1
|
Dziego CA, Zanesco AP, Bornkessel-Schlesewsky I, Schlesewsky M, Stanley EA, Jha AP. Mindfulness Training in High-Demand Cohorts Alters Resting-State Electroencephalography: An Exploratory Investigation of Individual Alpha Frequency, Aperiodic 1/ f Activity, and Microstates. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100383. [PMID: 39416660 PMCID: PMC11480290 DOI: 10.1016/j.bpsgos.2024.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mindfulness training (MT) programs have demonstrated utility as cognitive training tools, but there is little consensus on the neurophysiological processes that may underlie its benefits. It has been posited that intrinsic brain activity recorded at rest reflects the functional connectivity of large-scale brain networks and may provide insight into neuroplastic changes that support MT. In the current study, we indexed changes in several resting-state electroencephalography (EEG) parameters to investigate the neurophysiological underpinnings of MT. Methods Resting-state EEG data were collected from active-duty U.S. military personnel (N = 80) at 2 testing sessions: before (time [T] 1) and after (T2) engaging in an 8-week MT or active comparison intervention (positivity training). We examined longitudinal and/or groupwise differences in several EEG parameters through parameterization of power spectra (individual alpha frequency and 1/f activity) and microstate analysis. Results While no significant group × time differences were observed in individual alpha frequency, significant group × time effects were observed in several EEG parameters from T1 to T2. Compared with MT, positivity training was associated with a steepening of the 1/f slope and higher 1/f intercepts together with decreased duration and increased global field power of microstates. Conclusions Taken together, these results suggest that the effects of interventions may be differentiated in resting-state brain activity in a sample of military personnel. Such findings provide insight into the neural underpinnings of MT-related brain changes, but more research is required to elucidate how these may relate to task-related neural and performance changes with MT and whether results generalize to other mindfulness interventions in alternative cohorts and contexts.
Collapse
Affiliation(s)
- Chloe A. Dziego
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | | | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Elizabeth A. Stanley
- Edmund A. Walsh School of Foreign Service, Georgetown University, Washington, DC
| | - Amishi P. Jha
- Department of Psychology, University of Miami, Coral Gables, Florida
| |
Collapse
|
2
|
Adachi K, Takizawa R. Effects of an online mindfulness-based intervention on brain haemodynamics: a pilot randomized controlled trial using functional near-infrared spectroscopy. Cereb Cortex 2024; 34:bhae321. [PMID: 39147390 PMCID: PMC11326825 DOI: 10.1093/cercor/bhae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Although many neuroimaging studies have evaluated changes in the prefrontal cortex during mindfulness-based interventions, most of these studies were cross-sectional studies of skilled participants or involved pre-post comparisons before and after a single session. While functional near-infrared spectroscopy is a useful tool to capture changes in the hemodynamic response of the prefrontal cortex during continuous mindfulness-based intervention, its ability to detect the accumulated effects of continuous mindfulness-based intervention is currently unclear. We investigated whether a 12-wk online mindfulness-based intervention changed the hemodynamic response of the prefrontal cortex during a verbal fluency task. Eighty-two healthy university students were randomly allocated to a 12-wk online mindfulness-based intervention group or a wait-list control group. The integral values of oxygenated hemoglobin measured using functional near-infrared spectroscopy before and after the intervention were compared to the values in the wait-list group. The intervention condition showed significantly greater functional near-infrared spectroscopy signal activation than the control condition; however, the effect sizes before and after the intervention were small. Thus, continuous mindfulness-based intervention could alter prefrontal cortex function, and functional near-infrared spectroscopy could be useful for measuring the accumulated effects of continuous mindfulness-based interventions. With a better understanding of the association between mindfulness and functional near-infrared spectroscopy signals, functional near-infrared spectroscopy can be used for biofeedback analyses.
Collapse
Affiliation(s)
- Koichiro Adachi
- Department of Clinical Psychology, Graduate School of Education, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryu Takizawa
- Department of Clinical Psychology, Graduate School of Education, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Strand, London, WC2R 2LS, United Kingdom
| |
Collapse
|
3
|
Morin A, Grondin S. Mindfulness and time perception: A systematic integrative review. Neurosci Biobehav Rev 2024; 162:105657. [PMID: 38583653 DOI: 10.1016/j.neubiorev.2024.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Several recent studies have explored the relationships between mindfulness and time perception, an area of research that has become increasingly popular in the last 10-15 years. In this article, we present a systematic integrative review of the evidence on this subject. We also integrate the field's findings into a conceptual framework which considers the multifaceted nature of both mindfulness, and time perception research. To identify the relevant literature, we searched the following databases using relevant keywords: PsycINFO; Medline; EBSCO Host Psychology and Behavioral Sciences Collection; and Web of Science. These searches were last performed on the 4th of May 2022, and additional hand searches were also conducted. To be included, articles had to be in English and contain original data about the potential relationship(s) between mindfulness and time perception. Articles which did not present usable data about the relationship(s) between the variables of interest were excluded. In total, 47 research articles were included in the review (combined sample size of ∼5800 participants). Risks of bias in the selected studies were evaluated using two separate assessment tools designed for this purpose. Through an integrative narrative synthesis, this article reviews how mindfulness may relate to time perception for various reference frames, and for various time perception measures and methods. It also provides new insights by exploring how a wide range of findings can be integrated into a coherent whole, in light of some relevant time perception models and mindfulness theories. Altogether, the reviewed data suggest the existence of complex and multifaceted relationships between mindfulness and time perception, highlighting the importance of considering many factors when planning research or interpreting data in this field. Limitations of the current review include the scarceness of data for certain categories of findings, and the relatively low prevalence of studies with a randomized controlled design in the source literature. This research was partly funded by a grant from the Natural Science and Engineering Research Council of Canada.
Collapse
Affiliation(s)
- André Morin
- École de psychologie, Université Laval, Québec, Canada.
| | - Simon Grondin
- École de psychologie, Université Laval, Québec, Canada
| |
Collapse
|
4
|
Trautwein FM, Schweitzer Y, Dor-Ziderman Y, Nave O, Ataria Y, Fulder S, Berkovich-Ohana A. Suspending the Embodied Self in Meditation Attenuates Beta Oscillations in the Posterior Medial Cortex. J Neurosci 2024; 44:e1182232024. [PMID: 38760162 PMCID: PMC11211716 DOI: 10.1523/jneurosci.1182-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/20/2023] [Accepted: 03/15/2024] [Indexed: 05/19/2024] Open
Abstract
Human experience is imbued by the sense of being an embodied agent. The investigation of such basic self-consciousness has been hampered by the difficulty of comprehensively modulating it in the laboratory while reliably capturing ensuing subjective changes. The present preregistered study fills this gap by combining advanced meditative states with principled phenomenological interviews: 46 long-term meditators (19 female, 27 male) were instructed to modulate and attenuate their embodied self-experience during magnetoencephalographic monitoring. Results showed frequency-specific (high-beta band) activity reductions in frontoparietal and posterior medial cortices (PMC). Importantly, PMC reductions were driven by a subgroup describing radical embodied self-disruptions, including suspension of agency and dissolution of a localized first-person perspective. Neural changes were correlated with lifetime meditation and interview-derived experiential changes, but not with classical self-reports. The results demonstrate the potential of integrating in-depth first-person methods into neuroscientific experiments. Furthermore, they highlight neural oscillations in the PMC as a central process supporting the embodied sense of self.
Collapse
Affiliation(s)
- Fynn-Mathis Trautwein
- Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa 3498838, Israel
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau 79104, Germany
| | - Yoav Schweitzer
- Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
- Department of Learning, Instruction and Teacher Education, Faculty of Education, University of Haifa, Haifa 3498838, Israel
| | - Yair Dor-Ziderman
- Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Ohad Nave
- Department of Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yochai Ataria
- Psychology Department, Tel-Hai Academic College, Qiryat Shemona 1220800, Israel
| | - Stephen Fulder
- The Israel Insight Society (Tovana), R.D. Izrael 1933500, Israel
| | - Aviva Berkovich-Ohana
- Edmond Safra Brain Research Center, Faculty of Education, University of Haifa, Haifa 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
- Department of Learning, Instruction and Teacher Education, Faculty of Education, University of Haifa, Haifa 3498838, Israel
- Department of Counseling and Human Development, Faculty of Education, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
5
|
Kumar G P, Panda R, Sharma K, Adarsh A, Annen J, Martial C, Faymonville ME, Laureys S, Sombrun C, Ganesan RA, Vanhaudenhuyse A, Gosseries O. Changes in high-order interaction measures of synergy and redundancy during non-ordinary states of consciousness induced by meditation, hypnosis, and auto-induced cognitive trance. Neuroimage 2024; 293:120623. [PMID: 38670442 DOI: 10.1016/j.neuroimage.2024.120623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
High-order interactions are required across brain regions to accomplish specific cognitive functions. These functional interdependencies are reflected by synergistic information that can be obtained by combining the information from all the sources considered and redundant information (i.e., common information provided by all the sources). However, electroencephalogram (EEG) functional connectivity is limited to pairwise interactions thereby precluding the estimation of high-order interactions. In this multicentric study, we used measures of synergistic and redundant information to study in parallel the high-order interactions between five EEG electrodes during three non-ordinary states of consciousness (NSCs): Rajyoga meditation (RM), hypnosis, and auto-induced cognitive trance (AICT). We analyzed EEG data from 22 long-term Rajyoga meditators, nine volunteers undergoing hypnosis, and 21 practitioners of AICT. We here report the within-group changes in synergy and redundancy for each NSC in comparison with their respective baseline. During RM, synergy increased at the whole brain level in the delta and theta bands. Redundancy decreased in frontal, right central, and posterior electrodes in delta, and frontal, central, and posterior electrodes in beta1 and beta2 bands. During hypnosis, synergy decreased in mid-frontal, temporal, and mid-centro-parietal electrodes in the delta band. The decrease was also observed in the beta2 band in the left frontal and right parietal electrodes. During AICT, synergy decreased in delta and theta bands in left-frontal, right-frontocentral, and posterior electrodes. The decrease was also observed at the whole brain level in the alpha band. However, redundancy changes during hypnosis and AICT were not significant. The subjective reports of absorption and dissociation during hypnosis and AICT, as well as the mystical experience questionnaires during AICT, showed no correlation with the high-order measures. The proposed study is the first exploratory attempt to utilize the concepts of synergy and redundancy in NSCs. The differences in synergy and redundancy during different NSCs warrant further studies to relate the extracted measures with the phenomenology of the NSCs.
Collapse
Affiliation(s)
- Pradeep Kumar G
- MILE Lab, Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India
| | - Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Sensation & Perception Research Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Kanishka Sharma
- MILE Lab, Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India
| | - A Adarsh
- MILE Lab, Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Marie-Elisabeth Faymonville
- Sensation & Perception Research Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Arsene Bruny Integrated Oncological Center, University Hospital of Liege, Liege, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | | | - Ramakrishnan Angarai Ganesan
- MILE Lab, Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India; Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Audrey Vanhaudenhuyse
- Sensation & Perception Research Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Algology Interdisciplinary Center, University Hospital of Liege, Liege, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Sensation & Perception Research Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium.
| |
Collapse
|
6
|
Merlet I, Guillery M, Weyl L, Hammal M, Maliia M, Maliia S, Biraben A, Ricordeau C, Drapier D, Nica A. EEG changes induced by meditative practices: State and trait effects in healthy subjects and in patients with epilepsy. Rev Neurol (Paris) 2024; 180:326-347. [PMID: 38503588 DOI: 10.1016/j.neurol.2024.02.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
The effect of meditation on brain activity has been the topic of many studies in healthy subjects and in patients suffering from chronic diseases. These effects are either explored during meditation practice (state effects) or as a longer-term result of meditation training during the resting-state (trait). The topic of this article is to first review these findings by focusing on electroencephalography (EEG) changes in healthy subjects with or without experience in meditation. Modifications in EEG baseline rhythms, functional connectivity and advanced nonlinear parameters are discussed in regard to feasibility in clinical applications. Secondly, we provide a state-of-the-art of studies that proposed meditative practices as a complementary therapy in patients with epilepsy, in whom anxiety and depressive symptoms are prevalent. In these studies, the effects of standardized meditation programs including elements of traditional meditation practices such as mindfulness, loving-kindness and compassion are explored both at the level of psychological functioning and on the occurrence of seizures. Lastly, preliminary results are given regarding our ongoing study, the aim of which is to quantify the effects of a mindfulness self-compassion (MSC) practice on interictal and ictal epileptic activity. Feasibility, difficulties, and prospects of this study are discussed.
Collapse
Affiliation(s)
- I Merlet
- Universitiy of Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
| | - M Guillery
- Centre Hospitalier Guillaume-Regnier (CHGR), University of Rennes, 35000 Rennes, France.
| | - L Weyl
- Centre Hospitalier Guillaume-Regnier (CHGR), University of Rennes, 35000 Rennes, France.
| | - M Hammal
- Centre Hospitalier Guillaume-Regnier (CHGR), University of Rennes, 35000 Rennes, France.
| | - M Maliia
- Universitiy of Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France; Epilepsy Unit, Reference Center for Rare Epilepsies, Neurology Department, Rennes University Hospital, Rennes, France; Center for Clinical Investigation CIC-P INSERM 1414, F-35000 Rennes, France.
| | - S Maliia
- Centre Hospitalier Guillaume-Regnier (CHGR), University of Rennes, 35000 Rennes, France.
| | - A Biraben
- Universitiy of Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France; Epilepsy Unit, Reference Center for Rare Epilepsies, Neurology Department, Rennes University Hospital, Rennes, France; Center for Clinical Investigation CIC-P INSERM 1414, F-35000 Rennes, France.
| | - C Ricordeau
- Epilepsy Resource Team, 54, rue Saint-Helier, 35000 Rennes, France.
| | - D Drapier
- Centre Hospitalier Guillaume-Regnier (CHGR), University of Rennes, 35000 Rennes, France.
| | - A Nica
- Universitiy of Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France; Epilepsy Unit, Reference Center for Rare Epilepsies, Neurology Department, Rennes University Hospital, Rennes, France; Center for Clinical Investigation CIC-P INSERM 1414, F-35000 Rennes, France.
| |
Collapse
|
7
|
Kim SC, Choi MJ. Does the Sound of a Singing Bowl Synchronize Meditational Brainwaves in the Listeners? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6180. [PMID: 37372766 DOI: 10.3390/ijerph20126180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
This study aims to verify if the beating sound of a singing bowl synchronizes and activates brain waves during listening. The singing bowl used in this experiment produce beats at a frequency of 6.68 Hz, while it decays exponentially and lasts for about 50 s. Brain waves were measured for 5 min in the F3 and F4 regions of seventeen participants (eight males and nine females, average age 25.2) who heard the beating singing bowl sounds. The experimental results showed that the increases (up to ~251%) in the spectral magnitudes of the brain waves were dominant at the beat frequency compared to those of any other clinical brain wave frequency bands. The observed synchronized activation of the brain waves at the beating sound frequency supports that the singing bowl sound may effectively facilitate meditation and relaxation, considering that the beat frequency belongs to the theta wave region which increases in the relaxed meditation state.
Collapse
Affiliation(s)
- Seong-Chan Kim
- Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea
| | - Min-Joo Choi
- Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea
| |
Collapse
|
8
|
Skwara AC, King BG, Zanesco AP, Saron CD. Shifting Baselines: Longitudinal Reductions in EEG Beta Band Power Characterize Resting Brain Activity with Intensive Meditation. Mindfulness (N Y) 2022; 13:2488-2506. [PMID: 36258902 PMCID: PMC9568471 DOI: 10.1007/s12671-022-01974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/18/2022]
Abstract
Objectives A core assumption of meditation training is that cognitive capacities developed during formal practice will transfer to other contexts or activities as expertise develops over time. This implies that meditation training might influence domain-general neurocognitive systems, the spontaneous activity of which should be reflected in the dynamics of the resting brain. Previous research has demonstrated that 3 months of meditation training led to reductions in EEG beta band power during mindfulness of breathing practice. The current study extends these findings to ask whether concomitant shifts in power are observed during 2 min of eyes closed rest, when participants are not explicitly engaged in formal meditation. Methods Experienced meditation practitioners were randomly assigned to practice 3 months of focused attention meditation in a residential retreat, or to serve as waitlist controls. The waitlist controls later completed their own 3-month retreat. Permutation-based cluster analysis of 88-channel resting EEG data was used to test for spectral changes in spontaneous brain activity over the course of the retreats. Results Longitudinal reductions in EEG power in the beta frequency range were identified and replicated across the two independent training periods. Less robust reductions were also observed in the high alpha frequency range, and in individual peak alpha frequency. These changes closely mirror those previously observed during formal mindfulness of breathing meditation practice. Conclusions These findings suggest that the neurocognitive effects of meditation training can extend beyond the bounds of formal practice, influencing the spontaneous activity of the resting brain. Rather than serving as an invariant baseline, resting states might carry meaningful training-related effects, blurring the line between state and trait change. Supplementary Information The online version contains supplementary material available at 10.1007/s12671-022-01974-9.
Collapse
|
9
|
Beyond mindfulness: Arousal-driven modulation of attentional control during arousal-based practices. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100053. [PMID: 36246552 PMCID: PMC9559070 DOI: 10.1016/j.crneur.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Here we report meditative techniques, which modulate attentional control by arousal-driven influences and not by monitoring continuous thought processes as during mindfulness-related practices. We focus on Vajrayana (Tantric Buddhism) practices, during which a sequence of generation (self-visualization as a deity - Yidam) or completion with sign (inner heat -Tummo) stages necessarily precedes non-dual awareness (NDA) Tantric Mahamudra. We compared the electrocardiographic and electroencephalographic correlates of Mahamudra performed after rest (non-Tantric Mahamudra) with Mahamudra performed after Yidam (Tantric Mahamudra) in 16 highly experienced Vajrayana practitioners, 10 of whom also performed Tummo. Both Yidam and Tummo developed the state of PNS withdrawal (arousal) and phasic alertness, as reflected by HF HRV decreases and Alpha2 power increases, later neurophysiologically employed in Tantric Mahamudra. The latter led to the unique state of high cortical excitability, “non-selective” focused attention, and significantly reduced attentional control, quantified by power reductions in all frequency bands, except Theta. In contrast, similar to mindfulness-related practices, non-Tantric Mahamudra was performed in a state of PNS dominance (relaxation), tonic alertness, and active monitoring, as suggested by Alpha1 power increases and less pronounced decreases in other frequency bands. A neurobiological model of meditation is proposed, differentiating arousal-based and mindfulness-related practices. Arousal-based meditations involve the state of PNS withdrawal and phasic alertness. Top-down control during arousal-based practices is modulated by arousal. Mindfulness-based practices involve the state of PNS dominance and tonic alertness. Top-down control during mindfulness-based practices is regulated by monitoring. NDA practices aim at non-selectivity of attention and reduction of top-down control.
Collapse
|
10
|
Forman J. Believing is seeing: A Buddhist theory of creditions. Front Psychol 2022; 13:938731. [PMID: 35992400 PMCID: PMC9384695 DOI: 10.3389/fpsyg.2022.938731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The creditions model is incredibly powerful at explaining both how beliefs are formed and how they influence our perceptions. The model contains several cognitive loops, where beliefs not only influence conscious interpretations of perceptions downstream but are active in the subconscious construction of perceptions out of sensory information upstream. This paper shows how this model is mirrored in the epistemology of two central Buddhist figures, Dignāga (480–540 CE) and Dharmakı̄rti (c. 550–650 CE). In addition to showing these parallels, the paper also demonstrates that by drawing on Dignāga and Dharmakı̄rti's theory, we can extend the explanatory power of the creditions model. Namely, while creditions explain how beliefs influence both the conscious interpretation and subconscious construction of sensory information, Dignāga and Dharmakı̄rti suggest beliefs can even be generative of sensory-like information. I recruit ancient Buddhist texts in conjunction with contemporary cognitive science scholarship to offer a hypothesis for the cognitive mechanisms responsible for this.
Collapse
|
11
|
Paoletti P, Leshem R, Pellegrino M, Ben-Soussan TD. Tackling the Electro-Topography of the Selves Through the Sphere Model of Consciousness. Front Psychol 2022; 13:836290. [PMID: 35664179 PMCID: PMC9161303 DOI: 10.3389/fpsyg.2022.836290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the current hypothesis paper, we propose a novel examination of consciousness and self-awareness through the neuro-phenomenological theoretical model known as the Sphere Model of Consciousness (SMC). Our aim is to create a practical instrument to address several methodological issues in consciousness research. We present a preliminary attempt to validate the SMC via a simplified electrophysiological topographic map of the Self. This map depicts the gradual shift from faster to slower frequency bands that appears to mirror the dynamic between the various SMC states of Self. In order to explore our hypothesis that the SMC's different states of Self correspond to specific frequency bands, we present a mini-review of studies examining the electrophysiological activity that occurs within the different states of Self and in the context of specific meditation types. The theoretical argument presented here is that the SMC's hierarchical organization of three states of the Self mirrors the hierarchical organization of Focused Attention, Open Monitoring, and Non-Dual meditation types. This is followed by testable predictions and potential applications of the SMC and the hypotheses derived from it. To our knowledge, this is the first integrated electrophysiological account that combines types of Self and meditation practices. We suggest this electro-topographic framework of the Selves enables easier, clearer conceptualization of the connections between meditation types as well as increased understanding of wakefulness states and altered states of consciousness.
Collapse
Affiliation(s)
- Patrizio Paoletti
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| | - Rotem Leshem
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
| | - Michele Pellegrino
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation, Assisi, Italy
| |
Collapse
|
12
|
Volodina M, Smetanin N, Lebedev M, Ossadtchi A. Cortical and autonomic responses during staged Taoist meditation: Two distinct meditation strategies. PLoS One 2021; 16:e0260626. [PMID: 34855823 PMCID: PMC8638869 DOI: 10.1371/journal.pone.0260626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022] Open
Abstract
Meditation is a consciousness state associated with specific physiological and neural correlates. Numerous investigations of these correlates reported controversial results which prevented a consistent depiction of the underlying neurophysiological processes. Here we investigated the dynamics of multiple neurophysiological indicators during a staged meditation session. We measured the physiological changes at rest and during the guided Taoist meditation in experienced meditators and naive subjects. We recorded EEG, respiration, galvanic skin response, and photoplethysmography. All subjects followed the same instructions split into 16 stages. In the experienced meditators group we identified two subgroups with different physiological markers dynamics. One subgroup showed several signs of general relaxation evident from the changes in heart rate variability, respiratory rate, and EEG rhythmic activity. The other subgroup exhibited mind concentration patterns primarily noticeable in the EEG recordings while no autonomic responses occurred. The duration and type of previous meditation experience or any baseline indicators we measured did not explain the segregation of the meditators into these two groups. These results suggest that two distinct meditation strategies could be used by experienced meditators, which partly explains the inconsistent results reported in the earlier studies evaluating meditation effects. Our findings are also relevant to the development of the high-end biofeedback systems.
Collapse
Affiliation(s)
- Maria Volodina
- Center for Bioelectric Interfaces, HSE University, Moscow, Russia
| | - Nikolai Smetanin
- Center for Bioelectric Interfaces, HSE University, Moscow, Russia
| | - Mikhail Lebedev
- Center for Bioelectric Interfaces, HSE University, Moscow, Russia
| | - Alexei Ossadtchi
- Center for Bioelectric Interfaces, HSE University, Moscow, Russia
- Artificial intelligence Research Institute, Moscow, Russia
| |
Collapse
|
13
|
Fu H, Garrett B, Tao G, Cordingley E, Ofoghi Z, Taverner T, Sun C, Cheung T. Virtual Reality-Guided Meditation for Chronic Pain in Patients With Cancer: Exploratory Analysis of Electroencephalograph Activity. JMIR BIOMEDICAL ENGINEERING 2021; 6:e26332. [PMID: 38907380 PMCID: PMC11135186 DOI: 10.2196/26332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mindfulness-based stress reduction has demonstrated some efficacy for chronic pain management. More recently, virtual reality (VR)-guided meditation has been used to assist mindfulness-based stress reduction. Although studies have also found electroencephalograph (EEG) changes in the brain during mindfulness meditation practices, such changes have not been demonstrated during VR-guided meditation. OBJECTIVE This exploratory study is designed to explore the potential for recording and analyzing EEG during VR experiences in terms of the power of EEG waveforms, topographic mapping, and coherence. We examine how these measures changed during a VR-guided meditation experience in participants with cancer-related chronic pain. METHODS A total of 10 adult patients with chronic cancer pain underwent a VR-guided meditation experience while EEG signals were recorded during the session using a BioSemi ActiveTwo system (64 channels, standard 10-20 configuration). The EEG recording session consisted of an 8-minute resting condition (pre), a 30-minute sequence of 3 VR-guided meditation conditions (med), and a final rest condition (post). Power spectral density (PSD) was compared between each condition using a cluster-based permutation test and across conditions using multivariate analysis of variance. A topographic analysis, including coherence exploration, was performed. In addition, an exploratory repeated measures correlation was used to examine possible associations between pain scores and EEG signal power. RESULTS The predominant pattern was for increased β and γ bandwidth power in the meditation condition (P<.025), compared with both the baseline and postexperience conditions. Increased power in the δ bandwidth was evident, although not statistically significant. The pre versus post comparison also showed changes in the θ and α bands (P=.02) located around the frontal, central, and parietal cortices. Across conditions, multivariate analysis of variance tests identified 4 clusters with significant (P<.05) PSD differences in the δ, θ, β, and γ bands located around the frontal, central, and parietal cortices. Topographically, 5 peak channels were identified: AF7, FP2, FC1, CP5, and P5, and verified the changes in power in the different brain regions. Coherence changes were observed primarily between the frontal, parietal, and occipital regions in the θ, α, and γ bands (P<.0025). No significant associations were observed between pain scores and EEG PSD. CONCLUSIONS This study demonstrates the feasibility of EEG recording in exploring neurophysiological changes in brain activity during VR-guided meditation and its effect on pain reduction. These findings suggest that distinct altered neurophysiological brain signals are detectable during VR-guided meditation. However, these changes were not necessarily associated with pain. These exploratory findings may guide further studies to investigate the highlighted regions and EEG bands with respect to VR-guided meditation. TRIAL REGISTRATION ClinicalTrials.gov NCT00102401; http://clinicaltrials.gov/ct2/show/NCT00102401.
Collapse
Affiliation(s)
- Henry Fu
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Bernie Garrett
- School of Nursing, University of British Columbia, Vancouver, BC, Canada
| | - Gordon Tao
- School of Rehabilitation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elliott Cordingley
- School of Nursing, University of British Columbia, Vancouver, BC, Canada
| | - Zahra Ofoghi
- School of Interactive Arts and Technology, Simon Fraser University, Surrey, BC, Canada
| | - Tarnia Taverner
- School of Nursing, University of British Columbia, Vancouver, BC, Canada
| | - Crystal Sun
- School of Nursing, University of British Columbia, Vancouver, BC, Canada
| | - Teresa Cheung
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Surrey Memorial Hospital, Fraser Health Authority, Surrey, BC, Canada
- Behavioural and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
14
|
Young JH, Arterberry ME, Martin JP. Contrasting Electroencephalography-Derived Entropy and Neural Oscillations With Highly Skilled Meditators. Front Hum Neurosci 2021; 15:628417. [PMID: 33994976 PMCID: PMC8119624 DOI: 10.3389/fnhum.2021.628417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/08/2021] [Indexed: 12/03/2022] Open
Abstract
Meditation is an umbrella term for a number of mental training practices designed to improve the monitoring and regulation of attention and emotion. Some forms of meditation are now being used for clinical intervention. To accompany the increased clinical interest in meditation, research investigating the neural basis of these practices is needed. A central hypothesis of contemplative neuroscience is that meditative states, which are unique on a phenomenological level, differ on a neurophysiological level. To identify the electrophysiological correlates of meditation practice, the electrical brain activity of highly skilled meditators engaging in one of six meditation styles (shamatha, vipassana, zazen, dzogchen, tonglen, and visualization) was recorded. A mind-wandering task served as a control. Lempel-Ziv complexity showed differences in nonlinear brain dynamics (entropy) during meditation compared with mind wandering, suggesting that meditation, regardless of practice, affects neural complexity. In contrast, there were no differences in power spectra at six different frequency bands, likely due to the fact that participants engaged in different meditation practices. Finally, exploratory analyses suggest neurological differences among meditation practices. These findings highlight the importance of studying the electroencephalography (EEG) correlates of different meditative practices.
Collapse
Affiliation(s)
- Jacob H. Young
- Department of Biology, Colby College, Waterville, ME, United States
- Department of Psychology, Colby College, Waterville, ME, United States
| | | | - Joshua P. Martin
- Department of Biology, Colby College, Waterville, ME, United States
| |
Collapse
|
15
|
Linares PL, Ratti SG, Alvarez EO. Cognitive performance in high school students after short treatment of zazen meditation technic. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Zazen is one of several meditation technics that pretends to reach calmness, reducing interference, and controlling awareness practiced by many people in the world. Zazen practitioners claim that a natural sense of wellbeing, spontaneous joy and self-fulfilling is achieved with its practice. Neuroscientific evidence shows that important modifications in the neuronal electric activity with compromise of several brain structures has been observed, especially those that are involved in modulation of attention. Our laboratory was interested to study the possible behavioural effects of a short time zazen practice to a group of secondary students of public or private high schools, with no previous training in any meditation technics. Two groups, 15-17 years old coursing the 4th or 5th year of their secondary study, one receiving zazen training (n = 31), and the other one recreation activities (n = 45) were selected. All subjects were tested with the Tower of London, Tower of Hanoi, Wisconsin Card Sorting and Stroop test to evaluate the cognitive abilities, at the beginning of the experiment (t0) and at the end of the experiment (t1, about 3 months later). Results showed that in the Tower of London and Tower of Hanoi, zazen group displayed significant less movements to solve the task, compared to Control. No differences were found between both groups in solving the Wisconsin Card Sorting test, but in the Stroop test zazen group was superior to Control in making significant less mistakes during solving the task. Results are compatible with a positive effect of zazen training in behavioural abilities of attention and planning strategies in secondary students.
Collapse
|
16
|
Rodriguez-Larios J, Alaerts K. EEG alpha-theta dynamics during mind wandering in the context of breath focus meditation: An experience sampling approach with novice meditation practitioners. Eur J Neurosci 2020; 53:1855-1868. [PMID: 33289167 DOI: 10.1111/ejn.15073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 11/29/2022]
Abstract
Meditation practice entails moments of distraction dominated by self-generated thoughts (i.e. mind wandering). Initial studies assessing the neural correlates of mind wandering in the context of meditation practice have identified an important role of theta (4-8 Hz) and alpha (8-14 Hz) neural oscillations. In this study, we use a probe-caught experience sampling paradigm to assess spectral changes in the theta-alpha frequency range during mind wandering in the context of breath focus meditation. Electroencephalography (EEG) was measured in 25 novice meditation practitioners during a breath focus task in which they were repeatedly probed to report whether they were focusing on their breath or thinking about something else. Mind wandering episodes were associated with an increase in the amplitude and a decrease in the frequency of theta (4-8 Hz) oscillations. Conversely, alpha oscillations (8-14 Hz) were shown to decrease in amplitude and increase in frequency during mind wandering relative to breath focus. In addition, mind wandering episodes were shown to be accompanied by increased harmonicity and phase synchrony between alpha and theta rhythms. Because similar spectral changes in the theta-alpha frequency range have been reported during controlled cognitive processes involving memory and executive control, we speculate that mind wandering and controlled processes could share some neurocognitive mechanisms. From a translational perspective, this study indicates that oscillatory activity in the theta-alpha frequency range could form adequate parameters for developing EEG-neurofeedback protocols aimed at facilitating the detection of mind wandering during meditation practice.
Collapse
Affiliation(s)
- Julio Rodriguez-Larios
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, University of Leuven, KU Leuven, Leuven, Belgium
| | - Kaat Alaerts
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation, University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Deolindo CS, Ribeiro MW, Aratanha MA, Afonso RF, Irrmischer M, Kozasa EH. A Critical Analysis on Characterizing the Meditation Experience Through the Electroencephalogram. Front Syst Neurosci 2020; 14:53. [PMID: 32848645 PMCID: PMC7427581 DOI: 10.3389/fnsys.2020.00053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Meditation practices, originated from ancient traditions, have increasingly received attention due to their potential benefits to mental and physical health. The scientific community invests efforts into scrutinizing and quantifying the effects of these practices, especially on the brain. There are methodological challenges in describing the neural correlates of the subjective experience of meditation. We noticed, however, that technical considerations on signal processing also don't follow standardized approaches, which may hinder generalizations. Therefore, in this article, we discuss the usage of the electroencephalogram (EEG) as a tool to study meditation experiences in healthy individuals. We describe the main EEG signal processing techniques and how they have been translated to the meditation field until April 2020. Moreover, we examine in detail the limitations/assumptions of these techniques and highlight some good practices, further discussing how technical specifications may impact the interpretation of the outcomes. By shedding light on technical features, this article contributes to more rigorous approaches to evaluate the construct of meditation.
Collapse
Affiliation(s)
| | | | | | | | - Mona Irrmischer
- Department of Integrative Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
18
|
Milner R, Lewandowska M, Ganc M, Nikadon J, Niedziałek I, Jędrzejczak WW, Skarżyński H. Electrophysiological correlates of focused attention on low- and high-distressed tinnitus. PLoS One 2020; 15:e0236521. [PMID: 32756593 PMCID: PMC7406215 DOI: 10.1371/journal.pone.0236521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The study aimed at determining the EEG correlates of concentration on either low or high-distressed tinnitus. METHODS Sixty-seven patients (36 women, mean age = 50.34 ± 12.94 years) with chronic tinnitus were assigned to either a high (HD) or low (LD) tinnitus-related distress group based on THI results. All participants took part in the EEG study comprising two 3-4 min blocks of focusing on either tinnitus (Tinnitus Focus Condition, TFC) or the sensations from one's own body (Body Focus Condition, BFC). The absolute power and current density of 8 frequency bands in 7 clusters were compared between conditions and groups. RESULTS The most pronounced differences were found in the HD patients in the TFC, relative to the BFC, i.e. reduced power of frontally distributed low alpha (8-10 Hz) and posterior high alpha (10-12 Hz) as well as lower current density of 8-10 Hz rhythm over the right frontal/anterior cingulate cortex and higher middle beta (15-18 Hz) density in the precuneus. The HD, relative to LD patients, in both conditions, exhibited increased low beta (12-15 Hz) power over the left middle area and greater higher beta (15-25 Hz) power in the left posterior region. CONCLUSIONS The present study contrasted bioelectrical activity, acquired when concentrating on tinnitus with EEG data collected whilst patients focused on their body. Decreased alpha power and current density in the frontal/cingulate cortex when listening to bothersome tinnitus might reflect greater cortical arousal whereas increased beta power and density in the precuneus/posterior cingulate activity in this condition could be indicative for elevated tension or augmented cognitive/emotional processing of tinnitus sound. Enhanced beta rhythm in patients with high versus low tinnitus distress, observed independently of the study condition, may be due to greater self-focused attention or more active processing of sensations derived from the own body.
Collapse
Affiliation(s)
- Rafał Milner
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Monika Lewandowska
- Institute of Psychology, Faculty of Philosophy and Social Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Małgorzata Ganc
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Jan Nikadon
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Iwona Niedziałek
- Audiology and Phoniatrics Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Wiesław Wiktor Jędrzejczak
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| |
Collapse
|
19
|
Schoenberg PLA, Vago DR. Mapping meditative states and stages with electrophysiology: concepts, classifications, and methods. Curr Opin Psychol 2019; 28:211-217. [DOI: 10.1016/j.copsyc.2019.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 01/01/2023]
|
20
|
Hata M, Hayashi N, Ishii R, Canuet L, Pascual-Marqui RD, Aoki Y, Ikeda S, Sakamoto T, Iwata M, Kimura K, Iwase M, Ikeda M, Ito T. Short-term meditation modulates EEG activity in subjects with post-traumatic residual disabilities. Clin Neurophysiol Pract 2019; 4:30-36. [PMID: 30886941 PMCID: PMC6402287 DOI: 10.1016/j.cnp.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/24/2022] Open
Abstract
We aimed to detect EEG changes induced by meditative interventions in PTRD subjects. PTRD subjects exhibited increased gamma activity in the IPL relative to controls. Changes of delta activity in the precuneus correlated with changes of the QOL scale.
Objective Neurophysiological changes related to meditation have recently attracted scientific attention. We aimed to detect changes in electroencephalography (EEG) parameters induced by a meditative intervention in subjects with post-traumatic residual disability (PTRD), which has been confirmed for effectiveness and safety in a previous study. This will allow us to estimate the objective effect of this intervention at the neurophysiological level. Methods Ten subjects with PTRD were recruited and underwent psychological assessment and EEG recordings before and after the meditative intervention. Furthermore, 10 additional subjects were recruited as normal controls. Source current density as an EEG parameter was estimated by exact Low Resolution Electromagnetic Tomography (eLORETA). Comparisons of source current density in PTRD subjects after the meditative intervention with normal controls were investigated. Additionally, we compared source current density in PTRD subjects between before and after meditative intervention. Correlations between psychological assessments and source current density were also explored. Results After meditative intervention, PTRD subjects exhibited increased gamma activity in the left inferior parietal lobule relative to normal controls. In addition, changes of delta activity in the right precuneus correlated with changes in the psychological score on role physical item, one of the quality of life scales reflecting the work or daily difficulty due to physical problems. Conclusions These results show that the meditative intervention used in this study produces neurophysiological changes, in particular the modulation of oscillatory activity of the brain. Significance Our meditative interventions might induce the neurophysiological changes associated with the improvement of psychological symptoms in the PTRD subjects.
Collapse
Affiliation(s)
- Masahiro Hata
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Noriyuki Hayashi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Integrative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryouhei Ishii
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Palliative Care, Ashiya Municipal Hospital, Ashiya, Japan
| | - Leonides Canuet
- Department of Cognitive, Social and Organizational Psychology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Roberto D Pascual-Marqui
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland.,Department of Psychiatry, Kansai Medical University, Moriguchi, Japan
| | - Yasunori Aoki
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan.,Nippon Life Hospital, Osaka, Japan
| | - Shunichiro Ikeda
- Department of Psychiatry, Kansai Medical University, Moriguchi, Japan
| | - Toshiko Sakamoto
- Department of Integrative Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Japan Yoga Therapy Society, Japan
| | - Masami Iwata
- Department of Integrative Medicine, Osaka University Graduate School of Medicine, Suita, Japan.,Japan Yoga Therapy Society, Japan
| | | | - Masao Iwase
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshinori Ito
- Department of Integrative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
21
|
Deepeshwar S, Nagendra HR, Rana BB, Visweswaraiah NK. Evolution from four mental states to the highest state of consciousness: A neurophysiological basis of meditation as defined in yoga texts. PROGRESS IN BRAIN RESEARCH 2019; 244:31-83. [PMID: 30732843 DOI: 10.1016/bs.pbr.2018.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This chapter provides a theoretical introduction to states of consciousness and reviews neuroscientific investigations of meditation. The different states of consciousness consist of four mental states, i.e., cancalata (random thinking), ekagrata (non-meditative focusing), dharna (focused meditation), and dhyana (meditation) as defined in yoga texts. Meditation is a self-regulated mental process associated with deep relaxation and increased internalized attention. Scientific investigations on meditation reported changes in electrophysiological signals and neuroimaging measures. But most outcomes of meditation studies showed inconsistent results, this may be due to heterogeneity in meditation methods and techniques evolved in the last 200 years. Traditionally, the features of meditation include the capacity to sustain a heightened awareness of thoughts, behaviors, emotions, and perceptions. Generally, meditation involves non-reactive effortless monitoring of the content of experience from moment to moment. Focused meditation practice involves awareness on a single object and open monitoring meditation is a non-directive meditation involved attention in breathing, mantra, or sound. Therefore, results of few empirical studies of advanced meditators or beginners remain tentative. This is an attempt to compile the meditation-related changes in electrophysiological and neuroimaging processes among experienced and novice practitioners.
Collapse
Affiliation(s)
- Singh Deepeshwar
- Department of Yoga and Life Sciences, Cognitive Neuroscience Lab, Swami Vivekananda Yoga University (S-VYASA), Bengaluru, India
| | - H R Nagendra
- Department of Yoga and Life Sciences, Cognitive Neuroscience Lab, Swami Vivekananda Yoga University (S-VYASA), Bengaluru, India
| | - Bal Budhi Rana
- Department of Yoga and Life Sciences, Cognitive Neuroscience Lab, Swami Vivekananda Yoga University (S-VYASA), Bengaluru, India
| | | |
Collapse
|
22
|
Earable ZEN: Development of an Earphone-Type Zazen Support Wearable System. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2018:1838563. [PMID: 30651942 PMCID: PMC6311785 DOI: 10.1155/2018/1838563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 12/01/2022]
Abstract
Meditation has been included in mental health care and the treatment of hypertension and pain. Zazen is a method of entering the meditative state. We have carried out R&D on a wearable system (earable ZEN) that casually and simply allows the subject to perform zazen without going to a temple or even having a zazen monitor present. In zazen, it is important to prepare one's breathing and posture. The earable ZEN is comprised of an earphone-type sensor (ear sensor) for measuring the breathing and posture of the user, a miniature actuator (neck belt) for communicating disturbances in the breathing and posture of the user, and a microcomputer. In an evaluation experiment, disturbance in breathing was simulated as “deep mouth breathing” and disturbance in posture was simulated as “nodding”. The average accuracy value for seven healthy subjects wearing the earable ZEN was 99.9% for mouth breathing and 100% for nodding. In the same way, the average precision value was 98.7% for mouth breathing and 100% for nodding, with an average recall value of 97.1% for mouth breathing and 100% for nodding. None of the subjects considered the ear sensor and neck belt to be an obstacle to zazen.
Collapse
|
23
|
Posterior cingulate cortex/precuneus blood oxygen-level dependent signal changes during the repetition of an attention task in meditators and nonmeditators. Neuroreport 2018; 29:1463-1467. [PMID: 30222724 DOI: 10.1097/wnr.0000000000001133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND PURPOSE Among several cognitive advantages, meditation is thought to enhance practitioners' capacity for sustained attention. In the present study, we explored this question by testing meditation practitioners (meditators) and nonpractitioners (nonmeditators) on a task that requires sustained attention, the Stroop Word-Color Task (SWCT), while using functional MRI. PARTICIPANTS AND METHODS Participants were all right-handed and included 23 regular meditators as well as 17 nonmeditators. Participants viewed color words (i.e. 'red,' 'blue,' or 'green') presented one at a time on the screen that were written in either the same color (congruent condition) or a different color (incongruent condition) and were asked to indicate the color of the print. Participants also viewed noncolor words written in unrelated colors (neutral condition). Both groups completed the same two acquisition runs. RESULTS Although both meditators and nonmeditators gave faster responses on run 2 than run 1 for both the neutral and incongruent trials, nonmeditators showed decreased activation and meditators showed increased activation in precuneus/posterior cingulate cortex. These regions were previously shown to be activated in the SWCT and belong to default mode network as well as to cognitive control network. CONCLUSION Attention to repetitive stimuli during two equal runs of SWCT is mediated by the precuneus/posterior cingulate cortex, and mental training through meditation may influence the activity of these regions during such tasks.
Collapse
|
24
|
Lee DJ, Kulubya E, Goldin P, Goodarzi A, Girgis F. Review of the Neural Oscillations Underlying Meditation. Front Neurosci 2018; 12:178. [PMID: 29662434 PMCID: PMC5890111 DOI: 10.3389/fnins.2018.00178] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: Meditation is one type of mental training that has been shown to produce many cognitive benefits. Meditation practice is associated with improvement in concentration and reduction of stress, depression, and anxiety symptoms. Furthermore, different forms of meditation training are now being used as interventions for a variety of psychological and somatic illnesses. These benefits are thought to occur as a result of neurophysiologic changes. The most commonly studied specific meditation practices are focused attention (FA), open-monitoring (OM), as well as transcendental meditation (TM), and loving-kindness (LK) meditation. In this review, we compare the neural oscillatory patterns during these forms of meditation. Method: We performed a systematic review of neural oscillations during FA, OM, TM, and LK meditation practices, comparing meditators to meditation-naïve adults. Results: FA, OM, TM, and LK meditation are associated with global increases in oscillatory activity in meditators compared to meditation-naïve adults, with larger changes occurring as the length of meditation training increases. While FA and OM are related to increases in anterior theta activity, only FA is associated with changes in posterior theta oscillations. Alpha activity increases in posterior brain regions during both FA and OM. In anterior regions, FA shows a bilateral increase in alpha power, while OM shows a decrease only in left-sided power. Gamma activity in these meditation practices is similar in frontal regions, but increases are variable in parietal and occipital regions. Conclusions: The current literature suggests distinct differences in neural oscillatory activity among FA, OM, TM, and LK meditation practices. Further characterizing these oscillatory changes may better elucidate the cognitive and therapeutic effects of specific meditation practices, and potentially lead to the development of novel neuromodulation targets to take advantage of their benefits.
Collapse
Affiliation(s)
- Darrin J Lee
- Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Edwin Kulubya
- Neurosurgery, University of California, Davis, Davis, CA, United States
| | - Philippe Goldin
- Nursing, University of California, Davis, Davis, CA, United States
| | - Amir Goodarzi
- Neurosurgery, University of California, Davis, Davis, CA, United States
| | - Fady Girgis
- Neurosurgery, University of California, Davis, Davis, CA, United States
| |
Collapse
|
25
|
Vago DR, Zeidan F. The brain on silent: mind wandering, mindful awareness, and states of mental tranquility. Ann N Y Acad Sci 2017; 1373:96-113. [PMID: 27398642 DOI: 10.1111/nyas.13171] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/27/2022]
Abstract
Mind wandering and mindfulness are often described as divergent mental states with opposing effects on cognitive performance and mental health. Spontaneous mind wandering is typically associated with self-reflective states that contribute to negative processing of the past, worrying/fantasizing about the future, and disruption of primary task performance. On the other hand, mindful awareness is frequently described as a focus on present sensory input without cognitive elaboration or emotional reactivity, and is associated with improved task performance and decreased stress-related symptomology. Unfortunately, such distinctions fail to acknowledge similarities and interactions between the two states. Instead of an inverse relationship between mindfulness and mind wandering, a more nuanced characterization of mindfulness may involve skillful toggling back and forth between conceptual and nonconceptual processes and networks supporting each state, to meet the contextually specified demands of the situation. In this article, we present a theoretical analysis and plausible neurocognitive framework of the restful mind, in which we attempt to clarify potentially adaptive contributions of both mind wandering and mindful awareness through the lens of the extant neurocognitive literature on intrinsic network activity, meditation, and emerging descriptions of stillness and nonduality. A neurophenomenological approach to probing modality-specific forms of concentration and nonconceptual awareness is presented that may improve our understanding of the resting state. Implications for future research are discussed.
Collapse
Affiliation(s)
- David R Vago
- Functional Neuroimaging Laboratory, Brigham & Women's Hospital and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Fadel Zeidan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
26
|
Garland EL, Hanley AW, Baker AK, Howard MO. Biobehavioral Mechanisms of Mindfulness as a Treatment for Chronic Stress: An RDoC Perspective. CHRONIC STRESS 2017; 1. [PMID: 28840198 PMCID: PMC5565157 DOI: 10.1177/2470547017711912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mindfulness-based interventions have been heralded as promising means of alleviating
chronic stress. While meta-analyses indicate that mindfulness-based interventions
significantly reduce global measures of stress, how mindfulness-based interventions
modulate the specific mechanisms underpinning chronic stress as operationalized by the
National Institute of Mental Health research domain criteria (RDoC) of sustained threat
has not yet been detailed in the literature. To address this knowledge gap, this article
aims to (1) review evidence that mindfulness-based interventions ameliorate each of the 10
elements of behavioral dysregulation characterizing sustained threat via an array of
mindful counter-regulatory strategies; (2) review evidence that mindfulness-based
interventions modify biological domains implicated in sustained threat, such as the
hypothalamic–pituitary–adrenal axis, as well as brain circuits involved in attentional
function, limbic reactivity, habit behavior, and the default mode network; and (3)
integrate these findings into a novel conceptual framework of mindful self-regulation in
the face of stress—the Mindfulness-to-Meaning Theory. Taken together, the extant body of
scientific evidence suggests that the practice of mindfulness enhances a range
biobehavioral factors implicated in adaptive stress coping and induces self-referential
plasticity, leading to the ability to find meaning in adversity. These mechanistic
findings can inform the treatment development process to optimize the next generation of
mindfulness-based interventions for greater therapeutic efficacy.
Collapse
Affiliation(s)
- Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development (C-MIIND) College of Social Work, University of Utah, Salt Lake City, UT, USA
| | - Adam W Hanley
- Center on Mindfulness and Integrative Health Intervention Development (C-MIIND) College of Social Work, University of Utah, Salt Lake City, UT, USA
| | - Anne K Baker
- Center on Mindfulness and Integrative Health Intervention Development (C-MIIND) College of Social Work, University of Utah, Salt Lake City, UT, USA
| | - Matthew O Howard
- School of Social Work, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Entrainment of chaotic activities in brain and heart during MBSR mindfulness training. Neurosci Lett 2016; 616:218-23. [DOI: 10.1016/j.neulet.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/12/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
|
28
|
Deepeshwar S, Vinchurkar SA, Visweswaraiah NK, Nagendra HR. Hemodynamic responses on prefrontal cortex related to meditation and attentional task. Front Syst Neurosci 2015; 8:252. [PMID: 25741245 PMCID: PMC4330717 DOI: 10.3389/fnsys.2014.00252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/22/2014] [Indexed: 11/13/2022] Open
Abstract
Recent neuroimaging studies state that meditation increases regional cerebral blood flow (rCBF) in the prefrontal cortex (PFC). The present study employed functional near infrared spectroscopy (fNIRS) to evaluate the relative hemodynamic changes in PFC during a cognitive task. Twenty-two healthy male volunteers with ages between 18 and 30 years (group mean age ± SD; 22.9 ± 4.6 years) performed a color-word stroop task before and after 20 min of meditation and random thinking. Repeated measures ANOVA was performed followed by a post hoc analysis with Bonferroni adjustment for multiple comparisons between the mean values of “During” and “Post” with “Pre” state. During meditation there was an increased in oxy-hemoglobin (ΔHbO) and total hemoglobin (ΔTHC) concentration with reduced deoxy-hemoglobin (ΔHbR) concentration over the right prefrontal cortex (rPFC), whereas in random thinking there was increased ΔHbR with reduced total hemoglobin concentration on the rPFC. The mean reaction time (RT) was shorter during stroop color word task with concomitant reduction in ΔTHC after meditation, suggestive of improved performance and efficiency in task related to attention. Our findings demonstrated that meditation increased cerebral oxygenation and enhanced performance, which was associated with activation of the PFC.
Collapse
Affiliation(s)
- Singh Deepeshwar
- ANVESANA Research Laboratory, Department of Yoga and Life Sciences, Swami Vivekananda Yoga Research Foundation Bangalore, Karnataka, India
| | - Suhas Ashok Vinchurkar
- ANVESANA Research Laboratory, Department of Yoga and Life Sciences, Swami Vivekananda Yoga Research Foundation Bangalore, Karnataka, India
| | - Naveen Kalkuni Visweswaraiah
- ANVESANA Research Laboratory, Department of Yoga and Life Sciences, Swami Vivekananda Yoga Research Foundation Bangalore, Karnataka, India
| | - Hongasandra RamaRao Nagendra
- ANVESANA Research Laboratory, Department of Yoga and Life Sciences, Swami Vivekananda Yoga Research Foundation Bangalore, Karnataka, India
| |
Collapse
|