1
|
Egorova AA, Shtykalova SV, Maretina MA, Sokolov DI, Selkov SA, Baranov VS, Kiselev AV. Synergistic Anti-Angiogenic Effects Using Peptide-Based Combinatorial Delivery of siRNAs Targeting VEGFA, VEGFR1, and Endoglin Genes. Pharmaceutics 2019; 11:E261. [PMID: 31174285 PMCID: PMC6631635 DOI: 10.3390/pharmaceutics11060261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a process of new blood vessel formation, which plays a significant role in carcinogenesis and the development of diseases associated with pathological neovascularization. An important role in the regulation of angiogenesis belongs to several key pathways such as VEGF-pathways, TGF-β-pathways, and some others. Introduction of small interfering RNA (siRNA) against genes of pro-angogenic factors is a promising strategy for the therapeutic suppression of angiogenesis. These siRNA molecules need to be specifically delivered into endothelial cells, and non-viral carriers modified with cellular receptor ligands can be proposed as perspective delivery systems for anti-angiogenic therapy purposes. Here we used modular peptide carrier L1, containing a ligand for the CXCR4 receptor, for the delivery of siRNAs targeting expression of VEGFA, VEGFR1 and endoglin genes. Transfection properties of siRNA/L1 polyplexes were studied in CXCR4-positive breast cancer cells MDA-MB-231 and endothelial cells EA.Hy926. We have demonstrated the efficient down-regulation of endothelial cells migration and proliferation by anti-VEGFA, anti-VEGFR1, and anti-endoglin siRNA-induced silencing. It was found that the efficiency of anti-angiogenic treatment can be synergistically improved via the combinatorial delivery of anti-VEGFA and anti-VEGFR1 siRNAs. Thus, this approach can be useful for the development of therapeutic angiogenesis inhibition.
Collapse
Affiliation(s)
- Anna A Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Sofia V Shtykalova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia.
| | - Marianna A Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Dmitry I Sokolov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Sergei A Selkov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia.
| | - Anton V Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia.
| |
Collapse
|
2
|
Gordon AY, Lapierre-Landry M, Skala MC, Penn JS. Photothermal Optical Coherence Tomography of Anti-Angiogenic Treatment in the Mouse Retina Using Gold Nanorods as Contrast Agents. Transl Vis Sci Technol 2019; 8:18. [PMID: 31131155 PMCID: PMC6519216 DOI: 10.1167/tvst.8.3.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/28/2019] [Indexed: 01/16/2023] Open
Abstract
Purpose Optical coherence tomography (OCT) is widely used for ocular imaging in clinical and research settings. OCT natively provides structural information based on the reflectivity of the tissues it images. We demonstrate the utility of photothermal OCT (PTOCT) imaging of gold nanorods (GNR) in the mouse retina in vivo in the laser-induced choroidal neovascularization (LCNV) model to provide additional image contrast within the lesion. Methods Wild-type C57BL/6 mice were imaged following the intravenous injection of ICAM2-targeted or untargeted GNR. Mice were also imaged following the injection of ICAM2-targeted GNR with or without the additional ocular delivery of a neutralizing monoclonal anti-vascular endothelial growth factor (anti-VEGF) antibody. Results Mice cohorts injected with untargeted or ICAM2-targeted GNR demonstrated increased lesion-associated photothermal signal during subsequent imaging relative to phosphate-buffered saline (PBS)-injected controls. Additionally, intravitreal injection of anti-VEGF antibody caused a detectable reduction in the extent of anatomic laser damage and lesion-associated photothermal signal density in mice treated in the LCNV model and injected with ICAM2-targeted GNR. Conclusions These experiments demonstrate the ability of PTOCT imaging of GNR to detect anti-VEGF-induced changes in the mouse retina using the LCNV model. Translational Relevance This study shows that PTOCT imaging of GNR in the LCNV model can be used to detect clinically relevant, anti-VEGF-induced changes that are not visible using standard OCT systems. In the future this technology could be used to aid in early detection of disease, monitoring disease progress, and assessing its response to therapies.
Collapse
Affiliation(s)
- Andrew Y Gordon
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI, USA
| | - John S Penn
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Grebe R, Mughal I, Bryden W, McLeod S, Edwards M, Hageman GS, Lutty G. Ultrastructural analysis of submacular choriocapillaris and its transport systems in AMD and aged control eyes. Exp Eye Res 2019; 181:252-262. [PMID: 30807744 DOI: 10.1016/j.exer.2019.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/31/2019] [Accepted: 02/21/2019] [Indexed: 01/11/2023]
Abstract
The choriocapillaris is the source of nutrients and oxygen for photoreceptors, which consume more oxygen per gram of tissue than any other cell in the body. The purpose of this study was to evaluate and compare the ultrastructure of the choriocapillaris and its transport systems in patients with and without age-related macular degeneration (AMD). Ultrastructural changes were also evaluated in subjects that were homozygous for polymorphisms in high risk CFH alleles (Pure 1) only or homozygous only for high risk ARMS2/HTRA1 (Pure 10) alleles. Tissue samples were obtained from the macular region of forty male (n = 24) and female (n = 16) donor eyes and prepared for ultrastructural studies with transmission electron microscopy (TEM). The average age of the aged donors was 74 ± 7.2 (n = 30) and the young donors 31.7 ± 11.25 (n = 10). There was no significant difference in average ages between the adult groups. TEM images of the capillaries in the choriocapillaris (CC) were taken at 4,000X and 25,000X and used to measure the area of endothelial cell somas, the number of fenestrations, and area of caveolae within the endothelial cells per length of Bruchs membrane (BrMb). The Student t-test and Wilcoxon sum rank test were used to determine significant differences. There was no significant difference between young subjects and aged controls in any of the morphological criteria assessed. There was a significant decrease in the number of fenestrations/mm of BrMb in atrophic areas of GA eyes (p = 0.007) when compared with aged control eyes. A significant increase was found in the caveolae area as a percent of the endothelial cell soma of capillaries from GA subjects as compared with the controls (p = 0.03). Loss of capillary segments in choriocapillaris was also evident, especially in areas of geographic atrophy and CNV. In eyes from patients with sequence variations, the capillary endothelial cells often appeared degenerative and exhibited atypical fenestrations and pericytes covering the blood vessels. Subjects that were homozygous for polymorphisms in high risk CFH alleles only had more fenestrations/mm of BrMb than subjects that were homozygous only for high risk ARMS2/HTRA1 alleles (p = 0.04), while the latter had greater caveolae area/endothelial cell area than the former (p = 0.007). This study demonstrated an attenuation of CC and a significant decline in the two major transport systems in CC endothelial cells in AMD. This may contribute to drusen deposition, nutrient transport, and vision loss in AMD subjects.
Collapse
Affiliation(s)
- Rhonda Grebe
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA
| | - Irum Mughal
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA
| | - William Bryden
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA
| | - Scott McLeod
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA
| | - Malia Edwards
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA
| | - Gregory S Hageman
- John A. Moran Eye Center, Steele Center for Translational Medicine, Dept. of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Gerard Lutty
- The Wilmer Ophthalmological Institute, Dept. of Ophthalmology, The Johns Hopkins Hospital, Baltimore, MD, 21287-9915, USA.
| |
Collapse
|
4
|
Nie C, Zhang MN, Zhao HW, Olsen TD, Jackman K, Hu LN, Ma WP, Chen XF, Wang J, Zhang Y, Gao TS, Uehara H, Ambati BK, Luo L. Correlation of in vivo and in vitro methods in measuring choroidal vascularization volumes using a subretinal injection induced choroidal neovascularization model. Chin Med J (Engl) 2016; 128:1516-22. [PMID: 26021510 PMCID: PMC4733772 DOI: 10.4103/0366-6999.157681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND In vivo quantification of choroidal neovascularization (CNV) based on noninvasive optical coherence tomography (OCT) examination and in vitro choroidal flatmount immunohistochemistry stained of CNV currently were used to evaluate the process and severity of age-related macular degeneration (AMD) both in human and animal studies. This study aimed to investigate the correlation between these two methods in murine CNV models induced by subretinal injection. METHODS CNV was developed in 20 C57BL6/j mice by subretinal injection of adeno-associated viral delivery of a short hairpin RNA targeting sFLT-1 (AAV.shRNA.sFLT-1), as reported previously. After 4 weeks, CNV was imaged by OCT and fluorescence angiography. The scaling factors for each dimension, x, y, and z (μm/pixel) were recorded, and the corneal curvature standard was adjusted from human (7.7) to mice (1.4). The volume of each OCT image stack was calculated and then normalized by multiplying the number of voxels by the scaling factors for each dimension in Seg3D software (University of Utah Scientific Computing and Imaging Institute, available at http://www.sci.utah.edu/cibc-software/seg3d.html). Eighteen mice were prepared for choroidal flatmounts and stained by CD31. The CNV volumes were calculated using scanning laser confocal microscopy after immunohistochemistry staining. Two mice were stained by Hematoxylin and Eosin for observing the CNV morphology. RESULTS The CNV volume calculated using OCT was, on average, 2.6 times larger than the volume calculated using the laser confocal microscopy. The correlation statistical analysis showed OCT measuring of CNV correlated significantly with the in vitro method (R 2 =0.448, P = 0.001, n = 18). The correlation coefficient for CNV quantification using OCT and confocal microscopy was 0.693 (n = 18, P = 0.001). CONCLUSIONS There is a fair linear correlation on CNV volumes between in vivo and in vitro methods in CNV models induced by subretinal injection. The result might provide a useful evaluation of CNV both for the studies using CNV models induced by subretinal injection and human AMD studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ling Luo
- Department of Ophthalmology, The 306th Hospital of PLA, Beijing 100101, China
| |
Collapse
|
5
|
Powerful anti-tumor and anti-angiogenic activity of a new anti-vascular endothelial growth factor receptor 1 peptide in colorectal cancer models. Oncotarget 2016; 6:10563-76. [PMID: 25868854 PMCID: PMC4496375 DOI: 10.18632/oncotarget.3384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/14/2015] [Indexed: 12/13/2022] Open
Abstract
To assess the therapeutic outcome of selective block of VEGFR1, we have evaluated the activity of a new specific antagonist of VEGFR1, named iVR1 (inhibitor of VEGFR1), in syngenic and xenograft colorectal cancer models, in an artificial model of metastatization, and in laser-induced choroid neovascularization. iVR1 inhibited tumor growth and neoangiogenesis in both models of colorectal cancer, with an extent similar to that of bevacizumab, a monoclonal antibody anti-VEGF-A. It potently inhibited VEGFR1 phosphorylation in vivo, determining a strong inhibition of the recruitment of monocyte-macrophages and of mural cells as confirmed, in vitro, by the ability to inhibit macrophages migration. iVR1 was able to synergize with irinotecan determining a shrinkage of tumors that became undetectable after three weeks of combined treatment. Such treatment induced a significant prolongation of survival similar to that observed with bevacizumab and irinotecan combination. iVR1 also fully prevented lung invasion by HCT-116 cells injected in mouse tail vein. Also, iVR1 impressively inhibited choroid neovascularization after a single intravitreal injection. Collectively, data showed the strong potential of iVR1 peptide as a new anti-tumor and anti-metastatic agent and demonstrate the high flexibility of VEGFR1 antagonists as therapeutic anti-angiogenic agents in different pathological contexts.
Collapse
|
6
|
Bogdanovich S, Kim Y, Mizutani T, Yasuma R, Tudisco L, Cicatiello V, Bastos-Carvalho A, Kerur N, Hirano Y, Baffi JZ, Tarallo V, Li S, Yasuma T, Arpitha P, Fowler BJ, Wright CB, Apicella I, Greco A, Brunetti A, Ruvo M, Sandomenico A, Nozaki M, Ijima R, Kaneko H, Ogura Y, Terasaki H, Ambati BK, Leusen JH, Langdon WY, Clark MR, Armour KL, Bruhns P, Verbeek JS, Gelfand BD, De Falco S, Ambati J. Human IgG1 antibodies suppress angiogenesis in a target-independent manner. Signal Transduct Target Ther 2016; 1. [PMID: 26918197 PMCID: PMC4763941 DOI: 10.1038/sigtrans.2015.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aberrant angiogenesis is implicated in diseases affecting nearly 10% of the world’s population. The most widely used anti-angiogenic drug is bevacizumab, a humanized IgG1 monoclonal antibody that targets human VEGFA. Although bevacizumab does not recognize mouse Vegfa, it inhibits angiogenesis in mice. Here we show bevacizumab suppressed angiogenesis in three mouse models not via Vegfa blockade but rather Fc-mediated signaling through FcγRI (CD64) and c-Cbl, impairing macrophage migration. Other approved humanized or human IgG1 antibodies without mouse targets (adalimumab, alemtuzumab, ofatumumab, omalizumab, palivizumab and tocilizumab), mouse IgG2a, and overexpression of human IgG1-Fc or mouse IgG2a-Fc, also inhibited angiogenesis in wild-type and FcγR humanized mice. This anti-angiogenic effect was abolished by Fcgr1 ablation or knockdown, Fc cleavage, IgG-Fc inhibition, disruption of Fc-FcγR interaction, or elimination of FcRγ-initated signaling. Furthermore, bevacizumab’s Fc region potentiated its anti-angiogenic activity in humanized VEGFA mice. Finally, mice deficient in FcγRI exhibited increased developmental and pathological angiogenesis. These findings reveal an unexpected anti-angiogenic function for FcγRI and a potentially concerning off-target effect of hIgG1 therapies.
Collapse
Affiliation(s)
- Sasha Bogdanovich
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Younghee Kim
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Takeshi Mizutani
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA; Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Reo Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA; Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Laura Tudisco
- Angiogenesis Lab, Institute of Genetics and Biophysics-CNR, Naples, Italy
| | - Valeria Cicatiello
- Angiogenesis Lab, Institute of Genetics and Biophysics-CNR, Naples, Italy; Bio-Ker, MultiMedica Group, Naples, Italy
| | - Ana Bastos-Carvalho
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Nagaraj Kerur
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Yoshio Hirano
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Judit Z Baffi
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Valeria Tarallo
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA; Angiogenesis Lab, Institute of Genetics and Biophysics-CNR, Naples, Italy
| | - Shengjian Li
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Tetsuhiro Yasuma
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Parthasarathy Arpitha
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Benjamin J Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Charles B Wright
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Ivana Apicella
- Angiogenesis Lab, Institute of Genetics and Biophysics-CNR, Naples, Italy
| | - Adelaide Greco
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples, Italy; CEINGE-Biotecnologie Avanzate, s.c.a.r.l., Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples, Italy; CEINGE-Biotecnologie Avanzate, s.c.a.r.l., Naples, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, Naples, Italy
| | | | - Miho Nozaki
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryo Ijima
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Ogura
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Balamurali K Ambati
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Ophthalmology, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - Jeanette Hw Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia
| | - Michael R Clark
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Kathryn L Armour
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Pierre Bruhns
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1222, Paris, France
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bradley D Gelfand
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA; Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Sandro De Falco
- Angiogenesis Lab, Institute of Genetics and Biophysics-CNR, Naples, Italy; IRCCS MultiMedica, Milano, Italy
| | - Jayakrishna Ambati
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
Safe dose of intravitreal imatinib and its effect on laser-induced choroidal neovascularization: a rat-model experiment. Int J Retina Vitreous 2015; 1:16. [PMID: 27847609 PMCID: PMC5088484 DOI: 10.1186/s40942-015-0017-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023] Open
Abstract
Background This two-phase
experimental study was conducted to determine the maximum safe dose of intravitreal imatinib (IVI) and its inhibitory effect on a rat model of choroidal neovascularization (CNV). Methods In phase I, 60 rats were divided into six groups (A to F); five of which received IVI with concentrations of 330 (A), 250 (B), 165 (C), 80 (D), and 40 (E) µg/5 µl, and the control group (F) received balanced salt solution (BSS). In addition to electroretinography (ERG), routine histopathological analysis and immunohistochemistry for glial fibrillary acidic protein were performed. In phase II, CNV was induced by laser photocoagulation in 25 rats and the animals were divided into two groups. One group received the maximum safe dose of IVI, determined in phase I, and the other received intravitreal BSS. After 4 weeks, the groups were compared in terms of mean scores of fluorescein leakage in fluorescein angiography and the mean CNV areas in histopathological sections. Results In phase I, ERG and the histopathological findings revealed retinal toxicity in groups A to D and A to C, respectively; therefore, a dose of 40 µg/5 µl imatinib was specified as the maximum safe dose for phase II. In phase II, late phase fluorescein leakage and the CNV areas were not significantly different between the imatinib-treated eyes and the controls (p = 0.62 and p = 0.5, respectively). Conclusions Despite the safety of IVI with a dose of 40 µg/5 µl, no inhibitory effect on laser-induced CNV was observed. Further studies are required to investigate the possible synergistic effects of Imatinib with conventional anti-CNV drugs.
Collapse
|
8
|
Kim J, Kim TE, Kim JA, Yun JH, Sohn S, Shim SR, Lee SH, Kim SJ. Intravitreal tanibirumab, a fully human monoclonal antibody against vascular endothelial growth factor receptor 2, partially suppresses and regresses laser-induced choroidal neovascularization in a rat model. J Ocul Pharmacol Ther 2015; 30:847-53. [PMID: 25188901 DOI: 10.1089/jop.2014.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The study investigated the effect of intravitreally administered tanibirumab, a fully human monoclonal antibody against vascular endothelial growth factor receptor 2, in a rat model of laser-induced choroidal neovascularization (CNV). METHODS CNV was induced by laser photocoagulation on day 0 in the eyes of Brown Norway rats. Intravitreal injection of tanibirumab or phosphate-buffered saline (PBS) was done on day 0 (prevention arm) or day 7 (treatment arm). Seven days after injection, the eyes were enucleated and retinal pigment epithelium-choroid-sclera flat mounts were prepared. Areas of CNV were determined in the flat mounts using tetramethylrhodamine isothiocyanate Bandeiraea simplicifolia (BS) isolectin labeling and intravenously administered fluorescein isothiocyanate-dextran and quantified using an image analysis program. RESULTS In the prevention arm, the mean area of CNV measured by BS isolectin labeling was reduced by 28.2% and 53.9% in tanibirumab-treated eyes (20 and 60 μg, respectively) compared with PBS-treated control eyes on day 7 (P=0.038 and P<0.001, respectively). In the treatment arm, the mean area of CNV measured by BS isolectin labeling was reduced by 28.7% and 46.0% in tanibirumab-treated eyes (20 and 60 μg, respectively) compared with PBS-treated control eyes on day 14 (P=0.048 and P<0.001, respectively). CONCLUSIONS Intravitreally administered tanibirumab partially suppressed the formation of new CNV and partially regressed preformed laser-induced CNV in the rat model. Tanibirumab may be a feasible treatment for CNV associated with age-related macular degeneration or other causes.
Collapse
Affiliation(s)
- Jaeryung Kim
- 1 The Laboratory of Vascular Biology and Stem Cells, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yu X, Tong Y, Huang W, Ge W. Erxian Decoction, a Traditional Chinese Herbal Formula, Inhibits Angiogenesis in Human Umbilical Vein Endothelial Cells. Biol Pharm Bull 2013; 36:754-63. [DOI: 10.1248/bpb.b12-00860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaobin Yu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong
| | - Yao Tong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong
| | - Weihuan Huang
- School of Life Sciences, The Chinese University of Hong Kong
| | - Wei Ge
- School of Life Sciences, The Chinese University of Hong Kong
| |
Collapse
|
10
|
Pardali E, Waltenberger J. Monocyte function and trafficking in cardiovascular disease. Thromb Haemost 2012; 108:804-11. [PMID: 22918193 DOI: 10.1160/th12-04-0276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/24/2012] [Indexed: 01/13/2023]
Abstract
Monocytes are key effectors of the immune homeostasis and play a crucial role in (vascular) injury repair. Despite their role in immune defense and tissue repair mechanisms, monocytes are also involved in several pathological conditions such as autoimmune and cardiovascular diseases as well as cancer. This suggests that monocytes can be used as diagnostic and as therapeutic targets. A better understanding and characterisation of monocytes and their function in both physiological and pathological situations is thus of great interest. This review focuses on recent advances on the role of monocytes in cardiovascular diseases and describes the value of monocytes as either disease marker or therapeutic target for (cardio)vascular diseases.
Collapse
Affiliation(s)
- Evangelia Pardali
- Evangelia Pardali or Johannes Waltenberger, Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany.
| | | |
Collapse
|
11
|
Soluble fms-like tyrosine kinase 1 and soluble endoglin are elevated circulating anti-angiogenic factors in pre-eclampsia. Pregnancy Hypertens 2012; 2:358-67. [PMID: 26105603 DOI: 10.1016/j.preghy.2012.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/24/2012] [Indexed: 01/05/2023]
Abstract
Pre-eclampsia, characterized by hypertension and proteinuria, affects approximately 3-5% of all pregnancies worldwide and is a major cause of maternal and fetal morbidity and mortality. Maternal endothelial dysfunction is associated with disease pathogenesis. Recently, reports have shown that elevated levels of circulating soluble fms-like tyrosine kinase 1 [sFlt1] and soluble endoglin [sEng] are associated with pre-eclampsia. Flt1 is a receptor for vascular endothelial growth factor receptor [VEGF], whereas endoglin [Eng] is an auxiliary receptor for transforming growth factor-β [TGF-β] super-family members. Both signaling pathways modulate angiogenesis and are involved in vascular homeostasis. Increased levels of sFlt1 and sEng dysregulate VEGF and TGF-β signaling respectively, resulting in endothelial dysfunction of maternal blood vessels. This review summarizes our current knowledge of Flt1 and endoglin and soluble forms in pre-eclampsia. Furthermore, it highlights the predictive and early-screening value of circulating levels of sFlt1 and sEng for the risk of developing pre-eclampsia.
Collapse
|
12
|
Nielsen DL, Sengeløv L. Inhibition of placenta growth factor with TB-403: a novel antiangiogenic cancer therapy. Expert Opin Biol Ther 2012; 12:795-804. [PMID: 22506966 DOI: 10.1517/14712598.2012.679655] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION There is clinical evidence that therapies targeting the vascular endothelial growth factor pathway are effective in delaying cancer progression. However, tumors may be either intrinsically resistant or evolve resistance to such therapies. Hence, there is a need for new therapies targeting angiogenesis. AREAS COVERED The data are obtained by searching in the PubMed database. The search terms used included antiangiogenic therapy, TB-403 (RO5323441), placenta growth factor (PlGF) and VEGFR-1 (Flt-1). We review preclinical data concerning the function and inhibition of PlGF and summarize data on expression of PlGF in cancer patients. Data from early-phase clinical trials of TB-403 (RO5323441), a monoclonal antibody inhibiting PlGF, are discussed. Future development strategies, therapeutic potentials and limitations of TB-403 are further evaluated. EXPERT OPINION There are some conflicting data on the function of PlGF and the importance of its role in primary tumor growth. Data from some preclinical models of PlGF inhibition and early-phase clinical trials with TB-403 are, however, promising, although the true potential of the drug is yet to be determined. Further clinical development should be preceded by molecular studies in the context of well-designed preclinical models and/or small translational studies. Future challenges involve identifying predictive biomarkers.
Collapse
Affiliation(s)
- Dorte Lisbet Nielsen
- Department of Oncology, University of Copenhagen, Herlev Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark.
| | | |
Collapse
|
13
|
Forkhead box transcription factor FoxC1 preserves corneal transparency by regulating vascular growth. Proc Natl Acad Sci U S A 2011; 109:2015-20. [PMID: 22171010 DOI: 10.1073/pnas.1109540109] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Normal vision requires the precise control of vascular growth to maintain corneal transparency. Here we provide evidence for a unique mechanism by which the Forkhead box transcription factor FoxC1 regulates corneal vascular development. Murine Foxc1 is essential for development of the ocular anterior segment, and in humans, mutations have been identified in Axenfeld-Rieger syndrome, a disorder characterized by anterior segment dysgenesis. We show that FOXC1 mutations also lead to corneal angiogenesis, and that mice homozygous for either a global (Foxc1(-/-)) or neural crest (NC)-specific (NC-Foxc1(-/-)) null mutation display excessive growth of corneal blood and lymphatic vessels. This is associated with disorganization of the extracellular matrix and increased expression of multiple matrix metalloproteinases. Heterozygous mutants (Foxc1(+/-) and NC-Foxc1(+/-)) exhibit milder phenotypes, such as disrupted limbal vasculature. Moreover, environmental exposure to corneal injury significantly increases growth of both blood and lymphatic vessels in both Foxc1(+/-) and NC-Foxc1(+/-) mice compared with controls. Notably, this amplification of the angiogenic response is abolished by inhibition of VEGF receptor 2. Collectively, these findings identify a role for FoxC1 in inhibiting corneal angiogenesis, thereby maintaining corneal transparency by regulating VEGF signaling.
Collapse
|
14
|
VEGFR-1 mediates endothelial differentiation and formation of blood vessels in a murine model of infantile hemangioma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2266-77. [PMID: 21945324 DOI: 10.1016/j.ajpath.2011.07.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/23/2011] [Accepted: 07/13/2011] [Indexed: 12/23/2022]
Abstract
Vascular endothelial growth factor receptor-1 (VEGFR-1) is a member of the VEGFR family, and binds to VEGF-A, VEGF-B, and placental growth factor. VEGFR-1 contributes to tumor growth and metastasis, but its role in the pathological formation of blood vessels is still poorly understood. Herein, we used infantile hemangioma (IH), the most common tumor of infancy, as a means to study VEGFR-1 activation in pathological vasculogenesis. IH arises from stem cells (HemSCs) that can form the three most prominent cell types in the tumor: endothelial cells, pericytes, and adipocytes. HemSCs can recapitulate the IH life cycle when injected in immuncompromised mice, and are targeted by corticosteroids, the traditional treatment for IH. We report here that VEGF-A or VEGF-B induces VEGFR-1-mediated ERK1/2 phosphorylation in HemSCs and promotes differentiation of HemSCs to endothelial cells. Studies of VEGFR-2 phosphorylation status and down-regulation of neuropilin-1 in the HemSCs demonstrate that VEGFR-2 and NRP1 are not needed for VEGF-A- or VEGF-B-induced ERK1/2 activation. U0216-mediated blockade of ERK1/2 phosphorylation or shRNA-mediated suppression of VEGFR-1 prevents HemSC-to-EC differentiation. Furthermore, the down-regulation of VEGFR-1 in the HemSCs results in decreased formation of blood vessels in vivo and reduced ERK1/2 activation. Thus, our study reveals a critical role for VEGFR-1 in the HemSC-to-EC differentiation that underpins pathological vasculogenesis in IH.
Collapse
|
15
|
Abstract
VEGFs (vascular endothelial growth factors) control vascular development during embryogenesis and the function of blood vessels and lymphatic vessels in the adult. There are five related mammalian ligands, which act through three receptor tyrosine kinases. Signalling is modulated through neuropilins, which act as VEGF co-receptors. Heparan sulfate and integrins are also important modulators of VEGF signalling. Therapeutic agents that interfere with VEGF signalling have been developed with the aim of decreasing angiogenesis in diseases that involve tissue growth and inflammation, such as cancer. The present review will outline the current understanding and consequent biology of VEGF receptor signalling.
Collapse
|
16
|
Keskin U, Totan Y, Karadağ R, Erdurmuş M, Aydın B. Inhibitory effects of SU5416, a selective vascular endothelial growth factor receptor tyrosine kinase inhibitor, on experimental corneal neovascularization. Ophthalmic Res 2011; 47:13-8. [PMID: 21691137 DOI: 10.1159/000324994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 02/04/2011] [Indexed: 11/19/2022]
Abstract
PURPOSE Treatment of neovascularization in ocular diseases with vascular endothelial growth factor (VEGF) inhibition shows promising results. SU5416 is a low-molecular-weight tyrosine kinase inhibitor. It selectively inhibits the membrane-bound tyrosine kinase activity of VEGF-2 receptor (Flk-1/KDR) and blocks the intracellular signaling process. The aim of this study was to evaluate the effect of SU5416 on corneal neovascularization. METHODS Corneas were cauterized with silver nitrate/potassium nitrate sticks in 20 eyes of 20 BALB/C mice. In the study group (n = 10), SU5416 (25 mg/kg) dissolved in dimethyl sulfoxide was given as an intraperitoneal injection in a single daily dose for 7 days. The other group of 10 mice given intraperitoneal dimethyl sulfoxide alone served as a control group. After 7 days, corneal neovascularization was evaluated using photographs captured by fluorescein angiography. Colored photographs were taken by a biomicroscope with a digital camera. Data were expressed as mean neovascular length and mean number of new vessels for each animal. The values were computed and compared between the groups. RESULTS The mean burn stimulus intensities were not different between the groups. In the study group, the mean length of the vessels and the mean number of vessels were 0.49 ± 0.05 and 11.20 ± 1.69 mm, respectively. In the control group, the mean length of the vessels and the mean number of the vessels were 0.89 ± 0.11 and 17.80 ± 1.03 mm, respectively. There is a statistically significant difference in the mean length and the mean number of new vessels between the study and control groups (p < 0.001). CONCLUSION Selective inhibition of VEGFR-2 (Flk-1/KDR) tyrosine kinase with SU5416 was shown to have an inhibitory effect on corneal neovascularization in this animal model. VEGFR-2 (Flk-1/KDR) tyrosine kinase inhibition may represent a different pathway for treatment of the neovascularization process in ocular pathologies. Fluorescein angiography photographs of new vessels on the cornea may provide a better evaluation of neovascularization than colored images in animal models.
Collapse
Affiliation(s)
- Uğurcan Keskin
- Department of Ophthalmology, Fatih University Medical School, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
17
|
Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L. Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med 2011; 32:88-111. [PMID: 21565214 DOI: 10.1016/j.mam.2011.04.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 04/27/2011] [Indexed: 12/21/2022]
Abstract
Vascular endothelial growth factors (VEGFs) are critical regulators of vascular and lymphatic function during development, in health and in disease. There are five mammalian VEGF ligands and three VEGF receptor tyrosine kinases. In addition, several VEGF co-receptors that lack intrinsic catalytic activity, but that indirectly modulate the responsiveness to VEGF contribute to the final biological effect. This review describes the molecular features of VEGFs, VEGFRs and co-receptors with focus on their role in the treatment of cancer.
Collapse
Affiliation(s)
- Sònia Tugues
- Uppsala University, Dept. of Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjöldsv. 20, 751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
18
|
Kernt M, Thiele S, Hirneiss C, Neubauer A, Lackerbauer C, Wolf A, Eibl K, Haritoglou C, Ulbig M, Kampik A. Zytoprotektive und antiangiogene Wirkung des Multikinaseinhibitors Sorafenib im retinalen Pigmentepithel. Ophthalmologe 2011; 108:445-51. [DOI: 10.1007/s00347-010-2304-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Shibuya M. Involvement of Flt-1 (VEGF receptor-1) in cancer and preeclampsia. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:167-178. [PMID: 21558755 PMCID: PMC3149381 DOI: 10.2183/pjab.87.167] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 02/19/2011] [Indexed: 05/27/2023]
Abstract
We previously isolated a novel tyrosine kinase receptor, Flt-1, now known as VEGF-receptor (VEGFR)-1. The VEGF-VEGFR system plays a pivotal role in not only physiological but also pathological angiogenesis. We examined the role of Flt-1 in carcinogenesis using Flt-1-signal-deficient (Flt-1 TK-/-) mice, and found that this receptor stimulates tumor growth and metastasis most likely via macrophages, making it an important potential target in the treatment of cancer. In addition to the full-length receptor, the Flt-1 gene produces a soluble protein, sFlt-1, an endogenous VEGF-inhibitor. sFlt-1 is expressed in trophoblasts of the placenta between fetal and maternal blood vessels, suggesting it to be a barrier against extreme VEGF-signaling. Abnormally high expression of sFlt-1 occurs in most preeclampsia patients, whose main symptoms are hypertension and proteinurea. In cancer patients, strong suppression of VEGF-VEGFR by drugs induces similar side effects including hypertension. These results indicate a close relationship between abnormal VEGF-block and hypertension/proteinurea. sFlt-1 is an attractive target for the control of preeclampsia.
Collapse
|
20
|
Funahashi Y, Shawber CJ, Vorontchikhina M, Sharma A, Outtz HH, Kitajewski J. Notch regulates the angiogenic response via induction of VEGFR-1. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:3. [PMID: 20298529 PMCID: PMC2828996 DOI: 10.1186/2040-2384-2-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/26/2010] [Indexed: 12/15/2022]
Abstract
Notch is a critical regulator of angiogenesis and arterial specification. We show that ectopic expression of activated Notch1 induces endothelial morphogenesis in human umbilical vein endothelial cells (HUVEC) in a VEGFR-1-dependent manner. Notch1-mediated upregulation of VEGFR-1 in HUVEC increased their responsiveness to the VEGFR-1 specific ligand, Placental Growth Factor (PlGF). In mice and human endothelial cells, inhibition of Notch signaling resulted in decreased VEGFR-1 expression during VEGF-A-induced neovascularization. In summary, we show that Notch1 plays a role in endothelial cells by regulating VEGFR-1, a function that may be important for physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Yasuhiro Funahashi
- Pathology, Obstetrics and Gynecology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
21
|
Afzal A, Caballero S, Palii SS, Jurczyk S, Pardue M, Geroski D, Edelhauser H, Hochhaus G, Kim M, Franklin A, Shapiro G, Grant MB. Targeting retinal and choroid neovascularization using the small molecule inhibitor carboxyamidotriazole. Brain Res Bull 2009; 81:320-6. [PMID: 19679174 DOI: 10.1016/j.brainresbull.2009.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/16/2009] [Accepted: 08/01/2009] [Indexed: 11/17/2022]
Abstract
Neovascular ocular diseases as exemplified by proliferative diabetic retinopathy (PDR), exudative age-related macular degeneration (AMD), and retinopathy of prematurity (ROP) are severe diseases affecting all age groups in the US. We asked whether a small molecule, carboxyamidotriazole (CAI) known for its anti-angiogenic and anti-tumor effects and its ability to be administered orally in humans, could have anti-angiogenic effects in ocular in vitro and in vivo angiogenesis models. The anti-proliferative effects of CAI were examined by BrdU incorporation using human retinal and dermal endothelial cells and human pigment epithelial cells. The effect of CAI was determined using the Matrigel tube formation assay. The mouse model of choroidal neovascularization (CNV) initiated by laser rupture of Bruch's membrane was used to quantify in vivo effects of aqueous beta-hydroxypropyl cyclodextrin (bHPCD) formulations of CAI on neovascularization. The pharmacokinetics (PK) of CAI after intravitreal administration of bHPCD-CAI was studied in rabbit. The intravitreal toxicology of bHPCD-CAI was also examined in rat ocular tissue. We observed that CAI treatment of human endothelial cells decreased cell proliferation in a dose-dependent manner. In the in vivo tests bHPCD-CAI treatment reduced choroidal neovascular lesion volume, also in a dose-dependent manner. The intravitreal PK of bHPCD-CAI demonstrated that highly efficacious concentrations of CAI are reached in the vitreous compartment. No ocular toxicology was observed with intravitreous injection of CAI. These studies support the potential of developing intravitreal CAI in an bHPCD ocular formulation for treatment of proliferative retinopathies in humans.
Collapse
Affiliation(s)
- Aqeela Afzal
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Budd S, Byfield G, Martiniuk D, Geisen P, Hartnett ME. Reduction in endothelial tip cell filopodia corresponds to reduced intravitreous but not intraretinal vascularization in a model of ROP. Exp Eye Res 2009; 89:718-27. [PMID: 19576214 DOI: 10.1016/j.exer.2009.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
To determine the effect of a vascular endothelial growth factor receptor 2 tyrosine kinase (VEGFR2) inhibitor on intravitreous neovascularization (IVNV), endothelial tip cell filopodia, and intraretinal vascularization in a rat model of retinopathy of prematurity (ROP). Within 4h of birth, newborn Sprague-Dawley rat pups and their mothers were cycled between 50% and 10% oxygen daily until postnatal day (p)12. Pups were given intravitreous injections of VEGFR2 inhibitor, SU5416, or control (dimethyl sulfoxide, DMSO) and returned to oxygen cycling until p14, then placed into room air. Intravitreous neovascularization (IVNV), avascular/total retinal areas, and endothelial tip cell filopodial number and length were determined in lectin-labeled neurosensory retinal flat mounts. Cryosections or fresh tissue were analyzed for phospho-VEGFR1, phospho-VEGFR2, activated caspase-3, or phospho-beta3 integrin. Human umbilical venous (HUVECs) and human choroidal endothelial cells (ECs) were treated with VEGFR2 inhibitor to determine effect on VEGFR2 phosphorylation and on directed EC migration toward a VEGF gradient. Filopodial length and number of migrated ECs were also measured. Compared to control, the VEGFR2 inhibitor reduced VEGFR2 phosphorylation in HUVECs in vitro and clock hours and areas of IVNV but not percent avascular retina in vivo. Filopodial length and number of filopodia/EC tip cell were reduced in retinal flat mounts at doses that inhibited IVNV, whereas at lower doses, only a reduction in filopodial length/EC tip cell was found. There was no difference in phosphorylated beta3 integrin and cleaved caspase-3 labeling in VEGFR2 inhibitor-treated compared to control in vivo. Doses of the VEGFR2 inhibitor that reduced filopodial length and number of filopodia/migrating EC corresponded to reduced EC migration in in vitro models. VEGFR2 inhibitor reduced IVNV and filopodial number and length/EC tip cell without interfering with intraretinal vascularization. Reducing the number and length of filopodia/endothelial tip cell may reduce guidance cues for endothelial cells to migrate into the vitreous without interfering with migration into the retina toward a VEGF gradient.
Collapse
Affiliation(s)
- Steven Budd
- Department of Ophthalmology, University of North Carolina Chapel Hill, 103 Mason Farm Road, CB # 7041, 6135 NSRB, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
23
|
Iriyama A, Inoue Y, Takahashi H, Tamaki Y, Jang WD, Yanagi Y. A2E, a component of lipofuscin, is pro-angiogenic in vivo. J Cell Physiol 2009; 220:469-75. [PMID: 19418485 DOI: 10.1002/jcp.21792] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A recent study in vitro demonstrated that a major lipofuscin component, A2E, serves as a retinoic acid receptor ligand. The current study investigated the effects of A2E on retinal pigment epithelial (RPE) cells in vivo and was performed to extend the understanding of the effects of A2E. Firstly, subretinal injection of A2E was performed and 3 weeks after the injection, and it was demonstrated that subretinal injection of A2E induced RPE cell death, and concomitant upregulation of vascular endothelial growth factor (VEGF) in the RPE and choroid. The upregulation of VEGF was attenuated by an RARalpha antagonist. Next we performed laser photocoagulation in mice that accumulated A2E either after subretinal injection, by Ccl2 gene knockout or by aging demonstrated that mice that accumulated A2E in the RPE, which showed higher rates of choroidal neobascularization (CNV) formation after weak laser injury than the controls and the formation of CNV was inhibited by an RARalpha antagonist in all models tested. The data suggest that A2E accumulation induces RPE cell death, and concomitant increase of VEGF. Accumulation of A2E alone is not sufficient to induce CNV in vivo, but induces the expression of VEGF in RPE and choroid. The mice that accumulated A2E in RPE cells are vulnerable to CNV development via RAR activation, at least in part.
Collapse
Affiliation(s)
- Aya Iriyama
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Loges S, Schmidt T, Carmeliet P. “Antimyeloangiogenic” Therapy for Cancer by Inhibiting PlGF. Clin Cancer Res 2009; 15:3648-53. [DOI: 10.1158/1078-0432.ccr-08-2276] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Zhang H, Sonoda KH, Hijioka K, Qiao H, Oshima Y, Ishibashi T. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization. Biochem Biophys Res Commun 2009; 381:471-476. [PMID: 19340941 DOI: 10.1016/j.bbrc.2009.01.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8+ T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8+ T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.
Collapse
Affiliation(s)
- Han Zhang
- Department of Ophthalmology, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Vascular endothelial growth factor-A (VEGF-A) is a key target for new antiangiogenic drugs for the treatment of both malignant and nonmalignant human diseases. Vascular effects of VEGF family members are mainly mediated by VEGF receptor 2 (VEGFR2). Conversely, the function and signaling of VEGFR1, which is present on endothelial and nonendothelial cells, are poorly understood. Intriguingly, two of five members in the VEGF family--VEGF-B and placental growth factor (PlGF)--are exclusive ligands for VEGFR1 and do not interact with the other VEGFRs, VEGFR2 and VEGFR3. These VEGFR1-specific ligands may be important therapeutic targets for the treatment of cancer. This Review discusses the distinctive roles of VEGFR1 and its ligands PlGF and VEGF-B in the mediation of angiogenic signaling and considers the therapeutic potential of targeting these particular vascular factors.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
27
|
Fischer C, Mazzone M, Jonckx B, Carmeliet P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 2008; 8:942-56. [PMID: 19029957 DOI: 10.1038/nrc2524] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Less than 5 years ago, it was still not clear whether anti-angiogenic drugs would prove successful in the clinic. After numerous patients with cancer or age-related macular degeneration have been treated with these drugs, they have now become part of the standard range of therapeutic tools. Despite this milestone, anti-angiogenic therapy still faces a number of clinical hurdles, such as improving efficacy, avoiding escape and resistance, and minimizing toxicity. Hopefully, other agents with complementary mechanisms, such as those that target placental growth factor, will offer novel opportunities for improved treatment.
Collapse
Affiliation(s)
- Christian Fischer
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | | |
Collapse
|