1
|
Moirano G, Botta A, Yang M, Mangeruga M, Murray K, Vineis P. Land-cover, land-use and human hantavirus infection risk: a systematic review. Pathog Glob Health 2024; 118:361-375. [PMID: 37876214 PMCID: PMC11338209 DOI: 10.1080/20477724.2023.2272097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Previous studies suggest that the risk of human infection by hantavirus, a family of rodent-borne viruses, might be affected by different environmental determinants such as land cover, land use and land use change. This study examined the association between land-cover, land-use, land use change, and human hantavirus infection risk. PubMed and Scopus databases were interrogated using terms relative to land use (change) and human hantavirus disease. Screening and selection of the articles were completed by three independent reviewers. Classes of land use assessed by the different studies were categorized into three macro-categories of exposure ('Agriculture', 'Forest Cover', 'Urban Areas') to qualitatively synthesize the direction of the association between exposure variables and hantavirus infection risk in humans. A total of 25 articles were included, with 14 studies (56%) conducted in China, 4 studies (16%) conducted in South America and 7 studies (28%) conducted in Europe. Most of the studies (88%) evaluated land cover or land use, while 3 studies (12%) evaluated land use change, all in relation to hantavirus infection risk. We observed that land cover and land-use categories could affect hantavirus infection incidence. Overall, agricultural land use was positively associated with increased human hantavirus infection risk, particularly in China and Brazil. In Europe, a positive association between forest cover and hantavirus infection incidence was observed. Studies that assessed the relationship between built-up areas and hantavirus infection risk were more variable, with studies reporting positive, negative or no associations.
Collapse
Affiliation(s)
- Giovenale Moirano
- Department of Medical Sciences, University of Turin, Turin, Italy
- Postgraduate School of Biostatistics, Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Annarita Botta
- Department of Infectious Disease and Infectious Emergencies, AORN Monaldi-Cotugno-CTO, Naples, Italy
| | - Mingyou Yang
- Hypertension Unit, Division of Internal Medicine, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Martina Mangeruga
- Environmental Technology, Centre for Environmental Policy, Imperial College, London, UK
| | - Kris Murray
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Paolo Vineis
- School of Public Health, Imperial College, Medical Research Council (MRC) Centre for Environment and Health, London, UK
| |
Collapse
|
2
|
Gutiérrez-Jara JP, Muñoz-Quezada MT, Córdova-Lepe F, Silva-Guzmán A. Mathematical Model of the Spread of Hantavirus Infection. Pathogens 2023; 12:1147. [PMID: 37764955 PMCID: PMC10536976 DOI: 10.3390/pathogens12091147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
A mathematical epidemiological model incorporating the mobility of rodents and human groups among zones of less or major contact between them is presented. The hantavirus infection dynamics is expressed using a model type SEIR (Susceptible-Exposed-Infectious-Removed), which incorporates the displacement of the rodent and the human, between the urban and rural sector, the latter being subdivided in populated and non-populated. The results show the impact that rodent or human displacement may have on the propagation of hantavirus infection. Human mobility is more significant than rodents in increasing the number of hantavirus infection cases. The results found may be used as a reference by the health authorities to develop more specific campaigns on the territorial dynamics of the rodent, attend to the mobility of humans in these territories, mainly agricultural and forestry workers, and strengthen control-prevention actions in the community, to prevent future outbreaks that are fatal.
Collapse
Affiliation(s)
- Juan Pablo Gutiérrez-Jara
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3480112, Chile
| | - María Teresa Muñoz-Quezada
- School of Public Health, Faculty of Medicine, Universidad de Chile, Avenida Independencia 939, Santiago 8320000, Chile;
| | - Fernando Córdova-Lepe
- Facultad de Ciencias Básicas, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3480112, Chile;
| | | |
Collapse
|
3
|
Vadell MV, Fischer CG, Codesido M, Carbajo A, Bilenca D, Gómez Villafañe IE. Modelling relative abundance of Oligoryzomys flavescens, an Orthohantavirus reservoir, in an endemic hantavirus pulmonary syndrome zone. Zoonoses Public Health 2023; 70:13-21. [PMID: 36031760 DOI: 10.1111/zph.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 01/07/2023]
Abstract
Hantavirus pulmonary syndrome (HPS) is a zoonotic emerging infectious disease caused by New World orthohantaviruses (family Hantaviridae) hosted by rodents of the family Cricetidae. In Argentina, one of its main hosts is the sigmodontine rodent Oligoryzomys flavescens, a widely distributed mouse of the Pampas, Delta and Espinal ecoregions of central-east Argentina. Because the abundance of the reservoir and its proportion in the rodent community affects both virus prevalence and human exposure risk, its estimation throughout its known geographical distribution is of key importance for the design of public health strategies to prevent HPS. The aim of this study was therefore to model the relative abundance of O. flavescens in most of the Pampas ecoregion within Buenos Aires Province, Argentina, where hantavirus pulmonary syndrome is endemic. To do this we used owl-pellet samples collected between 2006 and 2008 from 51 sites distributed throughout most of Buenos Aires province. Mammalian prey in each pellet was identified to the lowest possible taxonomic level by examination of the skulls, dentaries and molars. We modelled the frequency of O. flavescens found in each sample as a function of climatic, environmental, and topographic data of each site. The two best models were applied to a Geo referential Information System to build maps of estimated frequency (as a proxy of relative abundance) within Buenos Aires province. Estimated relative abundance of O. flavescens in Buenos Aires province was significantly associated with annual mean temperature, annual precipitation and presence of freshwater bodies, and varied among sub-regions, with the Inland and Rolling Pampas being the regions with highest frequencies. Knowing in which areas O. flavescens abundance is expected to be higher can be used to concentrate limited sanitary efforts in those areas that are most needed in order to reduce transmission and increase detection.
Collapse
Affiliation(s)
- María Victoria Vadell
- Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Puerto Iguazú, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos González Fischer
- Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires (CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Codesido
- Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires (CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aníbal Carbajo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - David Bilenca
- Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires (CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Isabel E Gómez Villafañe
- Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires (CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Gómez Villafañe IE, Burgos EF, Coelho RM, Bellomo CM, Garcilazo Amatti J, Martinez VP. Expanded distribution of orthohantavirus Pergamino genotype: First record in Entre Rios province, Argentina. Rev Argent Microbiol 2022; 54:35-38. [PMID: 33888358 DOI: 10.1016/j.ram.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 10/21/2022] Open
Abstract
Hantavirus Pulmonary Syndrome (HPS) is an emerging infectious disease of the Americas. Eight native rodent species have been identified as HPS virus reservoirs in Argentina. The aim of this work was to detect the orthohantavirus genotypes present in a rodent community that inhabits a zone where a fatal HPS case occurred within an endemic locality of Central Argentina. We captured 27 rodents with a trapping effort of 723 trap nights. We detected 14.3% of infected Akodon azarae with the Pergamino genotype. This result expands the known distribution of this orthohantavirus. Although the Pergamino genotype has not been associated with human cases, the information about its distribution is relevant for risk assessment against potential changes in the virus infectivity.
Collapse
Affiliation(s)
- Isabel E Gómez Villafañe
- Departamento de Ecología, Genética y Evolución, IEGEBA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| | - Eliana F Burgos
- Instituto Nacional de Medicina Tropical (INMeT)-ANLIS Dr. Carlos G. Malbrán, Puerto Iguazú, Misiones, Argentina
| | - Rocio M Coelho
- Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Carla M Bellomo
- Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Jerónimo Garcilazo Amatti
- Programa Zoonosis y Vectores, Dirección de Epidemiología, Ministerio de Salud, Entre Ríos, Argentina
| | - Valeria P Martinez
- Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| |
Collapse
|
5
|
Douglas KO, Payne K, Sabino-Santos G, Agard J. Influence of Climatic Factors on Human Hantavirus Infections in Latin America and the Caribbean: A Systematic Review. Pathogens 2021; 11:pathogens11010015. [PMID: 35055965 PMCID: PMC8778283 DOI: 10.3390/pathogens11010015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND With the current climate change crisis and its influence on infectious disease transmission there is an increased desire to understand its impact on infectious diseases globally. Hantaviruses are found worldwide, causing infectious diseases such as haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS)/hantavirus pulmonary syndrome (HPS) in tropical regions such as Latin America and the Caribbean (LAC). These regions are inherently vulnerable to climate change impacts, infectious disease outbreaks and natural disasters. Hantaviruses are zoonotic viruses present in multiple rodent hosts resident in Neotropical ecosystems within LAC and are involved in hantavirus transmission. METHODS We conducted a systematic review to assess the association of climatic factors with human hantavirus infections in the LAC region. Literature searches were conducted on MEDLINE and Web of Science databases for published studies according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria. The inclusion criteria included at least eight human hantavirus cases, at least one climatic factor and study from > 1 LAC geographical location. RESULTS In total, 383 papers were identified within the search criteria, but 13 studies met the inclusion criteria ranging from Brazil, Chile, Argentina, Bolivia and Panama in Latin America and a single study from Barbados in the Caribbean. Multiple mathematical models were utilized in the selected studies with varying power to generate robust risk and case estimates of human hantavirus infections linked to climatic factors. Strong evidence of hantavirus disease association with precipitation and habitat type factors were observed, but mixed evidence was observed for temperature and humidity. CONCLUSIONS The interaction of climate and hantavirus diseases in LAC is likely complex due to the unknown identity of all vertebrate host reservoirs, circulation of multiple hantavirus strains, agricultural practices, climatic changes and challenged public health systems. There is an increasing need for more detailed systematic research on the influence of climate and other co-related social, abiotic, and biotic factors on infectious diseases in LAC to understand the complexity of vector-borne disease transmission in the Neotropics.
Collapse
Affiliation(s)
- Kirk Osmond Douglas
- Centre for Biosecurity Studies, Cave Hill Campus, The University of the West Indies, Cave Hill, St. Michael BB11000, Barbados
- Correspondence:
| | - Karl Payne
- Centre for Resource Management and Environmental Studies, Cave Hill Campus, The University of the West Indies, Cave Hill, St. Michael BB11000, Barbados;
| | - Gilberto Sabino-Santos
- School of Public Health and Tropical Medicine, Tulane University, 1324 Tulane Ave Suite 517, New Orleans, LA 70112, USA;
- Centre for Virology Research, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Av. Bandeirantes, Ribeirao Preto 14049-900, SP, Brazil
| | - John Agard
- Department of Life Sciences, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago;
| |
Collapse
|
6
|
Bellomo C, Alonso DO, Ricardo T, Coelho R, Kehl S, Periolo N, Azogaray V, Casas N, Ottonelli M, Bergero LC, Cudós MC, Previtali MA, Martinez VP. Emerging hantaviruses in Central Argentina: First case of Hantavirus Pulmonary Syndrome caused by Alto Paraguay virus, and a novel orthohantavirus in Scapteromys aquaticus rodent. PLoS Negl Trop Dis 2021; 15:e0009842. [PMID: 34788281 PMCID: PMC8598061 DOI: 10.1371/journal.pntd.0009842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/26/2021] [Indexed: 11/18/2022] Open
Abstract
Orthohantaviruses are emerging rodent-borne pathogens that cause Hantavirus Pulmonary Syndrome in humans. They have a wide range of rodent reservoir hosts and are transmitted to humans through aerosolized viral particles generated by the excretions of infected individuals. Since the first description of HPS in Argentina, new hantaviruses have been reported throughout the country, most of which are pathogenic to humans. We present here the first HPS case infected with Alto Paraguay virus reported in Argentina. Until now, Alto Paraguay virus was considered a non-pathogenic orthohantavirus since it was identified in a rodent, Holochilus chacarius. In addition to this, with the goal of identifying potential hantavirus host species in the province of Santa Fe, we finally describe a novel orthohantavirus found in the native rodent Scapteromys aquaticus, which differed from other hantaviruses described in the country so far. Our findings implicate an epidemiological warning regarding these new orthohantaviruses circulating in Central Argentina as well as new rodent species that must be considered as hosts from now on.
Collapse
Affiliation(s)
- Carla Bellomo
- Instituto Nacional de Enfermedades Infecciosas—Administración Nacional de Laboratorios e Institutos de Salud “Dr. C. Malbrán”, Buenos Aires, Argentina
- * E-mail:
| | - Daniel Oscar Alonso
- Instituto Nacional de Enfermedades Infecciosas—Administración Nacional de Laboratorios e Institutos de Salud “Dr. C. Malbrán”, Buenos Aires, Argentina
| | - Tamara Ricardo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fé, Argentina
- Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias (FHUC), Universidad Nacional del Litoral, Santa Fé, Argentina
| | - Rocío Coelho
- Instituto Nacional de Enfermedades Infecciosas—Administración Nacional de Laboratorios e Institutos de Salud “Dr. C. Malbrán”, Buenos Aires, Argentina
| | - Sebastián Kehl
- Instituto Nacional de Enfermedades Infecciosas—Administración Nacional de Laboratorios e Institutos de Salud “Dr. C. Malbrán”, Buenos Aires, Argentina
| | - Natalia Periolo
- Instituto Nacional de Enfermedades Infecciosas—Administración Nacional de Laboratorios e Institutos de Salud “Dr. C. Malbrán”, Buenos Aires, Argentina
| | - Viviana Azogaray
- Laboratorio Central de la Provincia de Santa Fe, Santa Fé, Argentina
| | - Natalia Casas
- Ministerio de Salud de la Nación, Programa Nacional de Control de Enfermedades Zoonóticas, Buenos Aires, Argentina
| | - Mariano Ottonelli
- Dirección de Epidemiología, Ministerio de Salud de Santa Fe, Santa Fé, Argentina
| | - Laura Cristina Bergero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fé, Argentina
| | - María Carolina Cudós
- Dirección de Epidemiología, Ministerio de Salud de Santa Fe, Santa Fé, Argentina
| | - María Andrea Previtali
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fé, Argentina
- Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias (FHUC), Universidad Nacional del Litoral, Santa Fé, Argentina
| | - Valeria Paula Martinez
- Instituto Nacional de Enfermedades Infecciosas—Administración Nacional de Laboratorios e Institutos de Salud “Dr. C. Malbrán”, Buenos Aires, Argentina
| |
Collapse
|
7
|
Maroli M, Crosignani B, Piña CI, Coelho R, Martínez VP, Gómez Villafañe IE. New data about home range and movements of Oligoryzomys flavescens (Rodentia: Cricetidae) help to understand the spread and transmission of Andes virus that causes Hantavirus Pulmonary Syndrome. Zoonoses Public Health 2020; 67:308-317. [PMID: 32034891 DOI: 10.1111/zph.12690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 01/16/2023]
Abstract
Hantavirus pulmonary syndrome is an emerging infectious disease caused by viruses of the genus Orthohantavirus. The rodent Oligoryzomys flavescens is distributed along four countries of South America. In Argentina, O. flavescens acts as a reservoir of three genotypes of ANDV orthohantavirus. The aims of this work were to estimate home range size and movements-with spool-and-line and radiotelemetry-of infected and non-infected O. flavescens in order to understand the spread and transmission of the virus. O. flavescens use a wide area to satisfice its requirements, reaching a home range of 1.82 ha during spring. Orthohantavirus infection did not change the behaviour of individuals. We observed a great overlapping in the home range of infected and non-infected individuals resulting in a high probability of virus dispersion on rodent population. These results show that human health risks could be high on island environments and knowledge about the movement ecology of O. flavescens provides useful information on prevention.
Collapse
Affiliation(s)
- Malena Maroli
- Centro de Investigación Científica y de Transferencia Tecnológica a la Producción, Diamante, Argentina.,Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Entre Ríos, Argentina
| | - Belén Crosignani
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos I Piña
- Centro de Investigación Científica y de Transferencia Tecnológica a la Producción, Diamante, Argentina.,Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Entre Ríos, Argentina
| | - Rocío Coelho
- Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Valeria P Martínez
- Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Isabel Elisa Gómez Villafañe
- Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución (CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|