1
|
Sustained release of epigallocatechin-3-gallate from chitosan-based scaffolds to promote osteogenesis of mesenchymal stem cell. Int J Biol Macromol 2021; 176:96-105. [PMID: 33577812 DOI: 10.1016/j.ijbiomac.2021.02.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 01/09/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a kind of flavonoids and has the ability to promote differentiation of mesenchymal stem cells (MSCs) into osteoblasts. However, the EGCG is easily metabolized by cells during cell culture, which reduces its bioavailability. Therefore, in this paper, EGCG-loaded chitosan nanoparticles (ECN) were fabricated and entrapped into chitosan/alginate (CS/Alg) scaffolds to form CS/Alg-ECN scaffolds for improving the bioavailability of EGCG. The human umbilical cord mesenchymal stem cells (HUMSCs) were cultured on CS/Alg-ECN scaffolds to induce osteogenic differentiation. The results indicated that the CS/Alg-ECN scaffolds continuously released EGCG for up to 16 days. Besides, these results suggested that CS/Alg-ECN scaffolds promoted osteoblast differentiation through activating Wnt/β-catenin signaling pathway. Collectively, this study demonstrated that the entrapment ECN into CS/Alg scaffolds was a promising strategy for promoting osteogenesis of MSCs.
Collapse
|
2
|
Hadida M, Marchat D. Strategy for achieving standardized bone models. Biotechnol Bioeng 2019; 117:251-271. [PMID: 31531968 PMCID: PMC6915912 DOI: 10.1002/bit.27171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022]
Abstract
Reliably producing functional in vitro organ models, such as organ-on-chip systems, has the potential to considerably advance biology research, drug development time, and resource efficiency. However, despite the ongoing major progress in the field, three-dimensional bone tissue models remain elusive. In this review, we specifically investigate the control of perfusion flow effects as the missing link between isolated culture systems and scientifically exploitable bone models and propose a roadmap toward this goal.
Collapse
Affiliation(s)
- Mikhael Hadida
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - David Marchat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| |
Collapse
|
3
|
Cell Colonization Ability of a Commercialized Large Porous Alveolar Scaffold. Appl Bionics Biomech 2018; 2017:8949264. [PMID: 29386882 PMCID: PMC5745715 DOI: 10.1155/2017/8949264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 11/17/2022] Open
Abstract
The use of filling biomaterials or tissue-engineered large bone implant-coupling biocompatible materials and human bone marrow mesenchymal stromal cells seems to be a promising approach to treat critical-sized bone defects. However, the cellular seeding onto and into large porous scaffolds still remains challenging since this process highly depends on the porous microstructure. Indeed, the cells may mainly colonize the periphery of the scaffold, leaving its volume almost free of cells. In this study, we carry out an in vitro study to analyze the ability of a commercialized scaffold to be in vivo colonized by cells. We investigate the influence of various physical parameters on the seeding efficiency of a perfusion seeding protocol using large manufactured bone substitutes. The present study shows that the velocity of the perfusion fluid and the initial cell density seem to impact the seeding results and to have a negative effect on the cellular viability, whereas the duration of the fluid perfusion and the nature of the flow (steady versus pulsed) did not show any influence on either the fraction of seeded cells or the cellular viability rate. However, the cellular repartition after seeding remains highly heterogeneous.
Collapse
|
4
|
Oostendorp C, Meyer S, Sobrio M, van Arendonk J, Reichmann E, Daamen WF, van Kuppevelt TH. Evaluation of cultured human dermal- and dermo-epidermal substitutes focusing on extracellular matrix components: Comparison of protein and RNA analysis. Burns 2017; 43:520-530. [PMID: 28041746 DOI: 10.1016/j.burns.2016.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/02/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023]
Abstract
Treatment of full-thickness skin defects with split-thickness skin grafts is generally associated with contraction and scar formation and cellular skin substitutes have been developed to improve skin regeneration. The evaluation of cultured skin substitutes is generally based on qualitative parameters focusing on histology. In this study we focused on quantitative evaluation to provide a template for comparison of human bio-engineered skin substitutes between clinical and/or research centers, and to supplement histological data. We focused on extracellular matrix proteins since these components play an important role in skin regeneration. As a model we analyzed the human dermal substitute denovoDerm and the dermo-epidermal skin substitute denovoSkin. The quantification of the extracellular matrix proteins type III collagen and laminin 5 in tissue homogenates using western blotting analysis and ELISA was not successful. The same was true for assaying lysyl oxidase, an enzyme involved in crosslinking of matrix molecules. As an alternative, gene expression levels were measured using qPCR. Various RNA isolation procedures were probed. The gene expression profile for specific dermal and epidermal genes could be measured reliably and reproducibly. Differences caused by changes in the cell culture conditions could easily be detected. The number of cells in the skin substitutes was measured using the PicoGreen dsDNA assay, which was found highly quantitative and reproducible. The (dis) advantages of assays used for quantitative evaluation of skin substitutes are discussed.
Collapse
Affiliation(s)
- Corien Oostendorp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| | - Sarah Meyer
- Tissue Biology Research Unit, Department of Surgery, Zurich University Children's Hospital, August Forel Strasse 7, 8008 Zurich, Switzerland
| | - Monia Sobrio
- Tissue Biology Research Unit, Department of Surgery, Zurich University Children's Hospital, August Forel Strasse 7, 8008 Zurich, Switzerland.
| | - Joyce van Arendonk
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, Zurich University Children's Hospital, August Forel Strasse 7, 8008 Zurich, Switzerland.
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Dorozhkin SV. Multiphasic calcium orthophosphate (CaPO 4 ) bioceramics and their biomedical applications. CERAMICS INTERNATIONAL 2016; 42:6529-6554. [DOI: 10.1016/j.ceramint.2016.01.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
6
|
Röder A, García-Gareta E, Theodoropoulos C, Ristovski N, Blackwood KA, Woodruff MA. An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds. J Funct Biomater 2015; 6:1054-63. [PMID: 26703748 PMCID: PMC4695910 DOI: 10.3390/jfb6041054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/07/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022] Open
Abstract
The use of biopolymers as a three dimensional (3D) support structure for cell growth is a leading tissue engineering approach in regenerative medicine. Achieving consistent cell seeding and uniform cell distribution throughout 3D scaffold culture in vitro is an ongoing challenge. Traditionally, 3D scaffolds are cultured within tissue culture plates to enable reproducible cell seeding and ease of culture media change. In this study, we compared two different well-plates with different surface properties to assess whether seeding efficiencies and cell growth on 3D scaffolds were affected. Cell attachment and growth of murine calvarial osteoblast (MC3T3-E1) cells within a melt-electrospun poly-ε-caprolactone scaffold were assessed when cultured in either “low-adhesive” non-treated or corona discharged-treated well-plates. Increased cell adhesion was observed on the scaffold placed in the surface treated culture plates compared to the scaffold in the non-treated plates 24 h after seeding, although it was not significant. However, higher cell metabolic activity was observed on the bases of all well-plates than on the scaffold, except for day 21, well metabolic activity was higher in the scaffold contained in non-treated plate than the base. These results indicate that there is no advantage in using non-treated plates to improve initial cell seeding in 3D polymeric tissue engineering scaffolds, however non-treated plates may provide an improved metabolic environment for long-term studies.
Collapse
Affiliation(s)
- Alexander Röder
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
| | - Elena García-Gareta
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| | - Christina Theodoropoulos
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
| | - Nikola Ristovski
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
| | - Keith A Blackwood
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
| | - Maria A Woodruff
- Institute of Health & Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, 4059, Australia.
| |
Collapse
|
7
|
Bouet G, Marchat D, Cruel M, Malaval L, Vico L. In VitroThree-Dimensional Bone Tissue Models: From Cells to Controlled and Dynamic Environment. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:133-56. [DOI: 10.1089/ten.teb.2013.0682] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guenaelle Bouet
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - David Marchat
- Center for Biomedical and Healthcare Engineering, Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRS:UMR 5307, Saint-Etienne, France
| | - Magali Cruel
- University of Lyon, LTDS, UMR CNRS 5513, Ecole Centrale de Lyon, Ecully, France
| | - Luc Malaval
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| | - Laurence Vico
- Laboratoire de Biologie du Tissu Osseux, Institut National de la Santé et de la Recherche Médicale—U1059, Université de Lyon—Université Jean Monnet, Saint-Etienne, France
| |
Collapse
|
8
|
McCoy RJ, Widaa A, Watters KM, Wuerstle M, Stallings RL, Duffy GP, O'Brien FJ. Orchestrating osteogenic differentiation of mesenchymal stem cells--identification of placental growth factor as a mechanosensitive gene with a pro-osteogenic role. Stem Cells 2014; 31:2420-31. [PMID: 23897668 DOI: 10.1002/stem.1482] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 01/09/2023]
Abstract
Skeletogenesis is initiated during fetal development and persists through adult life as either a remodeling process in response to homeostatic regulation or as a regenerative process in response to physical injury. Mesenchymal stem cells (MSCs) play a crucial role providing progenitor cells from which osteoblasts, bone matrix forming cells are differentiated. The mechanical environment plays an important role in regulating stem cell differentiation into osteoblasts, however, the mechanisms by which MSCs respond to mechanical stimuli are yet to be fully elucidated. To increase understanding of MSC mechanotransuction and osteogenic differentiation, this study aimed to identify novel, mechanically augmented genes and pathways with pro-osteogenic functionality. Using collagen glycoaminoglycan scaffolds as mimics of native extracellular matrix, to create a 3D environment more representative of that found in bone, MSC-seeded constructs were mechanically stimulated in a flow-perfusion bioreactor. Global gene expression profiling techniques were used to identify potential candidates warranting further investigation. Of these, placental growth factor (PGF) was selected and expression levels were shown to strongly correlate to both the magnitude and duration of mechanical stimulation. We demonstrated that PGF gene expression was modulated through an actin polymerization-mediated mechanism. The functional role of PGF in modulating MSC osteogenic differentiation was interrogated, and we showed a concentration-dependent response whereby low concentrations exhibited the strongest pro-osteogenic effect. Furthermore, pre-osteoclast migration and differentiation, as well as endothelial cell tubule formation also maintained concentration-dependent responses to PGF, suggesting a potential role for PGF in bone resorption and angiogenesis, processes key to bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Ryan J McCoy
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin (TCD), Dublin 2, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | | | | | | | | | | | | |
Collapse
|
9
|
Du D, Asaoka T, Ushida T, Furukawa KS. Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography. Biofabrication 2014; 6:045002. [DOI: 10.1088/1758-5082/6/4/045002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci 2014; 15:11878-921. [PMID: 25000263 PMCID: PMC4139820 DOI: 10.3390/ijms150711878] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 01/21/2023] Open
Abstract
Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants.
Collapse
|
11
|
García-Gareta E, Hua J, Rayan F, Blunn GW. Stem cell engineered bone with calcium-phosphate coated porous titanium scaffold or silicon hydroxyapatite granules for revision total joint arthroplasty. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1553-1562. [PMID: 24519756 DOI: 10.1007/s10856-014-5170-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
Aseptic loosening in total joint replacements (TJRs) is mainly caused by osteolysis which leads to a reduction of the bone stock necessary for implant fixation in revision TJRs. Our aim was to develop bone tissue-engineered constructs based on scaffolds of clinical relevance in revision TJRs to reconstitute the bone stock at revision operations by using a perfusion bioreactor system (PBRS). The hypothesis was that a PBRS will enhance mesenchymal stem cells (MSCs) proliferation and osteogenic differentiation and will provide an even distribution of MSCs throughout the scaffolds when compared to static cultures. A PBRS was designed and implemented. Scaffolds, silicon substituted hydroxyapatite granules and calcium-phosphate coated porous TiAl6V4 cylinders, were seeded with MSCs and cultured either in static conditions or in the PBRS at 0.75 mL/min. Statistically significant increased cell proliferation and alkaline phosphatase activity was found in samples cultured in the PBRS. Histology revealed a more even cell distribution in the perfused constructs. SEM showed that cells arranged in sheets. Long cytoplasmic processes attached the cells to the scaffolds. We conclude that a novel tissue engineering approach to address the issue of poor bone stock at revision operations is feasible by using a PBRS.
Collapse
Affiliation(s)
- Elena García-Gareta
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore, HA7 4LP, London, UK,
| | | | | | | |
Collapse
|
12
|
Mussano F, Bartorelli Cusani A, Brossa A, Carossa S, Bussolati G, Bussolati B. Presence of osteoinductive factors in bovine colostrum. Biosci Biotechnol Biochem 2014; 78:662-71. [PMID: 25036965 DOI: 10.1080/09168451.2014.896733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
New approaches in the treatment of skeletal defects may benefit from the use of soluble biological factors. We previously standardized a derivative of bovine colostrum (SBCD), deprived of casein and fat and rich in cytokines. In the present study, we tested its possible use as an adjuvant in bone healing. SBCD contained factors involved in stromal cell stimulation and differentiation and induced cytokine production from stimulated mesenchymal stem cells (MSCs). In vitro, SBCD promoted proliferation, migration and, in association with osteogenic factors, osteogenic differentiation of osteoblastic and MSCs. In in vivo experiments of subcutaneous Matrigel injection in mice, SBCD plus hydroxyapatite, but not hydroxyapatite nor SBCD alone, induced recruitment of macrophages and stromal cells. After 60 days, plugs containing SBCD and hydroxyapatite were densely calcified and diffusely positive for osteocalcin, supporting the occurrence of an early osteogenic process. These results indicate that SBCD is a rich source of factors with osteoinductive properties.
Collapse
Affiliation(s)
- Federico Mussano
- a Department of Surgical Sciences, Dental School , University of Turin , Torino , Italy
| | | | | | | | | | | |
Collapse
|
13
|
Du D, Ushida T, Furukawa KS. Influence of cassette design on three-dimensional perfusion culture of artificial bone. J Biomed Mater Res B Appl Biomater 2014; 103:84-91. [DOI: 10.1002/jbm.b.33188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/25/2014] [Accepted: 04/12/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Dajiang Du
- Department of Orthopaedic Surgery, Sino-Russian Institute of Hard Tissue Development and Regeneration; Harbin Medical University; Nangang Harbin 150086 China
| | - Takashi Ushida
- Division of Biomedical Materials and Systems, Center for Disease Biology and Integrative Medicine; School of Medicine, the University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- NanoBio. Integration, University of Tokyo; Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Katsuko S Furukawa
- NanoBio. Integration, University of Tokyo; Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Laboratory of Biomedical Engineering, Department of Mechanical Engineering; Graduate School of Engineering, the University of Tokyo; 2nd Building, 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering; Graduate School of Engineering, The University of Tokyo; 2nd Building, 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
14
|
Teixeira GQ, Barrias CC, Lourenço AH, Gonçalves RM. A multicompartment holder for spinner flasks improves expansion and osteogenic differentiation of mesenchymal stem cells in three-dimensional scaffolds. Tissue Eng Part C Methods 2014; 20:984-93. [PMID: 24650268 DOI: 10.1089/ten.tec.2014.0067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the tissue engineering field dynamic culture systems, such as spinner flasks, are widely used due to their ability to improve mass transfer in suspension cell cultures. However, this culture system is often unsuitable to culture cells in three-dimensional (3D) scaffolds. To address this drawback, we designed a multicompartment holder for 3D cell culture, easily adaptable to spinner flasks. Here, the device was tested with human mesenchymal stem cells (MSCs) seeded in 3D porous chitosan scaffolds that were maintained in spinner flasks under dynamic conditions (50 rpm). Standard static culture conditions were used as control. The dynamic conditions were shown to significantly increase MSCs proliferation over 1 week (approximately 6-fold) and to improve cell distribution within the scaffold. Moreover, they also promoted osteogenic differentiation of MSCs, inducing an earlier peak in alkaline phosphatase (ALP) activity, and a more homogenous ALP staining and matrix mineralization in the whole scaffolds, but particularly in the center. Overall, this study shows a new multicompartment holder to culture 3D scaffolds that can broaden the application of spinner flasks.
Collapse
Affiliation(s)
- Graciosa Q Teixeira
- 1 INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
| | | | | | | |
Collapse
|
15
|
Wang L, Ma XY, Zhang Y, Feng YF, Li X, Hu YY, Wang Z, Ma ZS, Lei W. Repair of segmental bone defect using Totally Vitalized tissue engineered bone graft by a combined perfusion seeding and culture system. PLoS One 2014; 9:e94276. [PMID: 24728277 PMCID: PMC3984127 DOI: 10.1371/journal.pone.0094276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/13/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The basic strategy to construct tissue engineered bone graft (TEBG) is to combine osteoblastic cells with three dimensional (3D) scaffold. Based on this strategy, we proposed the "Totally Vitalized TEBG" (TV-TEBG) which was characterized by abundant and homogenously distributed cells with enhanced cell proliferation and differentiation and further investigated its biological performance in repairing segmental bone defect. METHODS In this study, we constructed the TV-TEBG with the combination of customized flow perfusion seeding/culture system and β-tricalcium phosphate (β-TCP) scaffold fabricated by Rapid Prototyping (RP) technique. We systemically compared three kinds of TEBG constructed by perfusion seeding and perfusion culture (PSPC) method, static seeding and perfusion culture (SSPC) method, and static seeding and static culture (SSSC) method for their in vitro performance and bone defect healing efficacy with a rabbit model. RESULTS Our study has demonstrated that TEBG constructed by PSPC method exhibited better biological properties with higher daily D-glucose consumption, increased cell proliferation and differentiation, and better cell distribution, indicating the successful construction of TV-TEBG. After implanted into rabbit radius defects for 12 weeks, PSPC group exerted higher X-ray score close to autograft, much greater mechanical property evidenced by the biomechanical testing and significantly higher new bone formation as shown by histological analysis compared with the other two groups, and eventually obtained favorable healing efficacy of the segmental bone defect that was the closest to autograft transplantation. CONCLUSION This study demonstrated the feasibility of TV-TEBG construction with combination of perfusion seeding, perfusion culture and RP technique which exerted excellent biological properties. The application of TV-TEBG may become a preferred candidate for segmental bone defect repair in orthopedic and maxillofacial fields.
Collapse
Affiliation(s)
- Lin Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiang-Yu Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yang Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ya-Fei Feng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, People's Republic of China
| | - Yun-Yu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhen Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhen-Sheng Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
16
|
Gulati BR, Kumar R, Mohanty N, Kumar P, Somasundaram RK, Yadav PS. Bone morphogenetic protein-12 induces tenogenic differentiation of mesenchymal stem cells derived from equine amniotic fluid. Cells Tissues Organs 2014; 198:377-89. [PMID: 24662023 DOI: 10.1159/000358231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2013] [Indexed: 11/19/2022] Open
Abstract
Tendon injuries are common in race horses, and mesenchymal stem cells (MSCs) isolated from adult and foetal tissue have been used for tendon regeneration. In the present study, we evaluated equine amniotic fluid (AF) as a source of MSCs and standardised methodology and markers for their in vitro tenogenic differentiation. Plastic-adherent colonies were isolated from 12 of 20 AF samples by day 6 after seeding and 70-80% cell confluency was reached by day 17. These cells expressed mesenchymal surface markers [cluster of differentiation (CD)73, CD90 and CD105] by reverse transcription (RT)-polymerase chain reaction (PCR) and immunocytochemistry, but did not express haematopoietic markers (CD34, CD45 and CD14). In flow cytometry, the expression of CD29, CD44, CD73 and CD90 was observed in 68.83 ± 1.27, 93.66 ± 1.80, 96.96 ± 0.44 and 93.7 ± 1.89% of AF-MSCs, respectively. Osteogenic, chondrogenic and adipogenic differentiation of MSCs was confirmed by von Kossa and Alizarin red S, Alcian blue and oil red O staining, respectively. Upon supplementation of MSC growth media with 50 ng/ml bone morphogenetic protein (BMP)-12, AF-MSCs differentiated to tenocytes within 14 days. The differentiated cells were more slender, elongated and spindle shaped with thinner and longer cytoplasmic processes and showed expression of tenomodulin and decorin by RT-PCR and immunocytochemistry. In flow cytometry, 96.7 ± 1.90 and 80.9 ± 6.4% of differentiated cells expressed tenomodulin and decorin in comparison to 1.6 and 3.1% in undifferentiated control cells, respectively. Our results suggest that AF is an easily accessible and effective source of MSCs. On BMP-12 supplementation, AF-MSCs can be differentiated to tenocytes, which could be exploited for regeneration of ruptured or damaged tendon in race horses.
Collapse
|
17
|
Hong MH, Kim SM, Om JY, Kwon N, Lee YK. Seeding cells on calcium phosphate scaffolds using hydrogel enhanced osteoblast proliferation and differentiation. Ann Biomed Eng 2013; 42:1424-35. [PMID: 24129755 DOI: 10.1007/s10439-013-0926-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/07/2013] [Indexed: 01/07/2023]
Abstract
Internal pores in calcium phosphate (CaP) scaffolds pose an obstacle in cell seeding efficiency. Previous studies have shown inverse relationships between cell attachment and internal pore size, which mainly resulted from cells flowing to the bottom of culture plates. In order to overcome this structure-based setback, we have designed a method for cell seeding that involves hydrogel. CaP scaffolds fabricated with hydroxyapatite, biphasic calcium phosphate, and β-tricalcium phosphate, had respective porosities of 77.0, 77.9, and 82.5% and pore diameters of 671.1, 694.7, and 842.8 μm. We seeded the cells on the scaffolds using two methods: the first using osteogenic medium and the second using hydrogel to entrap cells. As expected, cell seeding efficiency of the groups with hydrogel ranged from 92.5 to 96.3%, whereas efficiency of the control groups ranged only from 64.2 to 71.8%. Cell proliferation followed a similar trend, which may have further influenced early stages of cell differentiation. We suggest that our method of cell seeding with hydrogel can impact the field of tissue engineering even further with modifications of the materials or the addition of biological factors.
Collapse
Affiliation(s)
- Min-Ho Hong
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, Columbia University Medical Center, 650 West 168th Street, New York, NY, 10032, USA
| | | | | | | | | |
Collapse
|
18
|
Gardel LS, Serra LA, Reis RL, Gomes ME. Use of perfusion bioreactors and large animal models for long bone tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:126-46. [PMID: 23924374 DOI: 10.1089/ten.teb.2013.0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.
Collapse
Affiliation(s)
- Leandro S Gardel
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | |
Collapse
|
19
|
Reichardt A, Polchow B, Shakibaei M, Henrich W, Hetzer R, Lueders C. Large scale expansion of human umbilical cord cells in a rotating bed system bioreactor for cardiovascular tissue engineering applications. Open Biomed Eng J 2013; 7:50-61. [PMID: 23847691 PMCID: PMC3706833 DOI: 10.2174/1874120701307010050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 12/02/2022] Open
Abstract
Widespread use of human umbilical cord cells for cardiovascular tissue engineering requires production of large numbers of well-characterized cells under controlled conditions. In current research projects, the expansion of cells to be used to create a tissue construct is usually performed in static cell culture systems which are, however, often not satisfactory due to limitations in nutrient and oxygen supply. To overcome these limitations dynamic cell expansion in bioreactor systems under controllable conditions could be an important tool providing continuous perfusion for the generation of large numbers of viable pre-conditioned cells in a short time period. For this purpose cells derived from human umbilical cord arteries were expanded in a rotating bed system bioreactor for up to 9 days. For a comparative study, cells were cultivated under static conditions in standard culture devices. Our results demonstrated that the microenvironment in the perfusion bioreactor was more favorable than that of the standard cell culture flasks. Data suggested that cells in the bioreactor expanded 39 fold (38.7 ± 6.1 fold) in comparison to statically cultured cells (31.8 ± 3.0 fold). Large-scale production of cells in the bioreactor resulted in more than 3 x 108 cells from a single umbilical cord fragment within 9 days. Furthermore cell doubling time was lower in the bioreactor system and production of extracellular matrix components was higher. With this study, we present an appropriate method to expand human umbilical cord artery derived cells with high cellular proliferation rates in a well-defined bioreactor system under GMP conditions.
Collapse
Affiliation(s)
- Anne Reichardt
- Department of Cardiothoracic and Vascular Surgery and Laboratory for Tissue Engineering, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Silva ARP, Paula ACC, Martins TMM, Goes AM, Pereria MM. Synergistic effect between bioactive glass foam and a perfusion bioreactor on osteogenic differentiation of human adipose stem cells. J Biomed Mater Res A 2013; 102:818-27. [PMID: 23625853 DOI: 10.1002/jbm.a.34758] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/08/2013] [Accepted: 04/17/2013] [Indexed: 01/22/2023]
Abstract
Tissue engineering is a multidisciplinary science that combines a structural scaffold and cells to form a construct able to promote regeneration of injured tissue. Bioactive glass foam produced by sol-gel is an osteoinductive material with a network of interconnected macropores necessary for cell colonization. The use of human adipose-derived stem cell (hASC) presents advantages as the potential for a large number of cells, rapid expansion in vitro and the capability of differentiating into osteoblasts. The use of a bioreactor in three-dimensional cell culture enables greater efficiency for cell nutrition and application of mechanical forces, important modulators of bone physiology. The hASC seeded in a bioactive glass scaffold and cultured in osteogenic Leibovitz L-15 medium in a bioreactor with a flow rate of 0.1 mL min(-1) demonstrated a significant increase in cell proliferation and viability and alkaline phosphatase (ALP) activity peak after 14 days. The immunofluorescence assay revealed an expression of osteopontin, osteocalcin and type I collagen from 7 to 21 days after culture. The cells changed from a spindle shape to a cuboidal morphology characteristic of osteoblasts. The polymerase chain reaction assay confirmed that osteopontin, osteocalcin, and ALP genes were expressed. These results indicate that hASCs differentiated into an osteogenic phenotype when cultured in bioactive glass scaffold, osteogenic Leibovitz L-15 medium and a perfusion bioreactor. Therefore, these results highlight the synergism between a bioactive glass scaffold and the effect of perfusion on cells and indicate the differentiation into an osteogenic phenotype.
Collapse
Affiliation(s)
- A R P Silva
- Department of Metallurgical and Material Engineering, Laboratory of Biomaterials, Engineering School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Biochemistry and Immunology, Laboratory of Cellular and Molecular Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
21
|
Gardel LS, Correia-Gomes C, Serra LA, Gomes ME, Reis RL. A novel bidirectional continuous perfusion bioreactor for the culture of large-sized bone tissue-engineered constructs. J Biomed Mater Res B Appl Biomater 2013; 101:1377-86. [DOI: 10.1002/jbm.b.32955] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 02/11/2013] [Accepted: 02/25/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Leandro S. Gardel
- 3B's Research Groups: Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Taipas Guimarães Portugal
- ICVS/3B's PT Government Associated Lab; AvePark 4806-909 Braga Portugal
- Department of Clinic Veterinary; ICBAS-University of Porto; Porto Portugal
| | | | - Luís A. Serra
- Department of Ortophysiatric; General Hospital Santo António; Porto Portugal
| | - Manuela E. Gomes
- 3B's Research Groups: Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Taipas Guimarães Portugal
- ICVS/3B's PT Government Associated Lab; AvePark 4806-909 Braga Portugal
| | - Rui L. Reis
- 3B's Research Groups: Biomaterials, Biodegradables and Biomimetics; Department of Polymer Engineering; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Taipas Guimarães Portugal
- ICVS/3B's PT Government Associated Lab; AvePark 4806-909 Braga Portugal
| |
Collapse
|
22
|
Qian X, Yuan F, Zhimin Z, Anchun M. Dynamic perfusion bioreactor system for 3D culture of rat bone marrow mesenchymal stem cells on nanohydroxyapatite/polyamide 66 scaffoldin vitro. J Biomed Mater Res B Appl Biomater 2013; 101:893-901. [DOI: 10.1002/jbm.b.32894] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 11/11/2022]
|
23
|
Abstract
Tissue engineering has emerged as a possible alternative to current treatments for bone injuries and defects. However, the common tissue engineering approach presents some obstacles to the development of functional tissues, such as insufficient nutrient and metabolite transport and non-homogenous cell distribution. Culture of bone cells in three-dimensional constructs in bioreactor systems is a solution for those problems as it improves mass transport in the culture system. For bone tissue engineering spinner flasks, rotating wall vessels and perfusion systems have been investigated, and based on these, variations that support cell seeding and mechanical stimulation have also been researched. This review aims at providing an overview of the concepts, advantages and future applications of bioreactor systems for bone tissue engineering with emphasis on the design of different perfusion systems and parameters that can be optimized.
Collapse
Affiliation(s)
- Diana Alves Gaspar
- Departamento de Engenharia Metalúrgica e de Materiais; Universidade do Porto; Faculdade de Engenharia (FEUP); Porto, Portugal
| | - Viviane Gomide
- Departamento de Engenharia Metalúrgica e de Materiais; Universidade do Porto; Faculdade de Engenharia (FEUP); Porto, Portugal
- Divisão de Biomateriais; INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto, Portugal
| | - Fernando Jorge Monteiro
- Departamento de Engenharia Metalúrgica e de Materiais; Universidade do Porto; Faculdade de Engenharia (FEUP); Porto, Portugal
- Divisão de Biomateriais; INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto, Portugal
| |
Collapse
|
24
|
Guarino V, Urciuolo F, Alvarez-Perez MA, Mele B, Netti PA, Ambrosio L. Osteogenic differentiation and mineralization in fibre-reinforced tubular scaffolds: theoretical study and experimental evidences. J R Soc Interface 2012; 9:2201-12. [PMID: 22399788 PMCID: PMC3405741 DOI: 10.1098/rsif.2011.0913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/17/2012] [Indexed: 11/12/2022] Open
Abstract
The development of composite scaffolds with well-organized architecture and multi-scale properties (i.e. porosity, degradation) represents a valid approach for achieving a tissue-engineered construct capable of reproducing the medium- and long-term in vitro behaviour of hierarchically complex tissues such as spongy bone. To date, the implementation of scaffold design strategies able to summarize optimal scaffold architecture as well as intrinsic mechanical, chemical and fluid transport properties still remains a challenging issue. In this study, poly ε-caprolactone/polylactid acid (PCL/PLA) tubular devices (fibres of PLA in a PCL matrix) obtained by phase inversion/salt leaching and filament winding techniques were proposed as cell instructive scaffold for bone osteogenesis. Continuous fibres embedded in the polymeric matrix drastically improved the mechanical response as confirmed by compression elastic moduli, which vary from 0.214 ± 0.065 to 1.174 ± 0.143 MPa depending on the relative fibre/matrix and polymer/solvent ratios. Moreover, computational fluid dynamic simulations demonstrated the ability of composite structure to transfer hydrodynamic forces during in vitro culture, thus indicating the optimal flow rate conditions that, case by case, enables specific cellular events-i.e. osteoblast differentiation from human mesenchymal stem cells (hMSCs), mineralization, etc. Hence, we demonstrate that the hMSC differentiation preferentially occurs in the case of higher perfusion rates-over 0.05 ml min(-1)-as confirmed by the expression of alkaline phosphate and osteocalcin markers. In particular, the highest osteopontin values and a massive mineral phase precipitation of bone-like phases detected in the case of intermediate flow rates (i.e. 0.05 ml min(-1)) allows us to identify the best condition to stimulate the bone extracellular matrix in-growth, in agreement with the hydrodynamic model prediction. All these results concur to prove the succesful use of tubular composite as temporary device for long bone treatment.
Collapse
Affiliation(s)
- Vincenzo Guarino
- Institute of Composite and Biomedical Materials, National Research Council of Italy, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Kim J, Ma T. Bioreactor strategy in bone tissue engineering: pre-culture and osteogenic differentiation under two flow configurations. Tissue Eng Part A 2012; 18:2354-64. [PMID: 22690750 DOI: 10.1089/ten.tea.2011.0674] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since robust osteogenic differentiation and mineralization are integral to the engineering of bone constructs, understanding the impact of the cellular microenvironments on human mesenchymal stem cell (hMSCs) osteogenic differentiation is crucial to optimize bioreactor strategy. Two perfusion flow conditions were utilized in order to understand the impact of the flow configuration on hMSC construct development during both pre-culture (PC) in growth media and its subsequent osteogenic induction (OI). The media in the in-house perfusion bioreactor was controlled to perfuse either around (termed parallel flow [PF]) the construct surfaces or penetrate through the construct (termed transverse flow [TF]) for 7 days of the PC followed by 7 days of the OI. The flow configuration during the PC not only changed growth kinetics but also influenced cell distribution and potency of osteogenic differentiation and mineralization during the subsequent OI. While shear stress resulted from the TF stimulated cell proliferation during PC, the convective removal of de novo extracellular matrix (ECM) proteins and growth factors (GFs) reduced cell proliferation on OI. In contrast, the effective retention of de novo ECM proteins and GFs in the PC constructs under the PF maintained cell proliferation under the OI but resulted in localized cell aggregations, which influenced their osteogenic differentiation. The results revealed the contrasting roles of the convective flow as a mechanical stimulus, the redistribution of the cells and macromolecules in 3D constructs, and their divergent impacts on cellular events, leading to bone construct formation. The results suggest that the modulation of the flow configuration in the perfusion bioreactor is an effective strategy that regulates the construct properties and maximizes the functional outcome.
Collapse
Affiliation(s)
- Junho Kim
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, USA
| | | |
Collapse
|
26
|
Yeatts AB, Choquette DT, Fisher JP. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta Gen Subj 2012; 1830:2470-80. [PMID: 22705676 DOI: 10.1016/j.bbagen.2012.06.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/03/2012] [Accepted: 06/07/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro. SCOPE OF REVIEW This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems. MAJOR CONCLUSIONS The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased. GENERAL SIGNIFICANCE Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Andrew B Yeatts
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
27
|
Page H, Flood P, Reynaud EG. Three-dimensional tissue cultures: current trends and beyond. Cell Tissue Res 2012; 352:123-31. [DOI: 10.1007/s00441-012-1441-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/25/2012] [Indexed: 01/05/2023]
|
28
|
Induction of pluripotency in adult equine fibroblasts without c-MYC. Stem Cells Int 2012; 2012:429160. [PMID: 22550508 PMCID: PMC3328202 DOI: 10.1155/2012/429160] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/28/2011] [Accepted: 01/03/2012] [Indexed: 12/12/2022] Open
Abstract
Despite tremendous efforts on isolation of pluripotent equine embryonic stem (ES) cells, to date there are few reports about successful isolation of ESCs and no report of in vivo differentiation of this important companion species. We report the induction of pluripotency in adult equine fibroblasts via retroviral transduction with three transcription factors using OCT4, SOX2, and KLF4 in the absence of c-MYC. The cell lines were maintained beyond 27 passages (more than 11 months) and characterized. The equine iPS (EiPS) cells stained positive for alkaline phosphatase by histochemical staining and expressed OCT4, NANOG, SSEA1, and SSEA4. Gene expression analysis of the cells showed the expression of OCT4, SOX2 NANOG, and STAT3. The cell lines retained a euploid chromosome count of 64 after long-term culture cryopreservation. The EiPS demonstrated differentiation capacity for the three embryonic germ layers both in vitro by embryoid bodies (EBs) formation and in vivo by teratoma formation. In conclusion, we report the derivation of iPS cells from equine adult fibroblasts and long-term maintenance using either of the three reprogramming factors.
Collapse
|
29
|
Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater 2012; 8:963-77. [PMID: 21945826 DOI: 10.1016/j.actbio.2011.09.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 01/01/2023]
Abstract
Biphasic, triphasic and multiphasic (polyphasic) calcium orthophosphates have been sought as biomaterials for reconstruction of bone defects in maxillofacial, dental and orthopedic applications. In general, this concept is determined by advantageous balances of more stable (frequently hydroxyapatite) and more resorbable (typically tricalcium orthophosphates) phases of calcium orthophosphates, while the optimum ratios depend on the particular applications. Therefore, all currently known biphasic, triphasic and multiphasic formulations of calcium orthophosphate bioceramics are sparingly soluble in water and, thus, after being implanted they are gradually resorbed inside the body, releasing calcium and orthophosphate ions into the biological medium and, hence, seeding new bone formation. The available formulations have already demonstrated proven biocompatibility, osteoconductivity, safety and predictability in vitro, in vivo, as well as in clinical models. More recently, in vitro and in vivo studies have shown that some of them might possess osteoinductive properties. Hence, in the field of tissue engineering biphasic, triphasic and multiphasic calcium orthophosphates represent promising biomaterials to construct various scaffolds capable of carrying and/or modulating the behavior of cells. Furthermore, such scaffolds are also suitable for drug delivery applications. This review summarizes the available information on biphasic, triphasic and multiphasic calcium orthophosphates, including their biomedical applications. New formulations are also proposed.
Collapse
|
30
|
Kavlock KD, Goldstein AS. Effect of pulse frequency on the osteogenic differentiation of mesenchymal stem cells in a pulsatile perfusion bioreactor. J Biomech Eng 2012; 133:091005. [PMID: 22010740 DOI: 10.1115/1.4004919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perfusion bioreactors are a promising in vitro strategy to engineer bone tissue because they supply needed oxygen and nutrients and apply an osteoinductive mechanical stimulus to osteoblasts within large porous three-dimensional scaffolds. Model two-dimensional studies have shown that dynamic flow conditions (e.g., pulsatile oscillatory waveforms) elicit an enhanced mechanotransductive response and elevated expression of osteoblastic proteins relative to steady flow. However, dynamic perfusion of three-dimensional scaffolds has been primarily examined in short term cultures to probe for early markers of mechanotransduction. Therefore, the objective of this study was to investigate the effect of extended dynamic perfusion culture on osteoblastic differentiation of primary mesenchymal stem cells (MSCs). To accomplish this, rat bone marrow-derived MSCs were seeded into porous foam scaffolds and cultured for 15 days in osteogenic medium under pulsatile regimens of 0.083, 0.050, and 0.017 Hz. Concurrently, MSCs seeded in scaffolds were also maintained under static conditions or cultured under steady perfusion. Analysis of the cells after 15 days of culture indicated that alkaline phosphatase (ALP) activity, mRNA expression of osteopontin (OPN), and accumulation of OPN and prostaglandin E(2) were enhanced for all four perfusion conditions relative to static culture. ALP activity, OPN and OC mRNA, and OPN protein accumulation were slightly higher for the intermediate frequency (0.05 Hz) as compared with the other flow conditions, but the differences were not statistically significant. Nevertheless, these results demonstrate that dynamic perfusion of MSCs may be a useful strategy for stimulating osteoblastic differentiation in vitro.
Collapse
Affiliation(s)
- Katherine D Kavlock
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0211, USA
| | | |
Collapse
|
31
|
Chen Y, Sonnaert M, Roberts SJ, Luyten FP, Schrooten J. Validation of a PicoGreen-based DNA quantification integrated in an RNA extraction method for two-dimensional and three-dimensional cell cultures. Tissue Eng Part C Methods 2012; 18:444-52. [PMID: 22195986 DOI: 10.1089/ten.tec.2011.0304] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA measurement and RNA extraction are two frequently used methods for cell characterization. In the conventional protocols, they require similar, but separate samples and in most cases, different pretreatments. The few combined protocols that exist still include time-consuming steps. Hence, to establish an efficient combined RNA extraction and DNA measurement protocol for two-dimensional (2D) and three-dimensional (3D) cell cultures, a PicoGreen-based DNA measurement was integrated in an existing RNA extraction protocol. It was validated by analysis of the influence of different lysis buffers, RLT, RA1, or Trizol, used for RNA extraction on the measured DNA concentration. The DNA cell yield was evaluated both in cell suspensions (2D) and on 3D cell-seeded scaffolds. Results showed that the different RNA lysis buffers caused a concentration-dependent perturbation of the PicoGreen signal. The measured DNA concentrations in 2D and 3D using RLT and RA1 buffer were comparable, also to the positive control. We, therefore, concluded that RNA extraction protocols using RA1 or RLT buffer allow the integration of a DNA quantification step without the buffer influencing the results. Hence, the combined DNA measurement and RNA extraction offer an alternative for DNA measurement techniques that is time and sample saving, for both 2D cell cultures and specific 3D constructs.
Collapse
Affiliation(s)
- Yantian Chen
- Laboratory for Skeletal Development and Joint Disorders, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
32
|
Lee JH, Gu Y, Wang H, Lee WY. Microfluidic 3D bone tissue model for high-throughput evaluation of wound-healing and infection-preventing biomaterials. Biomaterials 2011; 33:999-1006. [PMID: 22061488 DOI: 10.1016/j.biomaterials.2011.10.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 10/06/2011] [Indexed: 11/27/2022]
Abstract
We report the use of a microfluidic 3D bone tissue model, as a high-throughput means of evaluating the efficacy of biomaterials aimed at accelerating orthopaedic implant-related wound-healing while preventing bacterial infection. As an example of such biomaterials, inkjet-printed micropatterns were prepared to contain antibiotic and biphasic calcium phosphate (BCP) nanoparticles dispersed in a poly(D,L-lactic-co-glycolic) acid matrix. The micropatterns were integrated with a microfluidic device consisting of eight culture chambers. The micropatterns immediately and completely killed Staphylococcus epidermidis upon inoculation, and enhanced the calcified extracellular matrix production of osteoblasts. Without antibiotic elution, bacteria rapidly proliferated to result in an acidic microenvironment which was detrimental to osteoblasts. These results were used to demonstrate the tissue model's potential in: (i) significantly reducing the number of biomaterial samples and culture experiments required to assess in vitro efficacy for wound-healing and infection prevention and (ii) in situ monitoring of dynamic interactions of biomaterials with bacteria as wells as with tissue cells simultaneously.
Collapse
Affiliation(s)
- Joung-Hyun Lee
- Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | | | | | | |
Collapse
|
33
|
Kim J, Ma T. Perfusion regulation of hMSC microenvironment and osteogenic differentiation in 3D scaffold. Biotechnol Bioeng 2011; 109:252-61. [PMID: 21965169 DOI: 10.1002/bit.23290] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 01/01/2023]
Abstract
The combination of hMSCs with 3D scaffolds has become an important approach to creating functional bone constructs. Bioreactors are important tools to mitigate mass transfer limitations and to provide controlled physiochemical and biomechanical environments for the 3D bone construct development. Media flow in the bioreactor systems is generally controlled either parallel or transverse with respect to the 3D construct, creating different cellular and biomechanical microenvironments in the 3D constructs. In this study, a custom designed modular perfusion bioreactor system was operated under either the parallel or transverse flow. The influence of the flow patterns on the characteristics of the hMSCs' cellular microenvironment and subsequent construct development was investigated. The parallel flow configuration retained ECM proteins and mitogenic growth factors within the scaffold, effectively preserving hMSC progenicity and proliferation potential (e.g., CFU-F, proliferation, and OCT-4), whereas the transverse flow induced hMSC osteogenic differentiation with higher ALP activity and calcium deposition and up-regulation of osteogenic bone markers (e.g., BMP-2, ALP, RUNX2, OSX, and OC). These results demonstrate the regulatory role of the macroscopic flow on the cellular microenvironment of the 3D hMSC construct, and suggest configuring media flow as a strategy for directing hMSC fate and 3D bone construct development in the perfusion bioreactor.
Collapse
Affiliation(s)
- Junho Kim
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, USA
| | | |
Collapse
|
34
|
Batra N, Kar R, Jiang JX. Gap junctions and hemichannels in signal transmission, function and development of bone. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1909-18. [PMID: 21963408 DOI: 10.1016/j.bbamem.2011.09.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/03/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Gap junctional intercellular communication (GJIC) mediated by connexins, in particular connexin 43 (Cx43), plays important roles in regulating signal transmission among different bone cells and thereby regulates development, differentiation, modeling and remodeling of the bone. GJIC regulates osteoblast formation, differentiation, survival and apoptosis. Osteoclast formation and resorptive ability are also reported to be modulated by GJIC. Furthermore, osteocytes utilize GJIC to coordinate bone remodeling in response to anabolic factors and mechanical loading. Apart from gap junctions, connexins also form hemichannels, which are localized on the cell surface and function independently of the gap junction channels. Both these channels mediate the transfer of molecules smaller than 1.2kDa including small ions, metabolites, ATP, prostaglandin and IP(3). The biological importance of the communication mediated by connexin-forming channels in bone development is revealed by the low bone mass and osteoblast dysfunction in the Cx43-null mice and the skeletal malformations observed in occulodentodigital dysplasia (ODDD) caused by mutations in the Cx43 gene. The current review summarizes the role of gap junctions and hemichannels in regulating signaling, function and development of bone cells. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Nidhi Batra
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | |
Collapse
|
35
|
Chen Y, Bloemen V, Impens S, Moesen M, Luyten FP, Schrooten J. Characterization and optimization of cell seeding in scaffolds by factorial design: quality by design approach for skeletal tissue engineering. Tissue Eng Part C Methods 2011; 17:1211-21. [PMID: 21895492 DOI: 10.1089/ten.tec.2011.0092] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell seeding into scaffolds plays a crucial role in the development of efficient bone tissue engineering constructs. Hence, it becomes imperative to identify the key factors that quantitatively predict reproducible and efficient seeding protocols. In this study, the optimization of a cell seeding process was investigated using design of experiments (DOE) statistical methods. Five seeding factors (cell type, scaffold type, seeding volume, seeding density, and seeding time) were selected and investigated by means of two response parameters, critically related to the cell seeding process: cell seeding efficiency (CSE) and cell-specific viability (CSV). In addition, cell spatial distribution (CSD) was analyzed by Live/Dead staining assays. Analysis identified a number of statistically significant main factor effects and interactions. Among the five seeding factors, only seeding volume and seeding time significantly affected CSE and CSV. Also, cell and scaffold type were involved in the interactions with other seeding factors. Within the investigated ranges, optimal conditions in terms of CSV and CSD were obtained when seeding cells in a regular scaffold with an excess of medium. The results of this case study contribute to a better understanding and definition of optimal process parameters for cell seeding. A DOE strategy can identify and optimize critical process variables to reduce the variability and assists in determining which variables should be carefully controlled during good manufacturing practice production to enable a clinically relevant implant.
Collapse
Affiliation(s)
- Yantian Chen
- Laboratory for Skeletal Development and Joint Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
36
|
Bjerre L, Bünger C, Baatrup A, Kassem M, Mygind T. Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes. J Biomed Mater Res A 2011; 97:251-63. [PMID: 21442726 DOI: 10.1002/jbm.a.33051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/01/2010] [Accepted: 01/04/2011] [Indexed: 01/22/2023]
Abstract
Bone grafts are widely used in orthopaedic reconstructive surgery, but harvesting of autologous grafts is limited due to donor site complications. Bone tissue engineering is a possible alternative source for substitutes, and to date, mainly small scaffold sizes have been evaluated. The aim of this study was to obtain a clinically relevant substitute size using a direct perfusion culture system. Human bone marrowderived mesenchymal stem cells were seeded on coralline hydroxyapatite scaffolds with 200 μm or 500 μm pores, and resulting constructs were cultured in a perfusion bioreactor or in static culture for up to 21 days and analysed for cell distribution and osteogenic differentiation using histological stainings, alkaline phosphatase activity assay, and real-time RT-PCR on bone markers. We found that the number of cells was higher during static culture at most time points and that the final number of cells was higher in 500 μm constructs as compared with 200 μm constructs. Alkaline phosphatase enzyme activity assays and real time RT-PCR on seven osteogenic markers showed that differentiation occurred primarily and earlier in statically cultured constructs with 200 μm pores compared with 500 μm ones. Adhesion and proliferation of the cells was seen on both scaffold sizes, but the vitality and morphology of cells changed unfavorably during perfusion culture. In contrast to previous studies using spinner flask that show increased cellularity and osteogenic properties of cells when cultured dynamically, the perfusion culture in our study did not enhance the osteogenic properties of cell/scaffold constructs. The statically cultured constructs showed increasing cell numbers and abundant osteogenic differentiation probably because of weak initial cell adhesion due to the surface morphology of scaffolds. Our conclusion is that the specific scaffold surface microstructure and culturing system flow dynamics has a great impact on cell distribution and proliferation and on osteogenic differentiation, and the data presented warrant careful selection of in vitro culture settings to meet the specific requirements of the scaffolds and cells, especially when natural biomaterials with varying morphology are used.
Collapse
Affiliation(s)
- Lea Bjerre
- Department of Othopaedics, Orthopaedic Research Laboratory, Laboratory for Molecular Orthopaedics, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
37
|
Srouji S, Ben-David D, Kohler T, Müller R, Zussman E, Livne E. A model for tissue engineering applications: femoral critical size defect in immunodeficient mice. Tissue Eng Part C Methods 2011; 17:597-606. [PMID: 21254818 DOI: 10.1089/ten.tec.2010.0501] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animal models for preclinical functionality assays lie midway between in vitro systems such as cell culture and actual clinical trials. We have developed a novel external fixation device for femoral critical size defect (CSD) in the femurs of immunodeficient mice as an experimental model for studying bone regeneration and bone tissue engineering. The external fixation device comprises four pointed rods and dental acrylic paste. A segmental bone defect (2 mm) was created in the midshaft of the mouse femur. The CSD in the femur of the mice were either left untreated or treated with a bone allograft, a cell-scaffold construct, or a scaffold-only construct. The repair and healing processes of the CSD were monitored by digital x-ray radiography, microcomputed tomography, and histology. Repair of the femoral CSD was achieved with the bone allografts, and partial repair of the femoral CSD was achieved with the cell scaffold and the scaffold-only constructs. No repair of the nongrafted femoral CSD was observed. Our results establish the feasibility of this new mouse femoral model for CSD repair of segmental bone using a simple stabilized external fixation device. The model should prove especially useful for in vivo preclinical proof-of-concept studies that involve cell therapy-based technologies for bone tissue engineering applications in humans.
Collapse
Affiliation(s)
- Samer Srouji
- Department of Oral and Maxillofacial Surgery, Carmel Medical Center, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
38
|
Salvi JD, Lim JY, Donahue HJ. Finite element analyses of fluid flow conditions in cell culture. Tissue Eng Part C Methods 2010; 16:661-70. [PMID: 19778171 DOI: 10.1089/ten.tec.2009.0159] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous studies in tissue engineering and biomechanics use fluid flow stimulation, both unidirectional and oscillatory, to analyze the effects of shear stresses on cell behavior. However, it has typically been assumed that these shear stresses are uniform and that cell and substrate properties do not adversely affect these assumptions. With the increasing utilization of fluid flow in cell biology, it would be beneficial to determine the validity of various experimental protocols. Because it is difficult to determine the velocity profiles and shear stresses empirically, we used the finite element method (FEM). Using FEM, we determined the effects of cell confluence on fluid flow, the effects of cell height on the uniformity of shear stresses, apparent shear stresses exhibited by cells cultured on various substrates, and the effects of oscillatory fluid flow relative to the unidirectional flow. FEM analyses could successfully analyze flow patterns over cells for various cell confluence and shape and substrate characteristics. Our data suggest the benefits of the utilization of oscillatory fluid flow and the use of substrates that stimulate cell spreading in the distribution of more uniform shear stresses across the surface of cells. Also we demonstrated that the cells cultured on nanotopographies were exposed to greater apparent shear stresses than cells on flat controls when using the same fluid flow conditions. FEM thus provides an excellent tool for the development of experimental protocols and the design of bioreactor systems.
Collapse
Affiliation(s)
- Joshua D Salvi
- Department of Bioengineering, Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
39
|
McCoy RJ, O'Brien FJ. Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:587-601. [PMID: 20799909 DOI: 10.1089/ten.teb.2010.0370] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bone tissue engineering aims to generate clinically applicable bone graft substitutes in an effort to ease the demands and reduce the potential risks associated with traditional autograft and allograft bone replacement procedures. Biomechanical stimuli play an important role under physiologically relevant conditions in the normal formation, development, and homeostasis of bone tissue--predominantly, strain (predicted levels in vivo for humans <2000 με) caused by physical deformation, and fluid shear stress (0.8-3 Pa), generated by interstitial fluid movement through lacunae caused by compression and tension under loading. Therefore, in vitro bone tissue cultivation strategies seek to incorporate biochemical stimuli in an effort to create more physiologically relevant constructs for grafting. This review is focused on collating information pertaining to the relationship between fluid shear stress, cellular deformation, and osteogenic differentiation, providing further insight into the optimal culture conditions for the creation of bone tissue substitutes.
Collapse
Affiliation(s)
- Ryan J McCoy
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
40
|
A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models. Biomech Model Mechanobiol 2010; 10:565-76. [PMID: 20865437 DOI: 10.1007/s10237-010-0256-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 09/08/2010] [Indexed: 01/14/2023]
Abstract
The control of the mechanical stimuli transmitted to the cells is critical for the design of functional scaffolds for tissue engineering. The objective of this study was to investigate the dynamics of the mechanical stimuli transmitted to the cells during tissue differentiation in an irregular morphology scaffold under compressive load and perfusion flow. A calcium phosphate-based glass porous scaffold was used. The solid phase and the fluid flow within the pores were modeled as linear elastic solid material and Newtonian fluid, respectively. In the fluid model, different levels of viscosity were used to simulate tissue differentiation. Compressive strain of 0.5% and fluid flow with constant inlet velocity of 10 μm/s or constant inlet pressure of 3 Pa were applied. Octahedral shear strain and fluid shear stress were used as mechano-regulatory stimuli. For constant inlet velocity, stimuli equivalent to bone were predicted in 80% of pore volume for the case of low tissue viscosity. For the cases of high viscosity, fluctuations between stimuli equivalent to tissue formation and cell death were predicted due to the increase in the fluid shear stress when tissue started to fill pores. When constant pressure was applied, stimuli equivalent to bone were predicted in 62% of pore volume when low tissue viscosity was used and 42% when high tissue viscosity was used. This study predicted critical variations of fluid shear stress when cells differentiated. If these variations are not controlled in vitro, they can impede the formation of new matured tissue.
Collapse
|
41
|
Zhang ZY, Teoh SH, Teo EY, Khoon Chong MS, Shin CW, Tien FT, Choolani MA, Chan JKY. A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 2010; 31:8684-95. [PMID: 20739062 DOI: 10.1016/j.biomaterials.2010.07.097] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/28/2010] [Indexed: 01/12/2023]
Abstract
Bioreactors provide a dynamic culture system for efficient exchange of nutrients and mechanical stimulus necessary for the generation of effective tissue engineered bone grafts (TEBG). We have shown that biaxial rotating (BXR) bioreactor-matured human fetal mesenchymal stem cell (hfMSC) mediated-TEBG can heal a rat critical sized femoral defect. However, it is not known whether optimal bioreactors exist for bone TE (BTE) applications. We systematically compared this BXR bioreactor with three most commonly used systems: Spinner Flask (SF), Perfusion and Rotating Wall Vessel (RWV) bioreactors, for their application in BTE. The BXR bioreactor achieved higher levels of cellularity and confluence (1.4-2.5x, p < 0.05) in large 785 mm(3) macroporous scaffolds not achieved in the other bioreactors operating in optimal settings. BXR bioreactor-treated scaffolds experienced earlier and more robust osteogenic differentiation on von Kossa staining, ALP induction (1.2-1.6×, p < 0.01) and calcium deposition (1.3-2.3×, p < 0.01). We developed a Micro CT quantification method which demonstrated homogenous distribution of hfMSC in BXR bioreactor-treated grafts, but not with the other three. BXR bioreactor enabled superior cellular proliferation, spatial distribution and osteogenic induction of hfMSC over other commonly used bioreactors. In addition, we developed and validated a non-invasive quantitative micro CT-based technique for analyzing neo-tissue formation and its spatial distribution within scaffolds.
Collapse
Affiliation(s)
- Zhi-Yong Zhang
- Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Centre for Biomedical Materials Applications and Technology, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang L, Sun HY, Qi NM. Novel mini β-TCP 3D perfusion bioreactor for proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0177-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Potier E, Noailly J, Ito K. Directing bone marrow-derived stromal cell function with mechanics. J Biomech 2009; 43:807-17. [PMID: 19962149 DOI: 10.1016/j.jbiomech.2009.11.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 01/12/2023]
Abstract
Because bone marrow-derived stromal cells (BMSCs) are able to generate many cell types, they are envisioned as source of regenerative cells to repair numerous tissues, including bone, cartilage, and ligaments. Success of BMSC-based therapies, however, relies on a number of methodological improvements, among which better understanding and control of the BMSC differentiation pathways. Since many years, the biochemical environment is known to govern BMSC differentiation, but more recent evidences show that the biomechanical environment is also directing cell functions. Using in vitro systems that aim to reproduce selected components of the in vivo mechanical environment, it was demonstrated that mechanical loadings can affect BMSC proliferation and improve the osteogenic, chondrogenic, or myogenic phenotype of BMSCs. These effects, however, seem to be modulated by parameters other than mechanics, such as substrate nature or soluble biochemical environment. This paper reviews and discusses recent experimental data showing that despite some knowledge limitation, mechanical stimulation already constitutes an additional and efficient tool to drive BMSC differentiation.
Collapse
Affiliation(s)
- E Potier
- Biomedical Engineering, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| | | | | |
Collapse
|
44
|
Wang L, Hu YY, Wang Z, Li X, Li DC, Lu BH, Xu SF. Flow perfusion culture of human fetal bone cells in large β-tricalcium phosphate scaffold with controlled architecture. J Biomed Mater Res A 2009; 91:102-13. [DOI: 10.1002/jbm.a.32189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Wang L, Wilshaw SP, Korossis S, Fisher J, Jin Z, Ingham E. Factors Influencing the Oxygen Consumption Rate of Aortic Valve Interstitial Cells: Application to Tissue Engineering. Tissue Eng Part C Methods 2009; 15:355-63. [DOI: 10.1089/ten.tec.2008.0415] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ling Wang
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
| | - Stacy-Paul Wilshaw
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
| | - Sotirios Korossis
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
| | - John Fisher
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
| | - Zhongmin Jin
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
| | - Eileen Ingham
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
46
|
Fröhlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 2009; 3:254-64. [PMID: 19075755 DOI: 10.2174/157488808786733962] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tremendous need for bone tissue in numerous clinical situations and the limited availability of suitable bone grafts are driving the development of tissue engineering approaches to bone repair. In order to engineer viable bone grafts, one needs to understand the mechanisms of native bone development and fracture healing, as these processes should ideally guide the selection of optimal conditions for tissue culture and implantation. Engineered bone grafts have been shown to have capacity for osteogenesis, osteoconduction, osteoinduction and osteointegration - functional connection between the host bone and the graft. Cells from various anatomical sources in conjunction with scaffolds and osteogenic factors have been shown to form bone tissue in vitro. The use of bioreactor systems to culture cells on scaffolds before implantation further improved the quality of the resulting bone grafts. Animal studies confirmed the capability of engineered grafts to form bone and integrate with the host tissues. However, the vascularization of bone remains one of the hurdles that need to be overcome if clinically sized, fully viable bone grafts are to be engineered and implanted. We discuss here the biological guidelines for tissue engineering of bone, the bioreactor cultivation of human mesenchymal stem cells on three-dimensional scaffolds, and the need for vascularization and functional integration of bone grafts following implantation.
Collapse
Affiliation(s)
- Mirjam Fröhlich
- Department of Biomedical Engineering, Columbia University, NYC, NY, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zhang H, Lin CY, Hollister SJ. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials 2009; 30:4063-9. [PMID: 19487019 DOI: 10.1016/j.biomaterials.2009.04.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
We previously established a simple method to immobilize the Arg-Gly-Asp (RGD) peptide on polycaprolactone (PCL) two-dimensional film surfaces that significantly improved bone marrow stromal cell (BMSC) adhesion to these films. The current work extends this modification strategy to three-dimensional (3D) PCL scaffolds to investigate BMSC attachment, cellular distribution and cellularity, signal transduction and survival on the modified PCL scaffold compared to those on the untreated ones. The results demonstrated that treatment of 3D PCL scaffold surfaces with 1,6-hexanediamine introduced the amino functional groups onto the porous PCL scaffold homogenously as detected by a ninhydrin staining method. Followed by the cross-linking reaction, RGDC peptide was successfully immobilized on the surface of PCL scaffold. Although the static seeding method used in this study caused heterogeneous cell distribution, the RGD-modified PCL scaffold still demonstrated the improved BMSC attachment and cellular distribution in the scaffold. More importantly, the integrin-mediated signal transduction FAK-PI3K-Akt pathway was significantly up-regulated by RGD modification and a subsequent increase in cell survival and growth was found in the modified scaffold. The present study introduces an easy method to immobilize RGD peptide on the 3D porous PCL scaffold and provides further evidence that modification of 3D PCL scaffolds with RGD peptides elicits specific cellular responses and improves the final cell-biomaterial interaction.
Collapse
Affiliation(s)
- Huina Zhang
- Scaffold Tissue Engineering Group, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
48
|
Stiehler M, Bünger C, Baatrup A, Lind M, Kassem M, Mygind T. Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2009; 89:96-107. [PMID: 18431785 DOI: 10.1002/jbm.a.31967] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ex vivo engineering of autologous bone tissue as an alternative to bone grafting is a major clinical need. In the present study, we evaluated the effect of 3-D dynamic spinner flask culture on the proliferation, distribution, and differentiation of human mesenchymal stem cells (MSCs). Immortalized human MSCs were cultured on porous 75:25 PLGA scaffolds for up to 3 weeks. Dynamically cultured cell/scaffold constructs demonstrated a 20% increase in DNA content (21 days), enhanced ALP specific activity (7 days and 21 days), a more than tenfold higher Ca2+ content (21 days), and significantly increased transcript levels of early osteogenesis markers (e.g., COL1A1, BMP2, RUNX-2) as compared with static culture. Despite the formation of a dense superficial cell layer, markedly increased cell ingrowth was observed by fluorescence microscopy on day 21. Furthermore, increased extracellular matrix deposition was visualized by scanning electron microscopy after 1 and 3 weeks of dynamic culture. The observed increased ingrowth and osteogenic differentiation of 3-D dynamically cultured human MSCs can be explained by generation of fluid shear stress and enhanced mass transport to the interior of the scaffold mimicking the native microenvironment of bone cells. This study provides evidence for the effectiveness of dynamic culture of human MSCs during the initial phase of ex vivo osteogenesis.
Collapse
Affiliation(s)
- Maik Stiehler
- Orthopedic Research Laboratory, Clinical Institute, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
49
|
Zhao F, Grayson WL, Ma T, Irsigler A. Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds. J Cell Physiol 2009; 219:421-9. [DOI: 10.1002/jcp.21688] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
50
|
Du D, Furukawa KS, Ushida T. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering. Biotechnol Bioeng 2009; 102:1670-8. [DOI: 10.1002/bit.22214] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|