centre for Analytical Sciences Amsterdam (CASA), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Peter Schoenmakers
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park, 1098 XH, Amsterdam, The Netherlands
- The
Centre for Analytical Sciences Amsterdam (CASA), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Wommer L, Meiers P, Kockler I, Ulber R, Kampeis P. Development of a 3D-printed single-use separation chamber for use in mRNA-based vaccine production with magnetic microparticles. Eng Life Sci 2021; 21:573-588. [PMID: 34690630 PMCID: PMC8518576 DOI: 10.1002/elsc.202000120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022] Open
Abstract
Laboratory protocols using magnetic beads have gained importance in the purification of mRNA for vaccines. Here, the produced mRNA hybridizes specifically to oligo(dT)-functionalized magnetic beads after cell lysis. The mRNA-loaded magnetic beads can be selectively separated using a magnet. Subsequently, impurities are removed by washing steps and the mRNA is eluted. Magnetic separation is utilized in each step, using different buffers such as the lysis/binding buffer. To reduce the time required for purification of larger amounts of mRNA vaccine for clinical trials, high-gradient magnetic separation (HGMS) is suitable. Thereby, magnetic beads are selectively retained in a flow-through separation chamber. To meet the requirements of biopharmaceutical production, a disposable HGMS separation chamber with a certified material (United States Pharmacopeia Class VI) was developed which can be manufactured using 3D printing. Due to the special design, the filter matrix itself is not in contact with the product. The separation chamber was tested with suspensions of oligo(dT)-functionalized Dynabeads MyOne loaded with synthetic mRNA. At a concentration of cB = 1.6-2.1 g·L-1 in lysis/binding buffer, these 1 μm magnetic particles are retained to more than 99.39% at volumetric flows of up to 150 mL·min-1 with the developed SU-HGMS separation chamber. When using the separation chamber with volumetric flow rates below 50 mL·min-1, the retained particle mass is even more than 99.99%.
Collapse
Affiliation(s)
- Lars Wommer
- Trier University of Applied SciencesEnvironmental Campus BirkenfeldInstitute for biotechnical Process DesignHoppstädten‐WeiersbachGermany
| | - Patrick Meiers
- Trier University of Applied SciencesEnvironmental Campus BirkenfeldInstitute for biotechnical Process DesignHoppstädten‐WeiersbachGermany
| | - Isabelle Kockler
- Trier University of Applied SciencesEnvironmental Campus BirkenfeldInstitute for biotechnical Process DesignHoppstädten‐WeiersbachGermany
| | - Roland Ulber
- Technical University KaiserslauternInstitute of Bioprocess EngineeringKaiserslauternGermany
| | - Percy Kampeis
- Trier University of Applied SciencesEnvironmental Campus BirkenfeldInstitute for biotechnical Process DesignHoppstädten‐WeiersbachGermany
| |
Collapse
|
17
|
Belka M, Bączek T. Additive manufacturing and related technologies – The source of chemically active materials in separation science. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
|
19
|
Ambrosi A, Bonanni A. How 3D printing can boost advances in analytical and bioanalytical chemistry. Mikrochim Acta 2021; 188:265. [PMID: 34287702 DOI: 10.1007/s00604-021-04901-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
3D printing fabrication methods have received lately an enormous attention by the scientific community. Laboratories and research groups working on analytical chemistry applications, among others, have advantageously adopted 3D printing to fabricate a wide range of tools, from common laboratory hardware to fluidic systems, sample treatment platforms, sensing structures, and complete fully functional analytical devices. This technology is becoming more affordable over time and therefore preferred over the commonly used fabrication processes like hot embossing, soft lithography, injection molding and micromilling. However, to better exploit 3D printing fabrication methods, it is important to fully understand their benefits and limitations which are also directly associated to the properties of the materials used for printing. Costs, printing resolution, chemical and biological compatibility of the materials, design complexity, robustness of the printed object, and integration with commercially available systems represent important aspects to be weighted in relation to the intended task. In this review, a useful introductory summary of the most commonly used 3D printing systems and mechanisms is provided before the description of the most recent trends of the use of 3D printing for analytical and bioanalytical chemistry. Concluding remarks will be also given together with a brief discussion of possible future directions.
Collapse
Affiliation(s)
- Adriano Ambrosi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Alessandra Bonanni
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
20
|
Feast S, Fee C, Huber T, Clarke D. Printed monolith adsorption as an alternative to expanded bed adsorption for purifying M13 bacteriophage. J Chromatogr A 2021; 1652:462365. [PMID: 34246960 DOI: 10.1016/j.chroma.2021.462365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/18/2022]
Abstract
An ordered 3D printed chromatography stationary phase was used to purify M13 bacteriophage (M13) directly from crude cell culture. This new approach, which offers the same advantages as expanded bed adsorption (EBA) with regard to tolerating solids-laden feed streams but without the corresponding issues associated with fluidized bed stability that affect the latter, can be described as "printed monolith adsorption (PMA)". PMA columns (5, 10 and 15 cm length by 1 cm diameter) were made via a wax templating method from cross-linked cellulose hydrogel and functionalized with a quaternary amine ligand. The recovery of M13 was found to be strongly linked to load flow rate, with the highest recovery 89.7% ± 6% for 1.4 × 1011 pfu/mL of resin occurring at 76 cm/h with a 10 cm column length. A recovery of 87.7% ± 5% for 1.49 × 1011 pfu/mL of media was achieved with a 15 cm column length under conditions comparable to a reported EBA process. The PMA process was completed three times faster than EBA because PMA flow rates can readily be adjusted during operation, with high flow rates and low back pressure, which is unique to the ordered monolithic media geometry used. Equilibration, wash, and cleaning steps were carried out at high flow rates (611 cm/h), minimizing process time and were limited only by the volumetric flow rate capacity of the pumps used, rather than column back pressure (<0.1 MPa at 611 cm/hr). Initial capture of M13 appears to occur on the surface of the monolith solid phase (i.e. the mobile phase channel walls) and subsequently, at a slower rate, within the internal pores of the solid phase media. The difference in binding rate between these two sites is likely caused by slow pore diffusion of the large M13 particles into the pores, with similar slow diffusion out of the pores resulting in tailing of the elution peak. The results indicate that PMA is a promising technology for the efficient purification of viruses directly from crude cell culture.
Collapse
Affiliation(s)
- Sean Feast
- School of Product Design and the Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand.
| | - Conan Fee
- School of Product Design and the Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand.
| | - Tim Huber
- School of Product Design and the Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand.
| | - Daniel Clarke
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| |
Collapse
|
21
|
Bishop LDC, Misiura A, Landes CF. A new metric for relating macroscopic chromatograms to microscopic surface dynamics: the distribution function ratio (DFR). Analyst 2021; 146:4268-4279. [PMID: 34105529 DOI: 10.1039/d1an00370d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterogeneous stationary phase chemistry causes chromatographic tailing that lowers separation efficiency and complicates optimizing mobile phase conditions. Model-free metrics are attractive for assessing optimal separation conditions due to the low quantity of information required, but often do not reveal underlying mechanisms that cause tailing, for example, heterogeneous retention modes. We report a new metric, which we call the Distribution Function Ratio (DFR), based on a graphical comparison between the chromatogram and Gaussian cumulative distribution functions, achieving correspondence to ground truth surface dynamics with a single chromatogram. Using a Monte Carlo framework, we show that the DFR can predict the prevalence of heterogeneous retention modes with high precision when the relative desorption rate between modes is known, as in during surface dynamics experiments. Ground truth comparisons reveal that the DFR outperforms both the asymmetry factor and skewness by yielding a one-to-one correspondence with heterogeneous retention mode prevalence over a broad range of experimentally realistic values. Perhaps of more value, we illustrate that the DFR, when combined with the asymmetry factor and skewness, can estimate microscopic surface dynamics, providing valuable insights into surface chemistry using existing chromatographic instrumentation. Connecting ensemble results to microscopic quantities through the lens of simulation establishes a new chemistry-driven route to measuring and advancing separations.
Collapse
Affiliation(s)
- Logan D C Bishop
- Department of Chemistry, Rice University, Houston, Texas 77251, USA.
| | | | | |
Collapse
|
22
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
23
|
Scorza LC, Simon U, Wear M, Zouliatis A, Dimartino S, McCormick AJ. Evaluation of novel 3D-printed monolithic adsorbers against conventional chromatography columns for the purification of c-phycocyanin from Spirulina. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Voráčová I, Přikryl J, Novotný J, Datinská V, Yang J, Astier Y, Foret F. 3D printed device for epitachophoresis. Anal Chim Acta 2021; 1154:338246. [PMID: 33736813 DOI: 10.1016/j.aca.2021.338246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Polyacrylamide or agarose gels are the most frequently used sieving and stabilizing media in slab gel electrophoresis. Recently, we have introduced a new electrophoretic technique for concentration/separation of milliliter sample volumes. In this technique, the gel is used primarily as an anticonvection media eliminating liquid flow during the electromigration. While serving well for the liquid stabilization, the gels can undergo deformation when exposed to a discontinuous electrolyte buffer system used in epitachophoresis. In this work, we have explored 3D printing to form rigid stabilizing manifolds to minimize liquid flow during the epitachophoresis run. The whole device was printed using the stereolithography technique from a low water-absorbing resin. The stabilizing manifold, serving as the gel substitute, was printed as a replaceable composite structure preventing electrolyte mixing during the separation. Different geometries of the 3D printed stabilizing manifolds were tested for use in concentrating ionic sample components without spatial separation. The presented device can focus analytes from 3 or 4 mL of the sample to 150 μL or less, depending on the collection cup size. With the 150 μL collection cup, this represents the enrichment factor from 20 to 27. The time of concentration was from 15 to 25 min, depending on stabilization media and power used.
Collapse
Affiliation(s)
- Ivona Voráčová
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno 602 00, Czech Republic.
| | - Jan Přikryl
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno 602 00, Czech Republic
| | - Jakub Novotný
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno 602 00, Czech Republic
| | - Vladimíra Datinská
- Roche Sequencing Solution, Incorporated Pleasanton, California, 94588, United States
| | - Jaeyoung Yang
- Roche Sequencing Solution, Incorporated Pleasanton, California, 94588, United States
| | - Yann Astier
- Roche Sequencing Solution, Incorporated Pleasanton, California, 94588, United States
| | - František Foret
- Czech Academy of Sciences, Institute of Analytical Chemistry, Brno 602 00, Czech Republic; CEITEC, Masaryk University, Brno 601 77, Czech Republic
| |
Collapse
|
25
|
Sarwar MS, Simon U, Dimartino S. Experimental investigation and mass transfer modelling of 3D printed monolithic cation exchangers. J Chromatogr A 2021; 1646:462125. [PMID: 33894456 DOI: 10.1016/j.chroma.2021.462125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/27/2022]
Abstract
3D printing has recently found application in chromatography as a means to create ordered stationary phases with improved separation efficiency. Currently, 3D printed stationary phases are limited by the lack of 3D printing materials suitable for chromatographic applications, and require a strict compromise in terms of desired resolution, model size and the associated print time. Modelling of mass transfer in 3D printed monoliths is also fundamental to understand and further optimise separation performance of 3D printed stationary phases. In this work, a novel 3D printing material was formulated and employed to fabricate monolithic cation exchangers (CEXs) with carboxyl functionalities. CEXs were printed with ligand densities of 0.7, 1.4, 2.1 and 2.8 mmol/g and used in batch adsorption experiments with lysozyme as model protein. All CEXs demonstrated high binding strength towards lysozyme, with maximum binding capacities of up to 108 mg/mL. The experimental results were described using mass transfer models based on lumped pore diffusion and lumped solid diffusion mechanisms adapted to reflect the complex geometry of the 3D printed monoliths. An exact 3D model as well as less computationally demanding 1D and 2D approximations were evaluated in terms of their quality to capture the experimental trend of batch adsorption kinetic data. Overall, the model results indicate that mass transfer in the fabricated CEXs is mostly controlled by pore diffusion at high protein concentrations in the mobile phase, with solid diffusion becoming important at low protein concentrations. Also, the kinetic data were approximated equally well by both the full 3D model as well as the 2D approximation, indicating leaner mathematical models of lower dimensionality can be employed to describe mass transfer in complex three dimensional geometries. We believe this work will help spur the development of 3D printable materials for separations and aid in the development of quantitative platforms to evaluate and optimise the performance of 3D printed monoliths.
Collapse
Affiliation(s)
- M Sulaiman Sarwar
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Ursula Simon
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Simone Dimartino
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK.
| |
Collapse
|
26
|
Guillén-Alonso H, Rosas-Román I, Winkler R. The emerging role of 3D-printing in ion mobility spectrometry and mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:852-861. [PMID: 33576357 DOI: 10.1039/d0ay02290j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
3D-printing is revolutionizing the rapid prototyping in analytical chemistry. In the last few years, we observed the development of 3D-printed components for ion studies, such as ion sources, ion transfer and ion mobility spectrometry (IMS) devices. Often, 3D-printed gadgets add functions to existing mass spectrometry (MS) systems. Custom adapters improve the sensibility for coupling with ambient ionization and upstream chromatography methods, and sample preparation units optimize the following MS analyses. Besides, 3D-printer parts are suitable for constructing custom analytical robots and mass imaging systems. Some of those assemblies implement new concepts and are commercially not available. An essential aspect of using 3D-printing is the fast turnover of design improvements, which is motivated by permissive licenses. The easy reproducibility and exchange of ideas lead to a community-driven development, which is accompanied by economic advantages for public research and education.
Collapse
|
27
|
Davis JJ, Foster SW, Grinias JP. Low-cost and open-source strategies for chemical separations. J Chromatogr A 2021; 1638:461820. [PMID: 33453654 PMCID: PMC7870555 DOI: 10.1016/j.chroma.2020.461820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Samuel W Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
28
|
Wang L, Pumera M. Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116151] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Chiral chromatography method screening strategies: Past, present and future. J Chromatogr A 2021; 1638:461878. [PMID: 33477025 DOI: 10.1016/j.chroma.2021.461878] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/23/2022]
Abstract
Method screening is an integral part of chromatographic method development for the separation of racemates. Due to the highly complex retention mechanism of a chiral stationary-phase, it is often difficult, if not impossible, to device predefined method-development steps that can be successfully applied to a wide group of molecules. The standard approach is to evaluate or screen a series of stationary and mobile-phase combinations to increase the chances of detecting a suitable separation condition. Such a process is often the rate-limiting step for high-throughput analyses and purification workflows. To address the problem, several solutions and strategies have been proposed over the years for reduction of net method-screening time. Some of the strategies have been adopted in practice while others remained confined in the literature. The main objective of this review is to revisit, critically discuss and compile the solutions published over the last two decades. We expect that making the diverse set of solutions available in a single document will help assessing the adequacy of existing screening protocols in laboratories conducting chiral separation.
Collapse
|
30
|
Broeckhoven K, Desmet G. Advances and Innovations in Liquid Chromatography Stationary Phase Supports. Anal Chem 2020; 93:257-272. [DOI: 10.1021/acs.analchem.0c04466] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. Broeckhoven
- Vrije Universiteit Brussel, Department of Chemical Engineering (CHIS), Faculty of Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| | - G. Desmet
- Vrije Universiteit Brussel, Department of Chemical Engineering (CHIS), Faculty of Engineering, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
31
|
Nanofabrication of synthetic nanoporous geomaterials: from nanoscale-resolution 3D imaging to nano-3D-printed digital (shale) rock. Sci Rep 2020; 10:21596. [PMID: 33299052 PMCID: PMC7725825 DOI: 10.1038/s41598-020-78467-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 11/18/2020] [Indexed: 11/08/2022] Open
Abstract
Advances in imaging have made it possible to view nanometer and sub-nanometer structures that are either synthesized or that occur naturally. It is believed that fluid dynamic and thermodynamic behavior differ significantly at these scales from the bulk. From a materials perspective, it is important to be able to create complex structures at the nanometer scale, reproducibly, so that the fluid behavior may be studied. New advances in nanoscale-resolution 3D-printing offer opportunities to achieve this goal. In particular, additive manufacturing with two-photon polymerization allows creation of intricate structures. Using this technology, a creation of the first nano-3D-printed digital (shale) rock is reported. In this paper, focused ion beam-scanning electron microscopy (FIB-SEM) nano-tomography image dataset was used to reconstruct a high-resolution digital rock 3D model of a Marcellus Shale rock sample. Porosity of this 3D model has been characterized and its connected/effective pore system has been extracted and nano-3D-printed. The workflow of creating this novel nano-3D-printed digital rock 3D model is described in this paper.
Collapse
|
32
|
Chaparro-Garnica CY, Jordá-Faus P, Bailón-García E, Ocampo-Pérez R, Aguilar-Madera CG, Davó-Quiñonero A, Lozano-Castelló D, Bueno-López A. Customizable Heterogeneous Catalysts: Nonchanneled Advanced Monolithic Supports Manufactured by 3D-Printing for Improved Active Phase Coating Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54573-54584. [PMID: 33256401 DOI: 10.1021/acsami.0c14703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D)-printed catalysts are being increasingly studied; however, most of these studies focus on the obtention of catalytically active monoliths, and thus traditional channeled monolithic catalysts are usually obtained and tested, losing sight of the advantages that 3D-printing could entail. This work goes one step further, and an advanced monolith with specifically designed geometry has been obtained, taking advantage of the versatility provided by 3D-printing. As a proof of concept, nonchanneled advanced monolithic (NCM) support, composed of several transversal discs containing deposits for active phase deposition and slits through which the gas circulates, was obtained and tested in the CO-PrOx reaction. The results evidenced that the NCM support showed superior catalytic performance compared to conventional channeled monoliths (CMs). The region of temperature in which the active phase can work under chemical control, and thus in a more efficient way, is increased by 31% in NCM compared to the powdered or the CM sample. Turbulence occurs inside the fluid path through the NCM, which enhances the mass transfer of reagents and products toward and from the active sites to the fluid bulk favoring the chemical reaction rate. The nonchanneled monolith also improved heat dispersion by the tortuous paths, reducing the local temperature at the active site. Thus, the way in which reactants and products are transported inside the monoliths plays a crucial role, and this is affected by the inner geometry of the monoliths.
Collapse
Affiliation(s)
- Cristian Y Chaparro-Garnica
- Departamento de Química Inorgánica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, E03080 Alicante, España
| | - Pepe Jordá-Faus
- Departamento de Química Inorgánica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, E03080 Alicante, España
| | - Esther Bailón-García
- Departamento de Química Inorgánica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, E03080 Alicante, España
| | - Raúl Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, Zona Universitaria, 78210 San Luis Potosí, México
| | - Carlos G Aguilar-Madera
- Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo León, Carretera a Cerro Prieto Km 8, Ex-Hacienda de Guadalupe, 67700 Linares, México
| | - Arantxa Davó-Quiñonero
- Departamento de Química Inorgánica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, E03080 Alicante, España
| | - Dolores Lozano-Castelló
- Departamento de Química Inorgánica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, E03080 Alicante, España
| | - Agustín Bueno-López
- Departamento de Química Inorgánica, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, E03080 Alicante, España
| |
Collapse
|
33
|
The use of UHPLC, IMS, and HRMS in multiresidue analytical methods: A critical review. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122369. [PMID: 33091675 DOI: 10.1016/j.jchromb.2020.122369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Residue chemists who analyse pesticides in vegetables or veterinary drugs in animal-based food are currently facing a situation where there is a requirement to detect more and more compounds at lower and lower concentrations. Conventional tandem quadrupole instruments provide sufficient sensitivity, but speed and selectivity appear as future limitations. This will become an even larger issue when there is a need to not only detect active compounds but also their degradation products and metabolites. This will likely lead to a situation in which the conventional targeted approach must be expanded or augmented by a certain non-targeted strategy. High-resolution mass spectrometry provides such capabilities, but it frequently requires an additional degree of selectivity for the unequivocal confirmation of analytes present at trace levels in highly complex and variable food matrices. The hyphenation of ultrahigh performance liquid chromatography with ion mobility and high-resolution mass spectrometry provides analytical chemists with a new tool for performing such a demanding multiresidue analysis. The objective of this paper is to investigate the benefits of the added ion mobility dimension as well as to critically discuss the current limitations of this commercially available technology.
Collapse
|
34
|
Miniaturization of liquid chromatography coupled to mass spectrometry. 3. Achievements on chip-based LC–MS devices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Abstract
AbstractThere is a growing need for chemical analyses to be performed in the field, at the point of need. Tools and techniques often found in analytical chemistry laboratories are necessary in performing these analyses, yet have, historically, been unable to do so owing to their size, cost and complexity. Technical advances in miniaturisation and liquid chromatography are enabling the translation of these techniques out of the laboratory, and into the field. Here we examine the advances that are enabling portable liquid chromatography (LC). We explore the evolution of portable instrumentation from its inception to the most recent advances, highlighting the trends in the field and discussing the necessary criteria for developing in-field solutions. While instrumentation is becoming more capable it has yet to find adoption outside of research.
Collapse
|
36
|
Abstract
Abstract
The rapid development of additive technologies in recent years is accompanied by their intensive introduction into various fields of science and related technologies, including analytical chemistry. The use of 3D printing in analytical instrumentation, in particular, for making prototypes of new equipment and manufacturing parts having complex internal spatial configuration, has been proved as exceptionally effective. Additional opportunities for the widespread introduction of 3D printing technologies are associated with the development of new optically transparent, current- and thermo-conductive materials, various composite materials with desired properties, as well as possibilities for printing with the simultaneous combination of several materials in one product. This review will focus on the application of 3D printing for production of new advanced analytical devices, such as compact chromatographic columns for high performance liquid chromatography, flow reactors and flow cells for detectors, devices for passive concentration of toxic compounds and various integrated devices that allow significant improvements in chemical analysis. A special attention is paid to the complexity and functionality of 3D-printed devices.
Collapse
Affiliation(s)
- Pavel N. Nesterenko
- Department of Chemistry , Lomonosov Moscow State University , 1–3 Leninskie Gory , GSP-3 , Moscow , Russian Federation
| |
Collapse
|
37
|
Abstract
Metabolomics is the comprehensive study of small-molecule metabolites. Obtaining a wide coverage of the metabolome is challenging because of the broad range of physicochemical properties of the small molecules. To study the compounds of interest spectroscopic (NMR), spectrometric (MS) and separation techniques (LC, GC, supercritical fluid chromatography, CE) are used. The choice for a given technique is influenced by the sample matrix, the concentration and properties of the metabolites, and the amount of sample. This review discusses the most commonly used analytical techniques for metabolomic studies, including their advantages, drawbacks and some applications.
Collapse
|
38
|
Li F, Ceballos MR, Balavandy SK, Fan J, Khataei MM, Yamini Y, Maya F. 3D Printing in analytical sample preparation. J Sep Sci 2020; 43:1854-1866. [PMID: 32056373 DOI: 10.1002/jssc.202000035] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
In the last 5 years, additive manufacturing (three-dimensional printing) has emerged as a highly valuable technology to advance the field of analytical sample preparation. Three-dimensional printing enabled the cost-effective and rapid fabrication of devices for sample preparation, especially in flow-based mode, opening new possibilities for the development of automated analytical methods. Recent advances involve membrane-based three-dimensional printed separation devices fabricated by print-pause-print and multi-material three-dimensional printing, or improved three-dimensional printed holders for solid-phase extraction containing sorbent bead packings, extraction disks, fibers, and magnetic particles. Other recent developments rely on the direct three-dimensional printing of extraction sorbents, the functionalization of commercial three-dimensional printable resins, or the coating of three-dimensional printed devices with functional micro/nanomaterials. In addition, improved devices for liquid-liquid extraction such as extraction chambers, or phase separators are opening new possibilities for analytical method development combined with high-performance liquid chromatography. The present review outlines the current state-of-the-art of three-dimensional printing in analytical sample preparation.
Collapse
Affiliation(s)
- Feng Li
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences. Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Melisa Rodas Ceballos
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences. Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Sepideh Keshan Balavandy
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences. Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Jingxi Fan
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences. Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences. Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
39
|
Urban J. Are we approaching a post‐monolithic era? J Sep Sci 2020; 43:1628-1633. [DOI: 10.1002/jssc.201901331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Jiří Urban
- Department of ChemistryFaculty of ScienceMasaryk University Brno Czech Republic
| |
Collapse
|
40
|
Mejía-Carmona K, Soares da Silva Burato J, Borsatto JVB, de Toffoli AL, Lanças FM. Miniaturization of liquid chromatography coupled to mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115735] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Dolamore F, Dimartino S, Fee CJ. Numerical Elucidation of Flow and Dispersion in Ordered Packed Beds: Nonspherical Polygons and the Effect of Particle Overlap on Chromatographic Performance. Anal Chem 2019; 91:15009-15016. [PMID: 31684719 DOI: 10.1021/acs.analchem.9b03598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spherical particles are widely considered as the benchmark stationary phase for preparative and analytical chromatography. Although this has proven true for randomly packed beds in the past, we challenge this paradigm for ordered packings, the fabrication of which are now feasible through additive manufacturing (3D printing). Using computational fluid dynamics (Lattice Boltzmann Method) this work shows that nonspherical particles can both reduce mobile-phase band broadening and increase permeability compared with spheres in ordered packed beds. In practice, ordered packed beds can only remain physically stable if the particles are fused to form a contiguous matrix, thus creating a positional overlap at the points of fusion between what would otherwise be discrete particles. Overlap is shown to decrease performance of ordered packed beds in all observed cases, thus we recommend it should be kept to the minimum extent necessary to ensure physical stability. Finally, we introduce a metric to estimate column performance, the mean deviated velocity, a quantitative description of the spread of the velocity field in the column. This metric appears to be a good indicator of mobile-phase dispersion in ordered packed bed media, including overlapped beds, and is a useful tool for screening new stationary-phase morphologies without having to perform computationally expensive simulations.
Collapse
Affiliation(s)
| | - Simone Dimartino
- Institute for Bioengineering, School of Engineering , The University of Edinburgh , Edinburgh EH9 3FB , U.K
| | | |
Collapse
|
42
|
Recognising the Rising Stars of Separation Science. Chromatographia 2019. [DOI: 10.1007/s10337-018-3674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|