1
|
Kashchenko NI, Olennikov DN, Chirikova NK. Chemodiversity of Arctic Plant Dryas oxyodonta: LC-MS Profile and Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:868. [PMID: 38592901 PMCID: PMC10975042 DOI: 10.3390/plants13060868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Dryas oxyodonta Yuz. is a perennial evergreen shrub from the Rosaceae family. D. oxyodonta thrives in subalpine and subarctic regions, as well as in highlands spanning from Central Asia to Siberia and Mongolia. Owing to a lack of information on its chemical composition, we conducted qualitative and quantitative chromatographic analyses on extracts from the leaves and flowers of D. oxyodonta sourced from various Siberian habitats. Employing high-performance liquid chromatography with photodiode-array detection and electrospray ionization triple-quadrupole mass spectrometric detection, we identified 40 compounds, encompassing gallotannins, hydroxycinnamates, procyanidins, catechins, flavonoids, and triterpenes. All Siberian populations of D. oxyodonta exhibited a notable abundance of phenolic compounds. Furthermore, we identified rare glycosides, such as sexangularetin and corniculatusin, as potential markers of the chemodiversity within the Dryas genus. Extracts from the flowers and leaves were effective scavengers of free radicals, including DPPH•, ABTS•+-, O2•-, and •OH radicals. Our findings unequivocally establish D. oxyodonta as a rich source of phenolic compounds with potent antioxidant activity, suggesting its potential utility in developing novel functional products.
Collapse
Affiliation(s)
- Nina I. Kashchenko
- Laboratory of Biomedical Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, 670047 Ulan-Ude, Russia;
| | - Daniil N. Olennikov
- Laboratory of Biomedical Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, 6 Sakh’yanovoy Street, 670047 Ulan-Ude, Russia;
| | - Nadezhda K. Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, 677027 Yakutsk, Russia;
| |
Collapse
|
2
|
Algandaby MM, Esmat A, Nasrullah MZ, Alhakamy NA, Abdel-Naim AB, Rashad OM, Elhady SS, Eltamany EE. LC-MS based metabolic profiling and wound healing activity of a chitosan nanoparticle-loaded formula of Teucrium polium in diabetic rats. Biomed Pharmacother 2023; 168:115626. [PMID: 37852098 DOI: 10.1016/j.biopha.2023.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Healing of wounds is the most deteriorating diabetic experience. Felty germander (Teucrium polium) possesses antioxidant, anti-inflammatory and antimicrobial activities that could accelerate wound healing. Further, nanohydrogels help quicken healing and are ideal biomaterials for drug delivery. In the current study, the chemical profiling, and standardization of T. polium methanolic extract by LC-ESI/TOF/MS/MS and quantitative HPLC-DAD analyses were achieved. The wound healing enhancement in diabetic rats by T. polium nanopreparation (TP-NP) as chitosan nanogel (CS-NG) and investigating the potential mechanisms were investigated. The prepared hydrogel-based TP-NP were characterized with respect to particle size, zeta potential, pH, viscosity, and release of major components. LC-ESI/TOF/MS/MS metabolomic profiling of T. polium revealed the richness of the plant with phenolic compounds, particularly flavonoids. In addition, several terpenoids were detected. Kaempferol content of T. polium was estimated to be 7.85 ± 0.022 mg/ g of dry extract. The wound healing activity of TP-NP was explored in streptozotocin-induced diabetic rats. Diabetic animals were subjected to surgical wounding (1 cm diameter). Then they were divided in 5 groups (10 each). These included Group 1 (untreated control rats), Group 2 received the vehicle of CS-NG; Group 3 (0.5 g of TP prepared in hydrogel), Group 4 (0.5 g of TP-NP), Group 5 represented a positive control treated with 0.5 g of a commercial product. All treatments were applied topically for 21 days. Application of TP-NP on skin wounds of diabetic animals accelerated the healing process as evidenced by epithelium regeneration, formation of granulation tissue followed by epidermal proliferation, along with keratinization as verified by H&E. This was confirmed through enhanced collagen synthesis, as shown by raised hydroxyproline content and Col1A1 gene expression. Moreover, TP-NP significantly alleviated wound oxidative burst and diminished the expressions of inflammatory biomarkers. Meanwhile, TP-NP could enhance the expressions of transforming growth factor beta1 (TGF-β1), in addition to the angiogenic markers; vascular endothelia growth factor A (VEGFA) and platelet-derived growth factor receptor alpha (PDGFRα). Collectively, chitosan nanogel of T. polium accelerates wound healing in diabetic rats, which could be explained - at least partly - through alleviating oxidative stress and inflammation coupled with pro-angiogenic capabilities.
Collapse
Affiliation(s)
- Mardi M Algandaby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ahmed Esmat
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammed Z Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Omar M Rashad
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Enas E Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
3
|
Yuan W, Kou S, Ma Y, Qian Y, Li X, Chai Y, Jiang Z, Zhang L, Sun L, Huang X. Hyperoside ameliorates cisplatin-induced acute kidney injury by regulating the expression and function of Oat1. Xenobiotica 2023; 53:559-571. [PMID: 37885225 DOI: 10.1080/00498254.2023.2270046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Cisplatin is a widely used chemotherapeutic agent to treat solid tumours in clinics. However, cisplatin-induced acute kidney injury (AKI) limits its clinical application. This study investigated the effect of hyperoside (a flavonol glycoside compound) on regulating AKI.The model of cisplatin-induced AKI was established, and hyperoside was preadministered to investigate its effect on improving kidney injury.Hyperoside ameliorated renal pathological damage, reduced the accumulation of SCr, BUN, Kim-1 and indoxyl sulphate in vivo, increased the excretion of indoxyl sulphate into the urine, and upregulated the expression of renal organic anion transporter 1 (Oat1). Moreover, evaluation of rat kidney slices demonstrated that hyperoside promoted the uptake of PAH (p-aminohippurate, the Oat1 substrate), which was confirmed by transient over-expression of OAT1 in HEK-293T cells. Additionally, hyperoside upregulated the mRNA expression of Oat1 upstream regulators hepatocyte nuclear factor-1α (HNF-1α) and pregnane X receptor (PXR).These findings indicated hyperoside could protect against cisplatin-induced AKI by promoting indoxyl sulphate excretion through regulating the expression and function of Oat1, suggesting hyperoside may offer a potential tactic for cisplatin-induced AKI treatment.
Collapse
Affiliation(s)
- Wenjing Yuan
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Shanshan Kou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Ying Ma
- Foreign Language Teaching Department, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yusi Qian
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xinyu Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Yuanyuan Chai
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Zhenzhou Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lixin Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
4
|
Alsharairi NA. Quercetin Derivatives as Potential Therapeutic Agents: An Updated Perspective on the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:15208. [PMID: 37894889 PMCID: PMC10607898 DOI: 10.3390/ijms242015208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Flavonoids are the largest group of polyphenols, represented by many compounds that exhibit high anticancer properties. Quercetin (Q) and its main derivatives (rutin, quercitrin, isoquercitrin, isorhamnetin, tamarixetin, rhamnetin, and hyperoside) in the class of flavonols have been documented to exert anticancer activity. Q has been shown to be useful in the treatment of non-small cell lung cancer (NSCLC), as demonstrated by in vitro/in vivo studies, due to its antitumor, anti-inflammatory, anti-proliferative, anti-angiogenesis, and apoptotic properties. Some flavonoids (flavone, anthocyanins, and proanthocyanidins) have been demonstrated to be effective in nicotine-induced NSCLC treatment. However, the molecular mechanisms of quercetin derivatives (QDs) in nicotine-induced NSCLC treatment remain unclear. Thus, this review aims to summarize the available literature on the therapeutic effects of QDs in nicotine-induced NSCLC.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
5
|
Ji X, Ge L, Ma R, Zhang X, Li J, Song D, Pei L, Sun F, Zhao Q. Screening potential ligands of endothelin receptor A from Choerospondias axillaris and evaluation of their drug-like properties by affinity chromatographic methods. J Pharm Biomed Anal 2023; 226:115240. [PMID: 36657350 DOI: 10.1016/j.jpba.2023.115240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Tibetan medicine is traditionally prescribed as crude extracts or mixtures owing to the theoretical basis with cross fertilization from other medical systems like Ayurveda and traditional Chinese medicine. This is challenged to elucidate the action mechanism and material foundation of Tibetan medicine due to lacking a method to confirm the bioactive compounds determining the therapy. This work created a new strategy for screening and evaluating the bioactive compounds against cardiovascular ailments from Choerospondias axillaris. It involved the immobilization of endothelin receptor A (ETAR) by a one-step covalent assay, the screening and identification of the bioactive compounds by ETAR column combined with tandem mass spectrometry, and the evaluation of their drug-like properties by calculating the efficiency indexes using the data collected by frontal analysis and adsorption energy distribution. The immobilized ETAR remained good stability in three weeks in terms of specificity and repeatability. Catechin, pinocembrin, and hyperoside were identified as potential ETAR ligands from Choerospondias axillaris with two types of binding sites on the immobilized receptor. Their association constants on the high and low affinity binding sites were (2.53 ± 0.11) × 105 and (9.94 ± 0.02) × 103 M-1 for catechin, (1.01 ± 0.12) × 106 and (7.40 ± 0.03) × 104 for hyperoside, and (2.05 ± 0.04) × 105 and (2.47 ± 0.09)× 104 M-1 for pinocembrin, respectively. Owing to the highest association constant, hyperoside presented a surface efficiency index of 7.95, and binding efficiency index of 20.7, and the ligand-lipophilicity efficiency of 1.38. These indicated that the three compounds were the main ingredients for the therapy of Choerospondias axillaris, and had potential to become lead compounds for anti-cardiovascular drugs based on drug-ETAR interaction. The immobilized receptor-based strategy is possible to become an alternative for screening and assessing bioactive compounds from Tibetan medicine.
Collapse
Affiliation(s)
- Xu Ji
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China.
| | - Liji Ge
- Affiliated Hospital of Xizang Minzu University, Xianyang 712082, China
| | - Ruixiao Ma
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Xiaoying Zhang
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Jie Li
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Dan Song
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Lingmin Pei
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Fangyun Sun
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China
| | - Qin Zhao
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang 712082, China; Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang 712082, China.
| |
Collapse
|
6
|
Wang Z, Efferth T, Hua X, Zhang XA. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154347. [PMID: 35914361 DOI: 10.1016/j.phymed.2022.154347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND With the increasing ages of the general population, the incidence of knee osteoarthritis (KOA) is also rising, and KOA has become a major health problem worldwide. Recently, medicinal plants and their secondary metabolites have gained interest due to their activity in treating KOA. In this paper, a comprehensive systematic review of the literature was performed concerning the effects of medicinal plant extracts and natural compounds against KOA in recent years. The related molecular pathways of natural compounds against KOA were summarized, and the possible crosstalk among components in chondrocytes was discussed to propose possible solutions for the current situation of treating KOA. PURPOSE This review focused on the molecular mechanisms by which medicinal plants and their secondary metabolites act against KOA. METHODS Literature searches were performed in the PUBMED, Embase, Science Direct, and Web of Science databases for a 10-year period from 2011 to 2022 with the search terms "medicinal plants," "bioactive compounds," "natural products," "phytochemical," "knee osteoarthritis," "knee joint osteoarthritis," "knee osteoarthritis," "osteoarthritis of the knee," and "osteoarthritis of knee joint." RESULTS According to the results, substantial plant extracts and secondary metabolites show a positive effect in fighting KOA. Plant extracts and their secondary metabolites can affect the diagnostic and prognostic biomarkers of KOA. Natural products inhibit the expression of MMP1, MMP3, MMP19, syndecan IV, ADAMTS-4, ADAMTS-5, iNOS, COX-2, collagenases, IL-6, IL-1β, and TNF-α in vitro and in vivo and . Cytokines also upregulate the expression of collagen II and aggrecan. The main signaling pathways affected by the extracts and isolated compounds include AMPK, SIRT, NLRP3, MAPKs, PI3K/AKT, mTOR, NF-κB, WNT/β-catenin, JAK/STAT3, and NRF2, as well as the cell death modes apoptosis, autophagy, pyroptosis, and ferroptosis. CONCLUSION The role of secondary metabolites in different signaling pathways supplies a better understanding of their potential to develop further curative options for KOA.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xin Hua
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China.
| | - Xin-An Zhang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China.
| |
Collapse
|
7
|
Xia J, Wan Y, Wu JJ, Yang Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases. Crit Rev Food Sci Nutr 2022; 64:1340-1370. [PMID: 36073729 DOI: 10.1080/10408398.2022.2115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-communicable diseases (NCDs) are a global epidemic with diverse pathogenesis. Among them, oxidative stress and inflammation are the most fundamental co-morbid features. Therefore, multi-targets and multi-pathways therapies with significant anti-oxidant and anti-inflammatory activities are potential effective measures for preventing and treating NCDs. The flavonol glycoside compound hyperoside (Hyp) is widely found in a variety of fruits, vegetables, beverages, and medicinal plants and has various health benefits, especially excellent anti-oxidant and anti-inflammatory properties targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. In this review, we summarize the pathogenesis associated with oxidative stress and inflammation in NCDs and the biological activity and therapeutic potential of Hyp. Our findings reveal that the anti-oxidant and anti-inflammatory activities regulated by Hyp are associated with numerous biological mechanisms, including positive regulation of mitochondrial function, apoptosis, autophagy, and higher-level biological damage activities. Hyp is thought to be beneficial against organ injuries, cancer, depression, diabetes, and osteoporosis, and is a potent anti-NCDs agent. Additionally, the sources, bioavailability, pharmacy, and safety of Hyp have been established, highlighting the potential to develop Hyp into dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Jang E. Hyperoside as a Potential Natural Product Targeting Oxidative Stress in Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11081437. [PMID: 35892639 PMCID: PMC9331122 DOI: 10.3390/antiox11081437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Hyperoside (Hyp), also known as quercetin-3-O-galactoside or 3-O-β-D-galactopyranosyl, is a well-known flavonol glycoside that is abundant in various fruits, vegetables, and medicinal plants. Hyp has been suggested to exhibit a wide range of biological actions, including cardiovascular, renal, neuroprotective, antifungal, antifibrotic, and anticancer effects. Accumulating evidence supports the pharmacological activities of Hyp in improving liver pathophysiology. Hence, the present literature review aims to summarize preclinical data suggesting the beneficial effects and underlying mechanisms of Hyp. In addition, our study focuses on hepatic antioxidant defense signaling to assess the underlying mechanisms of the biological actions of Hyp that are closely associated with liver diseases. Experimental findings from an up-to-date search showed that Hyp possesses hepatoprotective, antiviral, antisteatotic, anti-inflammatory, antifibrotic, and anticancer activities in cellular and animal models related to liver dysfunction by enhancing antioxidant responses. In particular, hepatocellular antioxidant defense via activation of erythroid-related nuclear factor 2 by Hyp chiefly explains how this compound acts as a therapeutic agent in liver diseases. Thus, this review emphasizes the therapeutic potential of Hyp as a strong antioxidative substance that plays a crucial role in the regulation of various liver disorders during their pathogenesis.
Collapse
Affiliation(s)
- Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; or
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
9
|
Xu S, Chen S, Xia W, Sui H, Fu X. Hyperoside: A Review of Its Structure, Synthesis, Pharmacology, Pharmacokinetics and Toxicity. Molecules 2022; 27:molecules27093009. [PMID: 35566359 PMCID: PMC9101560 DOI: 10.3390/molecules27093009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Hyperoside is an active ingredient in plants, such as Hypericum monogynum in Hypericaceae, Crataegus pinnatifida in Rosaceae and Polygonum aviculare in Polygonaceae. Its pharmacologic effects include preventing cancer and protecting the brain, neurons, heart, kidneys, lung, blood vessels, bones, joints and liver, among others. Pharmacokinetic analysis of hyperoside has revealed that it mainly accumulates in the kidney. However, long-term application of high-dose hyperoside should be avoided in clinical practice because of its renal toxicity. This review summarises the structure, synthesis, pharmacology, pharmacokinetics and toxicity of hyperoside.
Collapse
Affiliation(s)
- Sijin Xu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Shuaipeng Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Wenxin Xia
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan 750004, China
- Correspondence: (H.S.); (X.F.)
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan 750004, China
- Correspondence: (H.S.); (X.F.)
| |
Collapse
|
10
|
Wang Z, Wang C, He B, Zhang W, Liu L, Deng M, Lü M, Qi X, Liang S. Determination of Daphnetin and its 8-O-Methylated Metabolite in Rat Plasma by UFLC-MS/MS: Application to a Pharmacokinetic Study. Chromatographia 2022. [DOI: 10.1007/s10337-022-04131-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Bertelli A, Biagi M, Corsini M, Baini G, Cappellucci G, Miraldi E. Polyphenols: From Theory to Practice. Foods 2021; 10:2595. [PMID: 34828876 PMCID: PMC8621732 DOI: 10.3390/foods10112595] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The importance of polyphenols in human health is well known; these compounds are common in foods, such as fruits, vegetables, spices, extra virgin olive oil and wine. On the other hand, the different factors that modulate the biological activity of these compounds are less well known. Conceptualization of the work: In this review we took into account about 200 relevant and recent papers on the following topics: "polyphenols bioavailability", "polyphenols matrix effect", "food matrix effect", "polyphenols-cytochromes interaction", after having reviewed and updated information on chemical classification and main biological properties of polyphenols, such as the antioxidant, anti-radical and anti-inflammatory activity, together with the tricky link between in vitro tests and clinical trials. KEY FINDINGS the issue of polyphenols bioavailability and matrix effect should be better taken into account when health claims are referred to polyphenols, thus considering the matrix effect, enzymatic interactions, reactions with other foods or genetic or gender characteristics that could interfere. We also discovered that in vitro studies often underrate the role of phytocomplexes and thus we provided practical hints to describe a clearer way to approach an investigation on polyphenols for a more resounding transfer to their use in medicine.
Collapse
Affiliation(s)
- Alberto Bertelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| | - Maddalena Corsini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| | - Giorgio Cappellucci
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy; (M.B.); (G.B.); (G.C.)
| |
Collapse
|