1
|
Fischer MH, Felisatti A, Li X, Shaki S. A cross-cultural comparison of finger-based and symbolic number representations. J Exp Child Psychol 2024; 246:105979. [PMID: 38861807 DOI: 10.1016/j.jecp.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
The current study examined predictions from embodied cognition for effects of finger counting on number processing. Although finger counting is spontaneous and nearly universal, counting habits reflect learning and culture. European cultures use a sub-base-five system, requiring a full hand plus additional fingers to express numbers exceeding 5. Chinese culture requires only one hand to express such numbers. We investigated the differential impact of early-acquired finger-based number representations on adult symbolic number processing. In total, 53 European and 56 Chinese adults performed two versions of the magnitude classification task, where numbers were presented either as Arabic symbols or as finger configurations consistent with respective cultural finger-counting habits. Participants classified numbers as smaller/larger than 5 with horizontally aligned buttons. Finger-based size and distance effects were larger in Chinese compared with Europeans. These differences did not, however, induce reliably different symbol processing signatures. This dissociation challenges the idea that sensory and motor habits shape our conceptual representations and implies notation-specific processing patterns.
Collapse
Affiliation(s)
- Martin H Fischer
- Department of Psychology, University of Potsdam, 14476 Potsdam, Germany
| | - Arianna Felisatti
- Department of Psychology, University of Potsdam, 14476 Potsdam, Germany; Department of General Psychology, University of Padua, 35131 Padova, Italy.
| | - Xin Li
- Department of Psychology, University of Potsdam, 14476 Potsdam, Germany
| | - Samuel Shaki
- Department of Psychology, Ariel University, Ariel 44837, Israel
| |
Collapse
|
2
|
Marlair C, Guillon A, Vynckier M, Crollen V. Enhancing mathematics learning through finger-counting: A study investigating tactile strategies in 2 visually impaired cases. APPLIED NEUROPSYCHOLOGY. CHILD 2024; 13:269-281. [PMID: 38569167 DOI: 10.1080/21622965.2024.2333832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Finger-counting plays a crucial role in grounding and establishing mathematics, one of the most abstract domains of human cognition. While the combination of visual and proprioceptive information enables the coordination of finger movements, it was recently suggested that the emergence of finger-counting primarily relies on visual cues. In this study, we aimed to directly test this assumption by examining whether explicit finger-counting training (through tactile stimulation) may assist visually impaired children in overcoming their difficulties in learning mathematics. Two visually impaired participants (2 boys of 8.5 and 7.5 years) were therefore trained to use their fingers to calculate. Their pre- and post-training performance were compared to two control groups of sighted children who underwent either the same finger counting training (8 boys, 10 girls, Mage = 5.9 years; 10 kindergarteners and eight 1st graders) or another control vocabulary training (10 boys, 8 girls, Mage = 5.9 years; 11 kindergarteners and seven 1st graders). Results demonstrated that sighted children's arithmetic performance improved much more after the finger training than after the vocabulary training. Importantly, the positive impact of the finger training was also observed in both visually impaired participants (for addition and subtraction in one child; only for addition in the other child). These results are discussed in relation to the sensory compensation hypothesis and emphasize the importance of early and appropriate instruction of finger-based representations in both sighted and visually impaired children.
Collapse
Affiliation(s)
- Cathy Marlair
- Psychological Sciences Research Institute (IPSY), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Aude Guillon
- Psychological Sciences Research Institute (IPSY), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Menik Vynckier
- Psychological Sciences Research Institute (IPSY), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Virginie Crollen
- Psychological Sciences Research Institute (IPSY), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of NeuroScience (IoNS), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Sixtus E, Lindner N, Lohse K, Lonnemann J. Investigating the influence of body movements on children's mental arithmetic performance. Acta Psychol (Amst) 2023; 239:104003. [PMID: 37567051 DOI: 10.1016/j.actpsy.2023.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Several lines of research have demonstrated spatial-numerical associations in both adults and children, which are thought to be based on a spatial representation of numerical information in the form of a mental number line. The acquisition of increasingly precise mental number line representations is assumed to support arithmetic learning in children. It is further suggested that sensorimotor experiences shape the development of number concepts and arithmetic learning, and that mental arithmetic can be characterized as "motion along a path" and might constitute shifts in attention along the mental number line. The present study investigated whether movements in physical space influence mental arithmetic in primary school children, and whether the expected effect depends on concurrency of body movements and mental arithmetic. After turning their body towards the left or right, 48 children aged 8 to 10 years solved simple subtraction and addition problems. Meanwhile, they either walked or stood still and looked towards the respective direction. We report a congruency effect between body orientation and operation type, i.e., higher performance for the combinations leftward orientation and subtraction and rightward orientation and addition. We found no significant difference between walking and looking conditions. The present results suggest that mental arithmetic in children is influenced by preceding sensorimotor cues and not necessarily by concurrent body movements.
Collapse
Affiliation(s)
- Elena Sixtus
- Empirical Childhood Research, University of Potsdam, Germany.
| | - Nadja Lindner
- Empirical Childhood Research, University of Potsdam, Germany
| | - Karoline Lohse
- Empirical Childhood Research, University of Potsdam, Germany
| | - Jan Lonnemann
- Empirical Childhood Research, University of Potsdam, Germany
| |
Collapse
|
4
|
Sixtus E, Krause F, Lindemann O, Fischer MH. A sensorimotor perspective on numerical cognition. Trends Cogn Sci 2023; 27:367-378. [PMID: 36764902 DOI: 10.1016/j.tics.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
Numbers are present in every part of modern society and the human capacity to use numbers is unparalleled in other species. Understanding the mental and neural representations supporting this capacity is of central interest to cognitive psychology, neuroscience, and education. Embodied numerical cognition theory suggests that beyond the seemingly abstract symbols used to refer to numbers, their underlying meaning is deeply grounded in sensorimotor experiences, and that our specific understanding of numerical information is shaped by actions related to our fingers, egocentric space, and experiences with magnitudes in everyday life. We propose a sensorimotor perspective on numerical cognition in which number comprehension and numerical proficiency emerge from grounding three distinct numerical core concepts: magnitude, ordinality, and cardinality.
Collapse
Affiliation(s)
- Elena Sixtus
- Empirical Childhood Research, University of Potsdam, Potsdam, Germany.
| | - Florian Krause
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Oliver Lindemann
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, The Netherlands
| | - Martin H Fischer
- Department of Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
5
|
Finger Use and Arithmetic Skills in Children and Adolescents: a Scoping Review. EDUCATIONAL PSYCHOLOGY REVIEW 2023. [DOI: 10.1007/s10648-023-09722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
de Carvalho Souza AM, Barrocas R, Fischer MH, Arnaud E, Moeller K, Rennó-Costa C. Combining virtual reality and tactile stimulation to investigate embodied finger-based numerical representations. Front Psychol 2023; 14:1119561. [PMID: 37179854 PMCID: PMC10174462 DOI: 10.3389/fpsyg.2023.1119561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/31/2023] [Indexed: 05/15/2023] Open
Abstract
Finger-based representation of numbers is a high-level cognitive strategy to assist numerical and arithmetic processing in children and adults. It is unclear whether this paradigm builds on simple perceptual features or comprises several attributes through embodiment. Here we describe the development and initial testing of an experimental setup to study embodiment during a finger-based numerical task using Virtual Reality (VR) and a low-cost tactile stimulator that is easy to build. Using VR allows us to create new ways to study finger-based numerical representation using a virtual hand that can be manipulated in ways our hand cannot, such as decoupling tactile and visual stimuli. The goal is to present a new methodology that can allow researchers to study embodiment through this new approach, maybe shedding new light on the cognitive strategy behind the finger-based representation of numbers. In this case, a critical methodological requirement is delivering precisely targeted sensory stimuli to specific effectors while simultaneously recording their behavior and engaging the participant in a simulated experience. We tested the device's capability by stimulating users in different experimental configurations. Results indicate that our device delivers reliable tactile stimulation to all fingers of a participant's hand without losing motion tracking quality during an ongoing task. This is reflected by an accuracy of over 95% in participants detecting stimulation of a single finger or multiple fingers in sequential stimulation as indicated by experiments with sixteen participants. We discuss possible application scenarios, explain how to apply our methodology to study the embodiment of finger-based numerical representations and other high-level cognitive functions, and discuss potential further developments of the device based on the data obtained in our testing.
Collapse
Affiliation(s)
- Alyson Matheus de Carvalho Souza
- Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
| | | | - Martin H. Fischer
- Department of Psychology, University of Potsdam, Potsdam, Germany
- *Correspondence: Martin H. Fischer,
| | - Emanuel Arnaud
- Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Korbinian Moeller
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
- Centre for Mathematical Cognition, School of Science, Loughborough University, Loughborough, United Kingdom
- LEAD Graduate School and Research Network, University of Tuebingen, Tübingen, Germany
| | - César Rennó-Costa
- Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
7
|
Khatin-Zadeh O, Farsani D, Eskandari Z, Marmolejo-Ramos F. The roles of motion, gesture, and embodied action in the processing of mathematical concepts. Front Psychol 2022; 13:969341. [PMID: 36312053 PMCID: PMC9616004 DOI: 10.3389/fpsyg.2022.969341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/20/2022] [Indexed: 08/26/2023] Open
Abstract
This article discusses perspective and frame of reference in the metaphorical description of mathematical concepts in terms of motions, gestures, and embodied actions. When a mathematical concept is described metaphorically in terms of gestures, embodied actions, or fictive motions, the motor system comes into play to ground and understand that concept. Every motion, gesture, or embodied action involves a perspective and a frame of reference. The flexibility in taking perspective and frame of reference allows people to embody a mathematical concept or idea in various ways. Based on the findings of past studies, it is suggested that the graphical representation of a mathematical concept may activate those areas of the motor system that are involved in the production of that graphical representation. This is supported by studies showing that when observers look at a painting or handwritten letters, they simulate the painter's or writer's hand movements during painting or writing. Likewise, the motor system can contribute to the grounding of abstract mathematical concepts, such as functions, numbers, and arithmetic operations.
Collapse
Affiliation(s)
- Omid Khatin-Zadeh
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu, China
| | - Danyal Farsani
- Department of Teacher Education, Norwegian University of Science and Technology, Trondheim, Norway
- Facultad de Educación, Psicología y Familia, Universidad Finis Terrae, Santiago, Chile
- Programa de Pós-Graduação em Educação Matemática, State University of São Paulo (UNESP), Rio Claro, Brasil
| | - Zahra Eskandari
- Department of English, Chabahar Maritime University, Chabahar, Sistan and Baluchestan, Iran
| | - Fernando Marmolejo-Ramos
- Center for Change and Complexity in Learning, The University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
8
|
Canonical finger-numeral configurations facilitate the processing of Arabic numerals in adults: An Event-Related Potential study. Neuropsychologia 2022; 170:108214. [DOI: 10.1016/j.neuropsychologia.2022.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
|
9
|
Fischer MH, Glenberg AM, Moeller K, Shaki S. Grounding (fairly) complex numerical knowledge: an educational example. PSYCHOLOGICAL RESEARCH 2021; 86:2389-2397. [PMID: 34757438 DOI: 10.1007/s00426-021-01577-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this article, we contextualize and discuss an on-line contribution to this special issue in which a video-recorded lecture demonstrates the teaching of an abstract mathematical concept, namely regression to the mean. We first motivate the pertinence of this example from the perspective of embodied cognition. Then, we identify mechanisms of teaching that reflect embodied cognitive practices, such as the concreteness fading approach. Rather than a comprehensive review of multiple extensive literatures, this article provides the interested reader with several sources or entries into those literatures.
Collapse
Affiliation(s)
| | - Arthur M Glenberg
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, USA.
- University of Wisconsin-Madison, Madison, WI, USA.
- Universidad de Salamanca, INICO, Salamanca, Spain.
| | - Korbinian Moeller
- Loughborough University, Loughborough, UK
- Leibniz-Institut Für Wissensmedien, Tübingen, Germany
- LEAD Graduate School and Research Network, University of Tübingen, Tübingen, Germany
- Individual Development and Adaptive Education for Children at Risk Center, Frankfurt am Main, Germany
| | | |
Collapse
|
10
|
Schmidt H, Felisatti A, von Aster M, Wilbert J, von Moers A, Fischer MH. Neuromuscular Diseases Affect Number Representation and Processing: An Exploratory Study. Front Psychol 2021; 12:697881. [PMID: 34552528 PMCID: PMC8450493 DOI: 10.3389/fpsyg.2021.697881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) both are rare genetic neuromuscular diseases with progressive loss of motor ability. The neuromotor developmental course of those diseases is well documented. In contrast, there is only little evidence about characteristics of general and specific cognitive development. In both conditions the final motor outcome is characterized by an inability to move autonomously: children with SMA never accomplish independent motoric exploration of their environment, while children with DMD do but later lose this ability again. These profound differences in developmental pathways might affect cognitive development of SMA vs. DMD children, as cognition is shaped by individual motor experiences. DMD patients show impaired executive functions, working memory, and verbal IQ, whereas only motor ability seems to be impaired in SMA. Advanced cognitive capacity in SMA may serve as a compensatory mechanism for achieving in education, career progression, and social satisfaction. This study aimed to relate differences in basic numerical concepts and arithmetic achievement in SMA and DMD patients to differences in their motor development and resulting sensorimotor and environmental experiences. Horizontal and vertical spatial-numerical associations were explored in SMA/DMD children ranging between 6 and 12 years through the random number generation task. Furthermore, arithmetic skills as well as general cognitive ability were assessed. Groups differed in spatial number processing as well as in arithmetic and domain-general cognitive functions. Children with SMA showed no horizontal and even reversed vertical spatial-numerical associations. Children with DMD on the other hand revealed patterns in spatial numerical associations comparable to healthy developing children. From the embodied Cognition perspective, early sensorimotor experience does play a role in development of mental number representations. However, it remains open whether and how this becomes relevant for the acquisition of higher order cognitive and arithmetic skills.
Collapse
Affiliation(s)
- Hendrikje Schmidt
- Potsdam Embodied Cognition Group, Department of Psychology, University of Potsdam, Potsdam, Germany.,Center for Special Educational and Psychological Needs, German Red Cross Hospitals Berlin, Berlin, Germany
| | - Arianna Felisatti
- Potsdam Embodied Cognition Group, Department of Psychology, University of Potsdam, Potsdam, Germany
| | - Michael von Aster
- Center for Special Educational and Psychological Needs, German Red Cross Hospitals Berlin, Berlin, Germany
| | - Jürgen Wilbert
- Department of Inclusive Education, University of Potsdam, Potsdam, Germany
| | - Arpad von Moers
- Department of Pediatrics, German Red Cross Hospitals Berlin, Berlin, Germany
| | - Martin H Fischer
- Potsdam Embodied Cognition Group, Department of Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
11
|
Miklashevsky A, Lindemann O, Fischer MH. The Force of Numbers: Investigating Manual Signatures of Embodied Number Processing. Front Hum Neurosci 2021; 14:590508. [PMID: 33505256 PMCID: PMC7829181 DOI: 10.3389/fnhum.2020.590508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
The study has two objectives: (1) to introduce grip force recording as a new technique for studying embodied numerical processing; and (2) to demonstrate how three competing accounts of numerical magnitude representation can be tested by using this new technique: the Mental Number Line (MNL), A Theory of Magnitude (ATOM) and Embodied Cognition (finger counting-based) account. While 26 healthy adults processed visually presented single digits in a go/no-go n-back paradigm, their passive holding forces for two small sensors were recorded in both hands. Spontaneous and unconscious grip force changes related to number magnitude occurred in the left hand already 100–140 ms after stimulus presentation and continued systematically. Our results support a two-step model of number processing where an initial stage is related to the automatic activation of all stimulus properties whereas a later stage consists of deeper conscious processing of the stimulus. This interpretation generalizes previous work with linguistic stimuli and elaborates the timeline of embodied cognition. We hope that the use of grip force recording will advance the field of numerical cognition research.
Collapse
Affiliation(s)
- Alex Miklashevsky
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Potsdam, Germany
| | - Oliver Lindemann
- Department of Psychology, Education and Child Studies, School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Martin H Fischer
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
12
|
Winter B, Yoshimi J. Metaphor and the Philosophical Implications of Embodied Mathematics. Front Psychol 2020; 11:569487. [PMID: 33224063 PMCID: PMC7667247 DOI: 10.3389/fpsyg.2020.569487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Embodied approaches to cognition see abstract thought and language as grounded in interactions between mind, body, and world. A particularly important challenge for embodied approaches to cognition is mathematics, perhaps the most abstract domain of human knowledge. Conceptual metaphor theory, a branch of cognitive linguistics, describes how abstract mathematical concepts are grounded in concrete physical representations. In this paper, we consider the implications of this research for the metaphysics and epistemology of mathematics. In the case of metaphysics, we argue that embodied mathematics is neutral in the sense of being compatible with all existing accounts of what mathematical entities really are. However, embodied mathematics may be able to revive an older position known as psychologism and overcome the difficulties it faces. In the case of epistemology, we argue that the evidence collected in the embodied mathematics literature is inconclusive: It does not show that abstract mathematical thinking is constituted by metaphor; it may simply show that abstract thinking is facilitated by metaphor. Our arguments suggest that closer interaction between the philosophy and cognitive science of mathematics could yield a more precise, empirically informed account of what mathematics is and how we come to have knowledge of it.
Collapse
Affiliation(s)
- Bodo Winter
- Department of English Language and Linguistics, University of Birmingham, Birmingham, United Kingdom
| | - Jeff Yoshimi
- Cognitive and Information Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
13
|
Vanstavel S, Coello Y, Mejias S. Processing of numerical representation of fingers depends on their location in space. PSYCHOLOGICAL RESEARCH 2020; 85:2566-2577. [PMID: 33125507 DOI: 10.1007/s00426-020-01436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/08/2020] [Indexed: 01/29/2023]
Abstract
Fingers can express quantities and thus contribute to the acquisition and manipulation of numbers as well as the development of arithmetical skills. As embodied entities, the processing of finger numerical configurations should, therefore, be facilitated when they match shared cultural representations and are presented close to the body. To investigate these issues, the present study investigated whether canonical finger configurations are processed faster than noncanonical configurations or spatially matched dot configurations, taking into account their location in the peripersonal or the extrapersonal space. Analysis of verbal responses to the enumeration of small and large numerosities showed that participants (N = 30) processed small numerosities faster than large ones and dots faster than finger configurations despite visuo-spatial matching. Canonical configurations were also processed faster than noncanonical configurations but for finger numerical stimuli only. Furthermore, the difference in response time between dots and fingers processing was greater when the stimuli were located in the peripersonal space than in the extrapersonal space. As a whole, the data suggest that, due to their motor nature, finger numerical configurations are not processed as simple visual stimuli but in relation to corporal and cultural counting habits, in agreement with the embodied framework of numerical cognition.
Collapse
Affiliation(s)
- Sébastien Vanstavel
- University of Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, F-59000, Lille, France
| | - Yann Coello
- University of Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, F-59000, Lille, France
| | - Sandrine Mejias
- University of Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, F-59000, Lille, France.
| |
Collapse
|
14
|
Felisatti A, Laubrock J, Shaki S, Fischer MH. A biological foundation for spatial-numerical associations: the brain's asymmetric frequency tuning. Ann N Y Acad Sci 2020; 1477:44-53. [PMID: 32645221 DOI: 10.1111/nyas.14418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
"Left" and "right" coordinates control our spatial behavior and even influence abstract thoughts. For number concepts, horizontal spatial-numerical associations (SNAs) have been widely documented: we associate few with left and many with right. Importantly, increments are universally coded on the right side even in preverbal humans and nonhuman animals, thus questioning the fundamental role of directional cultural habits, such as reading or finger counting. Here, we propose a biological, nonnumerical mechanism for the origin of SNAs on the basis of asymmetric tuning of animal brains for different spatial frequencies (SFs). The resulting selective visual processing predicts both universal SNAs and their context-dependence. We support our proposal by analyzing the stimuli used to document SNAs in newborns for their SF content. As predicted, the SFs contained in visual patterns with few versus many elements preferentially engage right versus left brain hemispheres, respectively, thus predicting left-versus rightward behavioral biases. Our "brain's asymmetric frequency tuning" hypothesis explains the perceptual origin of horizontal SNAs for nonsymbolic visual numerosities and might be extensible to the auditory domain.
Collapse
Affiliation(s)
| | - Jochen Laubrock
- Department of Psychology, University of Potsdam, Potsdam, Germany.,Department of Psychology, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Samuel Shaki
- Department of Behavioral Sciences and Psychology, Ariel University, Ariel, Israel
| | - Martin H Fischer
- Department of Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
15
|
Barrocas R, Roesch S, Gawrilow C, Moeller K. Putting a Finger on Numerical Development - Reviewing the Contributions of Kindergarten Finger Gnosis and Fine Motor Skills to Numerical Abilities. Front Psychol 2020; 11:1012. [PMID: 32528379 PMCID: PMC7264267 DOI: 10.3389/fpsyg.2020.01012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/22/2020] [Indexed: 01/29/2023] Open
Abstract
The well-documented association between fingers and numbers is not only based on the observation that most children use their fingers for counting and initial calculation, but also on extensive behavioral and neuro-functional evidence. In this article, we critically review developmental studies evaluating the association between finger sensorimotor skills (i.e., finger gnosis and fine motor skills) and numerical abilities. In sum, reviewed studies were found to provide evidential value and indicated that both finger gnosis and fine motor skills predict measures of counting, number system knowledge, number magnitude processing, and calculation ability. Therefore, specific and unique contributions of both finger gnosis and fine motor skills to the development of numerical skills seem to be substantiated. Through critical consideration of the reviewed evidence, we suggest that the association of finger gnosis and fine motor skills with numerical abilities may emerge from a combination of functional and redeployment mechanisms, in which the early use of finger-based numerical strategies during childhood might be the developmental process by which number representations become intertwined with the finger sensorimotor system, which carries an innate predisposition for said association to unfold. Further research is nonetheless necessary to clarify the causal mechanisms underlying this association.
Collapse
Affiliation(s)
| | | | - Caterina Gawrilow
- Department of Psychology, LEAD Graduate School & Research Network, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Korbinian Moeller
- Leibniz-Institut fuer Wissensmedien, Tuebingen, Germany
- Department of Psychology, LEAD Graduate School & Research Network, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Centre for Mathematical Cognition, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
16
|
Di Nuovo A, McClelland JL. Developing the knowledge of number digits in a child-like robot. NAT MACH INTELL 2019. [DOI: 10.1038/s42256-019-0123-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Barrocas R, Roesch S, Dresen V, Moeller K, Pixner S. Embodied numerical representations and their association with multi-digit arithmetic performance. Cogn Process 2019; 21:95-103. [PMID: 31701377 DOI: 10.1007/s10339-019-00940-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/26/2019] [Indexed: 11/28/2022]
Abstract
There is a well-documented association between fingers and numbers, which was claimed to stem from the use of finger-based strategies for counting and calculating during childhood. Recently, it has been argued that this may lead to a concomitant activation of finger-based alongside other numerical representations when encountering single-digit numbers. Indeed, the occurrence of such a co-activation is supported by observed influences of finger counting habits on different numerical tasks, including single-digit arithmetic problem solving. In this study, we pursued the question whether the influence of finger-based representations on arithmetic generalizes to multi-digit arithmetic by investigating the association between the recognition of canonical and non-canonical finger patterns and multi-digit arithmetic in adults. Results indicated that canonical finger-based numerical representations were significantly associated with addition performance only, whereas non-canonical finger-based representations were associated significantly with all four arithmetic operations. We argue that, because non-canonical patterns do not benefit from the iconicity of canonical patterns, their magnitude may need to be constructed through magnitude manipulation which may in turn increase associations with mental arithmetic. In sum, our findings provide converging evidence for a functional association between finger-based representations and arithmetic performance.
Collapse
Affiliation(s)
| | | | - Verena Dresen
- Institute of Psychology, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Korbinian Moeller
- Leibniz-Institut fuer Wissensmedien, Tübingen, Germany.,LEAD Graduate School and Research Network, Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Silvia Pixner
- Institute of Psychology, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| |
Collapse
|
18
|
Coccoz V, Lozada M, Salsa A, Scheuer N. Enactive experience promotes early number understanding: a study with 3-year-old children. JOURNAL OF COGNITIVE PSYCHOLOGY 2019. [DOI: 10.1080/20445911.2019.1676758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- V. Coccoz
- IPEHCS, CONICET, Universidad Nacional del Comahue, Bariloche, Argentina
| | - M. Lozada
- INIBIOMA, CONICET, Universidad Nacional del Comahue, Bariloche, Argentina
| | - A. Salsa
- IRICE, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - N. Scheuer
- IPEHCS, CONICET, Universidad Nacional del Comahue, Bariloche, Argentina
| |
Collapse
|
19
|
Götz FJ, Böckler A, Eder AB. Low numbers from a low head? Effects of observed head orientation on numerical cognition. PSYCHOLOGICAL RESEARCH 2019; 84:2361-2374. [PMID: 31327048 DOI: 10.1007/s00426-019-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/21/2019] [Indexed: 11/28/2022]
Abstract
The present research shows effects of observed vertical head orientation of another person on numerical cognition in the observer. Participants saw portrait-like photographs of persons from a frontal view with gaze being directed at the camera and the head being tilted up or down (vs. not tilted). The photograph appeared immediately before each trial in different numerical cognition tasks. In Experiment 1, participants produced smaller numbers in a random number generation task after having viewed persons with a down-tilted head orientation relative to up-tilted and non-tilted head orientations. In Experiment 2, numerical estimates in an anchoring-like trivia question task were smaller following presentations of persons with a down-tilted head orientation relative to a non-tilted head orientation. In Experiment 3, a response key that was associated with larger numbers in a numerical magnitude task was pressed less frequently in a randomly intermixed free choice task when the photograph showed a person with a down-tilted relative to an up-tilted head orientation. These findings consistently show that social displays can influence numerical cognition across a variety of task settings.
Collapse
Affiliation(s)
- Felix J Götz
- Department of Psychology, Julius-Maximilians-Universität Würzburg, Röntgenring 10, 97070, Würzburg, Germany.
| | - Anne Böckler
- Department of Psychology, Julius-Maximilians-Universität Würzburg, Röntgenring 10, 97070, Würzburg, Germany
| | - Andreas B Eder
- Department of Psychology, Julius-Maximilians-Universität Würzburg, Röntgenring 10, 97070, Würzburg, Germany
| |
Collapse
|
20
|
Sixtus E, Lonnemann J, Fischer MH, Werner K. Mental Number Representations in 2D Space. Front Psychol 2019; 10:172. [PMID: 30804847 PMCID: PMC6370679 DOI: 10.3389/fpsyg.2019.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/18/2019] [Indexed: 12/03/2022] Open
Abstract
There is evidence both for mental number representations along a horizontal mental number line with larger numbers to the right of smaller numbers (for Western cultures) and a physically grounded, vertical representation where "more is up." Few studies have compared effects in the horizontal and vertical dimension and none so far have combined both dimensions within a single paradigm where numerical magnitude was task-irrelevant and none of the dimensions was primed by a response dimension. We now investigated number representations over both dimensions, building on findings that mental representations of numbers and space co-activate each other. In a Go/No-go experiment, participants were auditorily primed with a relatively small or large number and then visually presented with quasi-randomly distributed distractor symbols and one Arabic target number (in Go trials only). Participants pressed a central button whenever they detected the target number and elsewise refrained from responding. Responses were not more efficient when small numbers were presented to the left and large numbers to the right. However, results indicated that large numbers were associated with upper space more strongly than small numbers. This suggests that in two-dimensional space when no response dimension is given, numbers are conceptually associated with vertical, but not horizontal space.
Collapse
Affiliation(s)
- Elena Sixtus
- Faculty of Human Sciences: Research Group “Motor Control and Cognition,” University of Potsdam, Potsdam, Germany
- Empirical Childhood Research, University of Potsdam, Potsdam, Germany
| | - Jan Lonnemann
- Empirical Childhood Research, University of Potsdam, Potsdam, Germany
| | - Martin H. Fischer
- Division of Cognitive Sciences, University of Potsdam, Potsdam, Germany
| | - Karsten Werner
- Faculty of Human Sciences: Research Group “Motor Control and Cognition,” University of Potsdam, Potsdam, Germany
| |
Collapse
|
21
|
Abstract
The first steps in numerical cognition are usually done in conjunction with fingers. Following the assumption that abstract concepts stay associated with the sensory-motor information that was present during their acquisition and consolidation, mental number representations should always be associated with the respective finger counting components. We tested whether finger movements that imply finger counting actually prime the corresponding number concepts in adults. All participants counted number 1 with their thumb and incremented sequentially to number 5 with their pinky. In the experiment, participants sequentially and repeatedly pressed five buttons from thumb to pinky. Each button press triggered the visual presentation of a random number between 1 and 5 that had to be named aloud, resulting in 20% counting-congruent and 80% counting-incongruent finger-number mappings. Average naming latencies were significantly shorter for congruent than incongruent finger-number combinations. Furthermore, there was a distance effect where primes partly co-activated numerically close target numbers and with decreasing priming for more distant prime-target pairs. Overall, these results provide further evidence that number representations are strongly associated with finger counting experience, making fingers an effective tool for number comprehension.
Collapse
|
22
|
Rugani R, Betti S, Sartori L. Numerical Affordance Influences Action Execution: A Kinematic Study of Finger Movement. Front Psychol 2018; 9:637. [PMID: 29765348 PMCID: PMC5938414 DOI: 10.3389/fpsyg.2018.00637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Humans represent symbolic numbers as oriented from left to right: the mental number line (MNL). Up to now, scientific studies have mainly investigated the MNL by means of response times. However, the existing knowledge on the MNL can be advantaged by studies on motor patterns while responding to a number. Cognitive representations, in fact, cannot be fully understood without considering their impact on actions. Here we investigated whether a motor response can be influenced by number processing. Participants seated in front of a little soccer goal. On each trial they were visually presented with a numerical (2, 5, 8) or a non-numerical ($) stimulus. They were instructed to kick a small ball with their right index toward a frontal soccer goal as soon as a stimulus appeared on a screen. However, they had to refrain from kicking when number five was presented (no-go signal). Our main finding is that performing a kicking action after observation of the larger digit proved to be more efficient: the trajectory path was shorter and lower on the surface, velocity peak was anticipated. The smaller number, instead, specifically altered the temporal and spatial aspects of trajectories, leading to more prolonged left deviations. This is the first experimental demonstration that the reaching component of a movement is influenced by number magnitude. Since this paradigm does not require any verbal skill and non-symbolic stimuli (array of dots) can be used, it could be fruitfully adopted to evaluate number abilities in children and even preschoolers. Notably, this is a self-motivating and engaging task, which might help children to get involved and to reduce potential arousal connected to institutional paper-and-pencil examinations.
Collapse
Affiliation(s)
- Rosa Rugani
- Department of General Psychology, University of Padua, Padua, Italy
| | - Sonia Betti
- Department of General Psychology, University of Padua, Padua, Italy
| | - Luisa Sartori
- Department of General Psychology, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
23
|
Stimulating numbers: signatures of finger counting in numerosity processing. PSYCHOLOGICAL RESEARCH 2018; 84:152-167. [PMID: 29344725 DOI: 10.1007/s00426-018-0982-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Finger counting is one of the first steps in the development of mature number concepts. With a one-to-one correspondence of fingers to numbers in Western finger counting, fingers hold two numerical meanings: one is based on the number of fingers raised and the second is based on their ordinal position within the habitual finger counting sequence. This study investigated how these two numerical meanings of fingers are intertwined with numerical cognition in adults. Participants received tactile stimulation on their fingertips of one hand and named either the number of fingers stimulated (2, 3, or 4 fingers; Experiment 1) or the number of stimulations on one fingertip (2, 3, or 4 stimulations; Experiment 2). Responses were faster and more accurate when the set of stimulated fingers corresponded to finger counting habits (Experiment 1) and when the number of stimulations matched the ordinal position of the stimulated finger (Experiment 2). These results show that tactile numerosity perception is affected by individual finger counting habits and that those habits give numerical meaning to single fingers.
Collapse
|
24
|
|
25
|
Miklashevsky AA, Fischer MH. Commentary: Down with Retirement: Implications of Embodied Cognition for Healthy Aging. Front Psychol 2017; 8:599. [PMID: 28484406 PMCID: PMC5399089 DOI: 10.3389/fpsyg.2017.00599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/31/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
- Alex A Miklashevsky
- Laboratory for Cognitive Studies of Language, International Center for Human Development, Tomsk State UniversityTomsk, Russia.,Division of Cognitive Sciences, Department of Psychology, University of PotsdamPotsdam, Germany
| | - Martin H Fischer
- Division of Cognitive Sciences, Department of Psychology, University of PotsdamPotsdam, Germany
| |
Collapse
|