1
|
Clifford Astbury C, Lee KM, Mcleod R, Aguiar R, Atique A, Balolong M, Clarke J, Demeshko A, Labonté R, Ruckert A, Sibal P, Togño KC, Viens AM, Wiktorowicz M, Yambayamba MK, Yau A, Penney TL. Policies to prevent zoonotic spillover: a systematic scoping review of evaluative evidence. Global Health 2023; 19:82. [PMID: 37940941 PMCID: PMC10634115 DOI: 10.1186/s12992-023-00986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Emerging infectious diseases of zoonotic origin present a critical threat to global population health. As accelerating globalisation makes epidemics and pandemics more difficult to contain, there is a need for effective preventive interventions that reduce the risk of zoonotic spillover events. Public policies can play a key role in preventing spillover events. The aim of this review is to identify and describe evaluations of public policies that target the determinants of zoonotic spillover. Our approach is informed by a One Health perspective, acknowledging the inter-connectedness of human, animal and environmental health. METHODS In this systematic scoping review, we searched Medline, SCOPUS, Web of Science and Global Health in May 2021 using search terms combining animal health and the animal-human interface, public policy, prevention and zoonoses. We screened titles and abstracts, extracted data and reported our process in line with PRISMA-ScR guidelines. We also searched relevant organisations' websites for evaluations published in the grey literature. All evaluations of public policies aiming to prevent zoonotic spillover events were eligible for inclusion. We summarised key data from each study, mapping policies along the spillover pathway. RESULTS Our review found 95 publications evaluating 111 policies. We identified 27 unique policy options including habitat protection; trade regulations; border control and quarantine procedures; farm and market biosecurity measures; public information campaigns; and vaccination programmes, as well as multi-component programmes. These were implemented by many sectors, highlighting the cross-sectoral nature of zoonotic spillover prevention. Reports emphasised the importance of surveillance data in both guiding prevention efforts and enabling policy evaluation, as well as the importance of industry and private sector actors in implementing many of these policies. Thoughtful engagement with stakeholders ranging from subsistence hunters and farmers to industrial animal agriculture operations is key for policy success in this area. CONCLUSION This review outlines the state of the evaluative evidence around policies to prevent zoonotic spillover in order to guide policy decision-making and focus research efforts. Since we found that most of the existing policy evaluations target 'downstream' determinants, additional research could focus on evaluating policies targeting 'upstream' determinants of zoonotic spillover, such as land use change, and policies impacting infection intensity and pathogen shedding in animal populations, such as those targeting animal welfare.
Collapse
Affiliation(s)
- Chloe Clifford Astbury
- School of Global Health, York University, Toronto, ON, Canada
- Dahdaleh Institute for Global Health Research, York University, Toronto, ON, Canada
- Global Strategy Lab, York University, Toronto, ON, Canada
| | - Kirsten M Lee
- School of Global Health, York University, Toronto, ON, Canada
- Dahdaleh Institute for Global Health Research, York University, Toronto, ON, Canada
| | - Ryan Mcleod
- School of Global Health, York University, Toronto, ON, Canada
| | - Raphael Aguiar
- Dahdaleh Institute for Global Health Research, York University, Toronto, ON, Canada
| | - Asma Atique
- School of Global Health, York University, Toronto, ON, Canada
| | - Marilen Balolong
- Applied Microbiology for Health and Environment Research Group, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Janielle Clarke
- School of Global Health, York University, Toronto, ON, Canada
| | | | - Ronald Labonté
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Arne Ruckert
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Priyanka Sibal
- School of Health Policy and Management, York University, Toronto, ON, Canada
| | - Kathleen Chelsea Togño
- Applied Microbiology for Health and Environment Research Group, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - A M Viens
- School of Global Health, York University, Toronto, ON, Canada
- Global Strategy Lab, York University, Toronto, ON, Canada
| | - Mary Wiktorowicz
- School of Global Health, York University, Toronto, ON, Canada
- Dahdaleh Institute for Global Health Research, York University, Toronto, ON, Canada
| | - Marc K Yambayamba
- School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Amy Yau
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Tarra L Penney
- School of Global Health, York University, Toronto, ON, Canada.
- Dahdaleh Institute for Global Health Research, York University, Toronto, ON, Canada.
- Global Strategy Lab, York University, Toronto, ON, Canada.
| |
Collapse
|
2
|
Russell RM, Bibollet-Ruche F, Liu W, Sherrill-Mix S, Li Y, Connell J, Loy DE, Trimboli S, Smith AG, Avitto AN, Gondim MVP, Plenderleith LJ, Wetzel KS, Collman RG, Ayouba A, Esteban A, Peeters M, Kohler WJ, Miller RA, François-Souquiere S, Switzer WM, Hirsch VM, Marx PA, Piel AK, Stewart FA, Georgiev AV, Sommer V, Bertolani P, Hart JA, Hart TB, Shaw GM, Sharp PM, Hahn BH. CD4 receptor diversity represents an ancient protection mechanism against primate lentiviruses. Proc Natl Acad Sci U S A 2021; 118:e2025914118. [PMID: 33771926 PMCID: PMC8020793 DOI: 10.1073/pnas.2025914118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of N-linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons (Cercopithecus spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.
Collapse
Affiliation(s)
- Ronnie M Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Dorothy E Loy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephanie Trimboli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew G Smith
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa N Avitto
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Marcos V P Gondim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
- Centre for Immunity, Infection, and Evolution, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Katherine S Wetzel
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ahidjo Ayouba
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Amandine Esteban
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - William J Kohler
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329
| | - Vanessa M Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Preston A Marx
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433
| | - Alex K Piel
- Department of Anthropology, University College London, WC1H 0BW London, United Kingdom
| | - Fiona A Stewart
- Department of Anthropology, University College London, WC1H 0BW London, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, United Kingdom
| | - Alexander V Georgiev
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
- School of Biological Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Volker Sommer
- Department of Anthropology, University College London, WC1H 0BW London, United Kingdom
| | - Paco Bertolani
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, CB2 1QH Cambridge, United Kingdom
| | - John A Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo
| | - Terese B Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
- Centre for Immunity, Infection, and Evolution, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
3
|
van der Kuyl AC. Contemporary Distribution, Estimated Age, and Prehistoric Migrations of Old World Monkey Retroviruses. EPIDEMIOLGIA (BASEL, SWITZERLAND) 2021; 2:46-67. [PMID: 36417189 PMCID: PMC9620922 DOI: 10.3390/epidemiologia2010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Old World monkeys (OWM), simians inhabiting Africa and Asia, are currently affected by at least four infectious retroviruses, namely, simian foamy virus (SFV), simian immunodeficiency virus (SIV), simian T-lymphotropic virus (STLV), and simian type D retrovirus (SRV). OWM also show chromosomal evidence of having been infected in the past with four more retroviral species, baboon endogenous virus (BaEV), Papio cynocephalus endogenous virus (PcEV), simian endogenous retrovirus (SERV), and Rhesus endogenous retrovirus-K (RhERV-K/SERV-K1). For some of the viruses, transmission to other primates still occurs, resulting, for instance, in the HIV pandemic. Retroviruses are intimately connected with their host as they are normally spread by close contact. In this review, an attempt to reconstruct the distribution and history of OWM retroviruses will be made. A literature overview of the species infected by any of the eight retroviruses as well as an age estimation of the pathogens will be given. In addition, primate genomes from databases have been re-analyzed for the presence of endogenous retrovirus integrations. Results suggest that some of the oldest retroviruses, SERV and PcEV, have travelled with their hosts to Asia during the Miocene, when a higher global temperature allowed simian expansions. In contrast, younger viruses, such as SIV and SRV, probably due to the lack of a primate continuum between the continents in later times, have been restricted to Africa and Asia, respectively.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Halbrook M, Gadoth A, Shankar A, Zheng H, Campbell EM, Hoff NA, Muyembe JJ, Wemakoy EO, Rimoin AW, Switzer WM. Human T-cell lymphotropic virus type 1 transmission dynamics in rural villages in the Democratic Republic of the Congo with high nonhuman primate exposure. PLoS Negl Trop Dis 2021; 15:e0008923. [PMID: 33507996 PMCID: PMC7872225 DOI: 10.1371/journal.pntd.0008923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/09/2021] [Accepted: 10/26/2020] [Indexed: 01/09/2023] Open
Abstract
The Democratic Republic of the Congo (DRC) has a history of nonhuman primate (NHP) consumption and exposure to simian retroviruses yet little is known about the extent of zoonotic simian retroviral infections in DRC. We examined the prevalence of human T-lymphotropic viruses (HTLV), a retrovirus group of simian origin, in a large population of persons with frequent NHP exposures and a history of simian foamy virus infection. We screened plasma from 3,051 persons living in rural villages in central DRC using HTLV EIA and western blot (WB). PCR amplification of HTLV tax and LTR sequences from buffy coat DNA was used to confirm infection and to measure proviral loads (pVLs). We used phylogenetic analyses of LTR sequences to infer evolutionary histories and potential transmission clusters. Questionnaire data was analyzed in conjunction with serological and molecular data. A relatively high proportion of the study population (5.4%, n = 165) were WB seropositive: 128 HTLV-1-like, 3 HTLV-2-like, and 34 HTLV-positive but untypeable profiles. 85 persons had HTLV indeterminate WB profiles. HTLV seroreactivity was higher in females, wives, heads of households, and increased with age. HTLV-1 LTR sequences from 109 persons clustered strongly with HTLV-1 and STLV-1 subtype B from humans and simians from DRC, with most sequences more closely related to STLV-1 from Allenopithecus nigroviridis (Allen's swamp monkey). While 18 potential transmission clusters were identified, most were in different households, villages, and health zones. Three HTLV-1-infected persons were co-infected with simian foamy virus. The mean and median percentage of HTLV-1 pVLs were 5.72% and 1.53%, respectively, but were not associated with age, NHP exposure, village, or gender. We document high HTLV prevalence in DRC likely originating from STLV-1. We demonstrate regional spread of HTLV-1 in DRC with pVLs reported to be associated with HTLV disease, supporting local and national public health measures to prevent spread and morbidity.
Collapse
Affiliation(s)
- Megan Halbrook
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - Adva Gadoth
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - HaoQiang Zheng
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ellsworth M. Campbell
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nicole A. Hoff
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Emile Okitolonda Wemakoy
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Anne W. Rimoin
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - William M. Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Nyamota R, Owino V, Murungi EK, Villinger J, Otiende M, Masiga D, Thuita J, Lekolool I, Jeneby M. Broad diversity of simian immunodeficiency virus infecting Chlorocebus species (African green monkey) and evidence of cross-species infection in Papio anubis (olive baboon) in Kenya. J Med Primatol 2020; 49:165-178. [PMID: 32030774 DOI: 10.1111/jmp.12461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/06/2019] [Accepted: 01/19/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Simian immunodeficiency virus (SIV) naturally infects African non-human primates (NHPs) and poses a threat of transmission to humans through hunting and consumption of monkeys as bushmeat. This study investigated the as of yet unknown molecular diversity of SIV in free-ranging Chlorocebus species (African green monkeys-AGMs) and Papio anubis (olive baboons) within Mombasa, Kisumu and Naivasha urban centres in Kenya. METHODS We collected blood samples from 124 AGMs and 65 olive baboons in situ, and detected SIV by high-resolution melting analysis and sequencing of PCR products. RESULTS Simian immunodeficiency virus prevalence was 32% in AGMs and 3% in baboons. High-resolution melting (HRM) analysis demonstrated distinct melt profiles illustrating virus diversity confirmed by phylogenetic analysis. CONCLUSIONS There is persistent evolutionary diversification of SIVagm strains in its natural host, AGMs and cross-species infection to olive baboons is occurring. Further study is required to establish pathogenesis of the diverse SIVagm variants and baboon immunological responses.
Collapse
Affiliation(s)
- Richard Nyamota
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton, Kenya
| | - Vincent Owino
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton, Kenya.,International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - John Thuita
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization (BioRI-KALRO), Kikuyu, Kenya
| | | | - Maamun Jeneby
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya.,Department of Tropical and Infectious Diseases, Institute of Primate Research, Karen, Kenya
| |
Collapse
|
6
|
Narat V, Kampo M, Heyer T, Rupp S, Ambata P, Njouom R, Giles-Vernick T. Using physical contact heterogeneity and frequency to characterize dynamics of human exposure to nonhuman primate bodily fluids in central Africa. PLoS Negl Trop Dis 2018; 12:e0006976. [PMID: 30589843 PMCID: PMC6307716 DOI: 10.1371/journal.pntd.0006976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Emerging infectious diseases of zoonotic origin constitute a recurrent threat to global health. Nonhuman primates (NHPs) occupy an important place in zoonotic spillovers (pathogenic transmissions from animals to humans), serving as reservoirs or amplifiers of multiple neglected tropical diseases, including viral hemorrhagic fevers and arboviruses, parasites and bacteria, as well as retroviruses (simian foamy virus, PTLV) that are pathogenic in human beings. Hunting and butchering studies in Africa characterize at-risk human social groups, but overlook critical factors of contact heterogeneity and frequency, NHP species differences, and meat processing practices. In southeastern Cameroon, a region with a history of zoonotic emergence and high risk of future spillovers, we conducted a novel mixed-method field study of human physical exposure to multiple NHP species, incorporating participant-based and ecological methodologies, and qualitative interviews (n = 25). We find frequent physical contact across adult human populations, greater physical contact with monkeys than apes, especially for meat handling practices, and positive correlation of human exposure with NHP species abundance and proximity to human settlement. These fine-grained results encourage reconsideration of the likely dynamics of human-NHP contact in past and future NTD emergence events. Multidisciplinary social science and ecological approaches should be mobilized to generate more effective human and animal surveillance and risk communications around neglected tropical diseases. At a moment when the WHO has included "Disease X", a presumably zoonotic pathogen with pandemic potential, on its list of blueprint priority diseases as, new field-based tools for investigating zoonotic disease emergence, both known and unknown, are of critical importance.
Collapse
Affiliation(s)
- Victor Narat
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
- Eco-anthropologie et Ethnobiologie, CNRS/MNHN/Paris Diderot, France
| | - Mamadou Kampo
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
| | - Thibaut Heyer
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
| | - Stephanie Rupp
- City University of New York, Lehman College, Department of Anthropology, New York, New York, United States of America
| | - Philippe Ambata
- Ministry of Agriculture and Rural Development, Yaoundé, Cameroon
| | | | - Tamara Giles-Vernick
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
- Humans and the Microbiome Program, Canadian Institute for Advanced Studies, Toronto, Canada
| |
Collapse
|
7
|
Intragenus (Homo) variation in a chemokine receptor gene (CCR5). PLoS One 2018; 13:e0204989. [PMID: 30278065 PMCID: PMC6168169 DOI: 10.1371/journal.pone.0204989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have a comparatively higher rate of more polymorphisms in regulatory regions of the primate CCR5 gene, an immune system gene with both general and specific functions. This has been interpreted as allowing flexibility and diversity of gene expression in response to varying disease loads. A broad expression repertoire is useful to humans-the only globally distributed primate-due to our unique adaptive pattern that increased pathogen exposure and disease loads (e.g., sedentism, subsistence practices). The main objective of the study was to determine if the previously observed human pattern of increased variation extended to other members of our genus, Homo. The data for this study are mined from the published genomes of extinct hominins (four Neandertals and two Denisovans), an ancient human (Ust'-Ishim), and modern humans (1000 Genomes). An average of 15 polymorphisms per individual were found in human populations (with a total of 262 polymorphisms). There were 94 polymorphisms identified across extinct Homo (an average of 13 per individual) with 41 previously observed in modern humans and 53 novel polymorphisms (32 in Denisova and 21 in Neandertal). Neither the frequency nor distribution of polymorphisms across gene regions exhibit significant differences within the genus Homo. Thus, humans are not unique with regards to the increased frequency of regulatory polymorphisms and the evolution of variation patterns across CCR5 gene appears to have originated within the genus. A broader evolutionary perspective on regulatory flexibility may be that it provided an advantage during the transition to confrontational foraging (and later hunting) that altered human-environment interaction as well as during migration to Eurasia and encounters with novel pathogens.
Collapse
|
8
|
Narat V, Alcayna-Stevens L, Rupp S, Giles-Vernick T. Rethinking Human-Nonhuman Primate Contact and Pathogenic Disease Spillover. ECOHEALTH 2017; 14:840-850. [PMID: 29150826 DOI: 10.1007/s10393-017-1283-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Zoonotic transmissions are a major global health risk, and human-animal contact is frequently raised as an important driver of transmission. A literature examining zooanthroponosis largely agrees that more human-animal contact leads to more risk. Yet the basis of this proposition, the term contact, has not been rigorously analyzed. To understand how contact is used to explain cross-species spillovers, we conducted a multi-disciplinary review of studies addressing human-nonhuman primate (NHP) engagements and pathogenic transmissions and employing the term contact. We find that although contact is frequently invoked, it is employed inconsistently and imprecisely across these studies, overlooking the range of pathogens and their transmission routes and directions. We also examine a related but more expansive approach focusing on human and NHP habitats and their spatial overlap, which can potentially facilitate pathogenic transmission. Contact and spatial overlap investigations cannot, however, explain the processes that bring together people, animals and pathogens. We therefore examine another approach that enhances our understanding of zoonotic spillovers: anthropological studies identifying such historical, social, environmental processes. Comparable to a One Health approach, our ongoing research in Cameroon draws contact, spatial overlap and anthropological-historical approaches into dialog to suggest where, when and how pathogenic transmissions between people and NHPs may occur. In conclusion, we call for zoonotic disease researchers to specify more precisely the human-animal contacts they investigate and to attend to how broader ecologies, societies and histories shape pathogen-human-animal interactions.
Collapse
Affiliation(s)
- Victor Narat
- Emerging Diseases Epidemiology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex, France
| | - Lys Alcayna-Stevens
- Emerging Diseases Epidemiology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex, France
| | - Stephanie Rupp
- Department of Anthropology, City University of New York - Lehman College, Bronx, NY, USA
| | - Tamara Giles-Vernick
- Emerging Diseases Epidemiology Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75724, Paris Cedex, France.
- Canadian Institute for Advanced Studies, Toronto, Canada.
| |
Collapse
|
9
|
Ahuka-Mundeke S, Mbala-Kingebeni P, Ndimbo-Kumogo SP, Foncelle C, Lunguya-Metila O, Muyembe-Tamfum JJ, Delaporte E, Peeters M, Ayouba A. Full Genome Characterization of a New Simian Immune Deficiency Virus Lineage in a Naturally Infected Cercopithecus ascanius whitesidei in the Democratic Republic of Congo Reveals High Genetic Diversity Among Red-Tailed Monkeys in Central and Eastern Africa. AIDS Res Hum Retroviruses 2017; 33:735-739. [PMID: 28383997 PMCID: PMC5512325 DOI: 10.1089/aid.2017.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our knowledge on simian immune deficiency virus (SIV) diversity and evolution in the different nonhuman primate species is still incomplete. In this study, we report the full genome characterization of a new SIV from a red-tailed monkey (2013DRC-I8), from the Cercopithecus ascanius whitesidei subspecies, in the Democratic Republic of Congo (DRC). The new full-length genome is 9,926 bp long, and the genomic structure is similar to that of other SIVs with the absence of vpx and vpu genes. The new SIVasc-13DRC-I8 strain fell within the Cercopithecus specific SIV lineage. SIVasc-13DRC-I8 and previously reported SIVrtg from the C.a. schmidti subspecies in Uganda did not form a separate species-specific SIV lineage. These observations provide additional evidence for high genetic diversity and the complex evolution of SIVs in the Cercopithecus genus. More studies on a large number of monkeys from a wider geographic area are needed to understand SIV evolution.
Collapse
Affiliation(s)
- Steve Ahuka-Mundeke
- UMI 233 TransVIHMI/INSERM1175, Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
- Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Placide Mbala-Kingebeni
- Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Caroline Foncelle
- UMI 233 TransVIHMI/INSERM1175, Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| | - Octavie Lunguya-Metila
- Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Jean-Jacques Muyembe-Tamfum
- Institut National de Recherche Biomédicales, Kinshasa, Democratic Republic of Congo
- Service de Microbiologie, Cliniques Universitaires de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Eric Delaporte
- UMI 233 TransVIHMI/INSERM1175, Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| | - Martine Peeters
- UMI 233 TransVIHMI/INSERM1175, Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| | - Ahidjo Ayouba
- UMI 233 TransVIHMI/INSERM1175, Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| |
Collapse
|
10
|
Bushmeat Hunting and Zoonotic Transmission of Simian T-Lymphotropic Virus 1 in Tropical West and Central Africa. J Virol 2017; 91:JVI.02479-16. [PMID: 28298599 DOI: 10.1128/jvi.02479-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/21/2017] [Indexed: 01/04/2023] Open
Abstract
Simian T-lymphotropic virus 1 (STLV-1) enters human populations through contact with nonhuman primate (NHP) bushmeat. We tested whether differences in the extent of contact with STLV-1-infected NHP bushmeat foster regional differences in prevalence of human T-lymphotropic virus 1 (HTLV-1). Using serological and PCR assays, we screened humans and NHPs at two Sub-Saharan African sites where subsistence hunting was expected to be less (Taï region, Côte d'Ivoire [CIV]) or more (Bandundu region, Democratic Republic of the Congo [DRC]) developed. Only 0.7% of human participants were infected with HTLV-1 in CIV (n = 574), and 1.3% of humans were infected in DRC (n = 302). Two of the Ivorian human virus sequences were closely related to simian counterparts, indicating ongoing zoonotic transmission. Multivariate analysis of human demographic parameters and behavior confirmed that participants from CIV were less often exposed to NHPs than participants from DRC through direct contact, e.g., butchering. At the same time, numbers of STLV-1-infected NHPs were higher in CIV (39%; n = 111) than in DRC (23%; n = 39). We conclude that similar ultimate risks of zoonotic STLV-1 transmission-defined as the product of prevalence in local NHP and human rates of contact to fresh NHP carcasses-contribute to the observed comparable rates of HTLV-1 infection in humans in CIV and DRC. We found that young adult men and mature women are most likely exposed to NHPs at both sites. In view of the continued difficulties in controlling zoonotic disease outbreaks, the identification of such groups at high risk of NHP exposure may guide future prevention efforts.IMPORTANCE Multiple studies report a high risk for zoonotic transmission of blood-borne pathogens like retroviruses through contact with NHPs, and this risk seems to be particularly high in tropical Africa. Here, we reveal high levels of exposure to NHP bushmeat in two regions of Western and Central tropical Africa. We provide evidence for continued zoonotic origin of HTLV-1 in humans at CIV, and we found that young men and mature women represent risk groups for zoonotic transmission of pathogens from NHPs. Identifying such risk groups can contribute to mitigation of not only zoonotic STLV-1 transmission but also transmission of any blood-borne pathogen onto humans in Sub-Saharan Africa.
Collapse
|