1
|
Iftime A, Tofolean IT, Pintilie V, Călinescu O, Busnatu S, Papacocea IR. Differential Functional Changes in Visual Performance during Acute Exposure to Microgravity Analogue and Their Potential Links with Spaceflight-Associated Neuro-Ocular Syndrome. Diagnostics (Basel) 2024; 14:1918. [PMID: 39272703 PMCID: PMC11394298 DOI: 10.3390/diagnostics14171918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Spaceflight-Associated Neuro-Ocular Syndrome (SANS) is a complex pathology threatening the health of astronauts, with incompletely understood causes and no current specific functional diagnostic or screening test. We investigated the use of the differential performance of the visual system (central vs. perimacular visual function) as a candidate marker of SANS-related pathology in a ground-based microgravity analogue. METHODS We used a simple reaction time (SRT) task to visual stimuli, presented in the central and perimacular field of view, as a measure of the overall performance of the visual function, during acute settings (first 10 min) of vertical, bed rest (BR), -6°, and -15° head-down tilt (HDT) presentations in healthy participants (n = 8). We built dose-response models linking the gravitational component to SRT distribution parameters in the central vs. perimacular areas. RESULTS Acute exposure to microgravity induces detectable changes between SRT distributions in the perimacular vs. central retina (increased mean, standard deviation, and tau component of the ex-Gaussian function) in HDT compared with vertical presentation. CONCLUSIONS Functional testing of the perimacular retina might be beneficial for the earlier detection of SANS-related ailments in addition to regular testing of the central vision. Future diagnostic tests should consider the investigation of the extra-macular areas, particularly towards the optic disc.
Collapse
Affiliation(s)
- Adrian Iftime
- Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Teodora Tofolean
- Ophthalmology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinical Emergency Eye Hospital, 010464 Bucharest, Romania
| | - Victor Pintilie
- Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Octavian Călinescu
- Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Stefan Busnatu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila", Emergency Hospital "Bagdasar-Arseni", 050474 Bucharest, Romania
- Center for Innovation and eHealth, Carol Davila University of Medicine and Pharmacy, 010451 Bucharest, Romania
| | - Ioana Raluca Papacocea
- Center for Innovation and eHealth, Carol Davila University of Medicine and Pharmacy, 010451 Bucharest, Romania
- Physiology III Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
2
|
Changes in interstitial fluid flow, mass transport and the bone cell response in microgravity and normogravity. Bone Res 2022; 10:65. [PMID: 36411278 PMCID: PMC9678891 DOI: 10.1038/s41413-022-00234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, our scientific interest in spaceflight has grown exponentially and resulted in a thriving area of research, with hundreds of astronauts spending months of their time in space. A recent shift toward pursuing territories farther afield, aiming at near-Earth asteroids, the Moon, and Mars combined with the anticipated availability of commercial flights to space in the near future, warrants continued understanding of the human physiological processes and response mechanisms when in this extreme environment. Acute skeletal loss, more severe than any bone loss seen on Earth, has significant implications for deep space exploration, and it remains elusive as to why there is such a magnitude of difference between bone loss on Earth and loss in microgravity. The removal of gravity eliminates a critical primary mechano-stimulus, and when combined with exposure to both galactic and solar cosmic radiation, healthy human tissue function can be negatively affected. An additional effect found in microgravity, and one with limited insight, involves changes in dynamic fluid flow. Fluids provide the most fundamental way to transport chemical and biochemical elements within our bodies and apply an essential mechano-stimulus to cells. Furthermore, the cell cytoplasm is not a simple liquid, and fluid transport phenomena together with viscoelastic deformation of the cytoskeleton play key roles in cell function. In microgravity, flow behavior changes drastically, and the impact on cells within the porous system of bone and the influence of an expanding level of adiposity are not well understood. This review explores the role of interstitial fluid motion and solute transport in porous bone under two different conditions: normogravity and microgravity.
Collapse
|
3
|
Mancuso ME, Wilzman AR, Murdock KE, Troy KL. Effect of External Mechanical Stimuli on Human Bone: a narrative review. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012006. [PMID: 36310606 PMCID: PMC9616042 DOI: 10.1088/2516-1091/ac41bc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bone is a living composite material that has the capacity to adapt and respond to both internal and external stimuli. This capacity allows bone to adapt its structure to habitual loads and repair microdamage. Although human bone evolved to adapt to normal physiologic loading (for example from gravitational and muscle forces), these same biological pathways can potentially be activated through other types of external stimuli such as pulsed electromagnetic fields, mechanical vibration, and others. This review summarizes what is currently known about how human bone adapts to various types of external stimuli. We highlight how studies on sports-specific athletes and other exercise interventions have clarified the role of mechanical loading on bone structure. We also discuss clinical scenarios, such as spinal cord injury, where mechanical loading is drastically reduced, leading to rapid bone loss and permanent alterations to bone structure. Finally, we highlight areas of emerging research and unmet clinical need.
Collapse
|
4
|
Lazzari ZT, Aria KM, Menger R. Neurosurgery and spinal adaptations in spaceflight: A literature review. Clin Neurol Neurosurg 2021; 207:106755. [PMID: 34126454 DOI: 10.1016/j.clineuro.2021.106755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Spaceflight places astronauts in multiple environments capable of inducing pathological changes. Alterations in the spine have a significant impact on astronauts' health during and after spaceflight. Low back pain is an established and common intra-flight complaint. Intervertebral disc herniation occurs at higher rates in this population and poses significant morbidity. Morphological changes within intervertebral discs, vertebral bodies, and spinal postural muscles affect overall spine function and astronaut performance. There remains a paucity of research related to spaceflight-induced pathologies, and currently available reviews concern the central nervous system broadly while lacking emphasis on spinal function. OBJECTIVE Our aim was to review and summarize available data regarding changes in spinal health with exposure to spaceflight, especially focusing on effects of microgravity. The authors also present promising diagnostic and treatment approaches wherein the neurosurgeon could positively impact astronauts' health and post-flight outcomes. MATERIALS AND METHODS Articles included in this review were identified via search engine using MEDLINE, PubMed, Cochrane Review, Google Scholar, and references within other relevant articles. Search criteria included "spine and spaceflight", "vertebral column and spaceflight", "vertebral disc and spaceflight", and "muscle atrophy and spaceflight", with results limited to articles written in English from 1961 to 2020. References of selected articles were included as appropriate. RESULTS Fifty-six articles were included in this review. Compositional changes at the intervertebral discs, vertebral bone, and paraspinal muscles contribute to undesirable effects on astronaut spinal function in space and contribute to post-flight pathologies. Risk of intervertebral disc herniation increases, especially during post-flight recovery. Vertebral bone degeneration in microgravity may increase risk for herniation and fracture. Paraspinal muscle atrophy contributes to low back pain, poorer spine health, and reduced stability. CONCLUSION Anatomical changes in microgravity contribute to the development of spinal pathologies. Microgravity impacts sensory neurovestibular function, neuromuscular output, genetic expression, among other systems. Future developments in imaging and therapeutic interventions may better analyze these changes and offer targeted therapeutic interventions to decrease the burden of pain and other diseases of the spine in this population.
Collapse
Affiliation(s)
| | - Kevin M Aria
- University of South Alabama College of Medicine, Mobile, AL, USA.
| | - Richard Menger
- Department of Neurosurgery, University of South Alabama, Mobile, AL, USA; Department of Political Science, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
5
|
Gitajn IL, Elliott JT, Gunn JR, Ruiz AJ, Henderson ER, Pogue BW, Jiang S. Evaluation of bone perfusion during open orthopedic surgery using quantitative dynamic contrast-enhanced fluorescence imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:6458-6469. [PMID: 33282501 PMCID: PMC7687926 DOI: 10.1364/boe.399587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
In this study, an indocyanine green (ICG)-based dynamic contrast- enhanced fluorescence imaging (DCE-FI) technique was evaluated as a method to provide objective real-time data on bone perfusion using a porcine osteotomy model. DCE-FI with sequentially increasing injury to osseous blood supply was performed in 12 porcine tibias. There were measurable, reproducible and predictable changes to DCE-FI data across each condition have been observed on simple kinetic curve-derived variables as well variables derived from a novel bone-specific kinetic model. The best accuracy, sensitivity and specificity of 89%, 88% and 90%, have been achieved to effectively differentiate injured from normal/healthy bone.
Collapse
Affiliation(s)
- I Leah Gitajn
- Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, 1 Medical Dr., Lebanon, NH 03766, USA
| | - Jonathan T Elliott
- Department of Surgery, Dartmouth-Hitchcock Medical Center, 1 Medical Dr., Lebanon, NH 03766, USA
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr. Hanover, NH 03755, USA
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr. Hanover, NH 03755, USA
| | - Alberto J Ruiz
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr. Hanover, NH 03755, USA
| | - Eric R Henderson
- Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, 1 Medical Dr., Lebanon, NH 03766, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr. Hanover, NH 03755, USA
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr. Hanover, NH 03755, USA
| |
Collapse
|
6
|
Deymier AC, Schwartz AG, Lim C, Wingender B, Kotiya A, Shen H, Silva MJ, Thomopoulos S. Multiscale effects of spaceflight on murine tendon and bone. Bone 2020; 131:115152. [PMID: 31730829 PMCID: PMC7138367 DOI: 10.1016/j.bone.2019.115152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/22/2022]
Abstract
Despite a wealth of data on the effects of spaceflight on tendons and bones, little is known about its effects on the interfacial tissue between these two structures, the enthesis. Mice were sent to space on three separate missions: STS-131, STS-135, and Bion-M1 to determine how spaceflight affects the composition, structure, mechanics, and gene expression of the humerus-supraspinatus and calcaneus-Achilles entheses. At the nanoscale, spaceflight resulted in decreased carbonate levels in the bone, likely due to increased remodeling, as suggested by increased expression of genes related to osteoclastogenesis (CatK, Tnfsf11) and mature osteoblasts (Col1, Osc). Tendons showed a shift in collagen fibril size towards smaller diameters that may have resulted from increased expression of genes related to collagen degradation (Mmp3, Mmp13). These nanoscale changes did not result in micro- and milliscale changes to the structure and mechanics of the enthesis. There were no changes in bone volume, trabecular structure, failure load, or stiffness with spaceflight. This lack of tissue-level change may be anatomy based, as extremities may be less sensitive to spaceflight than central locations such as vertebrae, yet results highlight that the tendon enthesis may be robust against negative effects of spaceflight.
Collapse
Affiliation(s)
- Alix C Deymier
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, United States of America.
| | - Andrea G Schwartz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States of America
| | - Chanteak Lim
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States of America
| | - Brian Wingender
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, United States of America
| | - Akhilesh Kotiya
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States of America
| | - Hua Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States of America
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States of America; Department of Biomedical Engineering, Columbia University, New York, NY, United States of America.
| |
Collapse
|
7
|
Proteasome inhibition suppress microgravity elevated RANK signaling during osteoclast differentiation. Cytokine 2020; 125:154821. [DOI: 10.1016/j.cyto.2019.154821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 01/03/2023]
|
8
|
D’Ambrosio P, Tran D, Verrall CE, Attard C, Singh MF, Ayer J, d’Udekem Y, Twigg S, Celermajer DS, Cordina R. Prevalence and risk factors for low bone density in adults with a Fontan circulation. CONGENIT HEART DIS 2019; 14:987-995. [DOI: 10.1111/chd.12836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Paolo D’Ambrosio
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
- Faculty of Medicine and Health Sciences University of Sydney Sydney New South Wales Australia
| | - Derek Tran
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
- Faculty of Medicine and Health Sciences University of Sydney Sydney New South Wales Australia
| | - Charlotte E. Verrall
- The Heart Centre for Children The Children’s Hospital at Westmead Sydney New South Wales Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Health and Medicine University of Sydney Sydney New South Wales Australia
| | - Chantal Attard
- Murdoch Children’s Research Institute Royal Children’s Hospital Melbourne Victoria Australia
| | - Maria Fiatarone Singh
- Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, Sydney Medical School, Faculty of Health Sciences The University of Sydney Sydney New South Wales Australia
- Hebrew SeniorLife and Jean Mayer USDA Human Nutrition Research Center on Ageing Tufts University Boston Massachusetts
| | - Julian Ayer
- The Heart Centre for Children The Children’s Hospital at Westmead Sydney New South Wales Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Health and Medicine University of Sydney Sydney New South Wales Australia
- Charles Perkins Centre, University of Sydney Sydney New South Wales Australia
| | - Yves d’Udekem
- Murdoch Children’s Research Institute Royal Children’s Hospital Melbourne Victoria Australia
- Department of Cardiothoracic Surgery Royal Children’s Hospital Melbourne Victoria Australia
- Department of Pediatrics University of Melbourne Melbourne Victoria Australia
| | - Stephen Twigg
- Faculty of Medicine and Health Sciences University of Sydney Sydney New South Wales Australia
- Department of Endocrinology Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - David S. Celermajer
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
- Faculty of Medicine and Health Sciences University of Sydney Sydney New South Wales Australia
- Heart Research Institute Sydney New South Wales Australia
| | - Rachael Cordina
- Department of Cardiology Royal Prince Alfred Hospital Sydney New South Wales Australia
- Faculty of Medicine and Health Sciences University of Sydney Sydney New South Wales Australia
- Murdoch Children’s Research Institute Royal Children’s Hospital Melbourne Victoria Australia
| |
Collapse
|
9
|
Gerber B, Singh JL, Zhang Y, Liou W. A computer simulation of short-term adaptations of cardiovascular hemodynamics in microgravity. Comput Biol Med 2018; 102:86-94. [PMID: 30253272 DOI: 10.1016/j.compbiomed.2018.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/11/2018] [Accepted: 09/15/2018] [Indexed: 12/01/2022]
Abstract
Astronauts in the microgravity environment experience significant changes in their cardiovascular hemodynamics. In this study, a system-level numerical model has been utilized to simulate the short-term adaptations of hemodynamic parameters due to the gravitational removal in space. The effect of lower body negative pressure (LBNP) as a countermeasure has also been simulated. The numerical model was built upon a lumped-parameter Windkessel model by incorporating gravity-induced hydrostatic pressure and transcapillary fluid exchange modules. The short-term (in the time scale of seconds and minutes) adaptations of the cardiac functions, blood pressure, and fluid volumes have been analyzed and compared with physiological data. The simulation results suggest microgravity induces a decrease in aortic pressure, heart rate, lower body capillary pressure and volume, and an increase in stroke volume, upper body capillary pressure and volume. The activation of LBNP causes an immediate increase in lower body blood volume and a gradual decrease in upper body blood volume. As a result, the fluid shift due to microgravity could be reversed by the LBNP application. LBNP also counters the impacts of microgravity on the cardiac functions, including heart rate and stroke volume. The simulation results have been validated using available physiological data obtained from spaceflight and parabolic flight experiments.
Collapse
Affiliation(s)
- Benjamin Gerber
- Department Electrical and Computer Engineering, North Dakota State University, Fargo, ND, USA
| | - John-Luke Singh
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, USA
| | - Yan Zhang
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, USA.
| | - William Liou
- Department of Mechanical and Aerospace Engineering, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
10
|
Dinarelli S, Longo G, Dietler G, Francioso A, Mosca L, Pannitteri G, Boumis G, Bellelli A, Girasole M. Erythrocyte's aging in microgravity highlights how environmental stimuli shape metabolism and morphology. Sci Rep 2018; 8:5277. [PMID: 29588453 PMCID: PMC5869709 DOI: 10.1038/s41598-018-22870-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/25/2018] [Indexed: 12/15/2022] Open
Abstract
The determination of the function of cells in zero-gravity conditions is a subject of interest in many different research fields. Due to their metabolic unicity, the characterization of the behaviour of erythrocytes maintained in prolonged microgravity conditions is of particular importance. Here, we used a 3D-clinostat to assess the microgravity-induced modifications of the structure and function of these cells, by investigating how they translate these peculiar mechanical stimuli into modifications, with potential clinical interest, of the biochemical pathways and the aging processes. We compared the erythrocyte's structural parameters and selected metabolic indicators that are characteristic of the aging in microgravity and standard static incubation conditions. The results suggest that, at first, human erythrocytes react to external stimuli by adapting their metabolic patterns and the rate of consumption of the cell resources. On longer timeframes, the cells translate even small differences in the environment mechanical solicitations into structural and morphologic features, leading to distinctive morphological patterns of aging.
Collapse
Affiliation(s)
- S Dinarelli
- Istituto di Struttura della Materia - CNR, Via fosso del cavaliere 100, 00133, Roma, Italy
| | - G Longo
- Istituto di Struttura della Materia - CNR, Via fosso del cavaliere 100, 00133, Roma, Italy.,LPMV-IPhys-EPFL, Route de la Sorge, Lausanne, Switzerland
| | - G Dietler
- LPMV-IPhys-EPFL, Route de la Sorge, Lausanne, Switzerland
| | - A Francioso
- Dipartimento di Scienze Biochimiche "A. Rossi-Fanelli" Universita "Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - L Mosca
- Dipartimento di Scienze Biochimiche "A. Rossi-Fanelli" Universita "Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - G Pannitteri
- Dipartimento di Scienze cardiovascolari, respiratorie, nefrologiche, anestesiologiche e geriatriche Università "Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - G Boumis
- Dipartimento di Scienze Biochimiche "A. Rossi-Fanelli" Universita "Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - A Bellelli
- Dipartimento di Scienze Biochimiche "A. Rossi-Fanelli" Universita "Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - M Girasole
- Istituto di Struttura della Materia - CNR, Via fosso del cavaliere 100, 00133, Roma, Italy.
| |
Collapse
|
11
|
|
12
|
Shi W, Xie Y, He J, Zhou J, Gao Y, Wei W, Ding N, Ma H, Xian CJ, Chen K, Wang J. Microgravity induces inhibition of osteoblastic differentiation and mineralization through abrogating primary cilia. Sci Rep 2017; 7:1866. [PMID: 28500304 PMCID: PMC5431935 DOI: 10.1038/s41598-017-02049-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
It is well documented that microgravity in space environment leads to bone loss in astronauts. These physiological changes have also been validated by human and animal studies and modeled in cell-based analogs. However, the underlying mechanisms are elusive. In the current study, we identified a novel phenomenon that primary cilia (key sensors and functioning organelles) of rat calvarial osteoblasts (ROBs) gradually shrank and disappeared almost completely after exposure to simulated microgravity generated by a random positioning machine (RPM). Along with the abrogation of primary cilia, the differentiation, maturation and mineralization of ROBs were inhibited. We also found that the disappearance of primary cilia was prevented by treating ROBs with cytochalasin D, but not with LiCl or dynein light chain Tctex-type 1 (Dynlt1) siRNA. The repression of the differentiation, maturation and mineralization of ROBs was effectively offset by cytochalasin D treatment in microgravity conditions. Blocking ciliogenesis using intraflagellar transport protein 88 (IFT88) siRNA knockdown inhibited the ability of cytochalasin D to counteract this reduction of osteogenesis. These results indicate that the abrogation of primary cilia may be responsible for the microgravity's inhibition on osteogenesis. Reconstruction of primary cilia may become a potential strategy against bone loss induced by microgravity.
Collapse
Affiliation(s)
- Wengui Shi
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanfang Xie
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, P. R. China
| | - Jinpeng He
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, P. R. China
| | - Yuhai Gao
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, P. R. China
| | - Wenjun Wei
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Ding
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Huiping Ma
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, P. R. China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Keming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, 730050, P. R. China.
| | - Jufang Wang
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
| |
Collapse
|
13
|
Shen L, Ma C, Shuai B, Yang Y. Effects of 1,25-dihydroxyvitamin D 3 on the local bone renin-angiotensin system in a murine model of glucocorticoid-induced osteoporosis. Exp Ther Med 2017; 13:3297-3304. [PMID: 28587403 PMCID: PMC5450694 DOI: 10.3892/etm.2017.4404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/10/2017] [Indexed: 12/12/2022] Open
Abstract
Active vitamin D is closely related to the circulating renin-angiotensin system (RAS) in experimental animal models and humans; however, corresponding local bone data remain limited. The present study examined whether 1,25-dihydroxyvitamin D3 supplementation altered local bone RAS elements in a murine model of glucocorticoid-induced osteoporosis (GIOP). A total of 36 8-week-old mice were randomized into three equal-sized groups: The sham, GIOP and 1,25-dihydroxyvitamin D3 treatment groups. After 12 weeks, the cancellous bone microstructure of the third lumbar vertebra and left femur from the mice from each group were examined using micro-computed tomography. To access the impact of glucocorticoid use, the effect of 1,25-dihydroxyvitamin D3 on cancellous bone microstructure, the expression of bone turnover markers, circulation and expression of the main RAS components was assessed. Results demonstrated that bone volume fraction, trabecular number and trabecular thickness of the treatment and sham groups were significantly higher than the GIOP group (P<0.05). Furthermore, the structure model index, trabecular separation and bone surface to bone volume ratio of the sham and treatment groups were significantly reduced compared with the GIOP group (P<0.05). All assessed parameters exhibited no significant differences between the treatment and sham groups. mRNA expression levels of local bone angiotensin type 1 and 2 receptors and receptor activator of nuclear factor-κB ligand were significantly lower in the treatment group than in the GIOP group (P<0.05); however, there were no significant differences in circulating protein levels between the groups (P>0.05). In conclusion, 1,25-dihydroxyvitamin D3 may modulate bone metabolism by downregulating the local bone RAS in mice with GIOP.
Collapse
Affiliation(s)
- Lin Shen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yanping Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
14
|
Siamwala JH, Macias BR, Lee PC, Hargens AR. Gender differences in tibial microvascular flow responses to head down tilt and lower body negative pressure. Physiol Rep 2017; 5:5/4/e13143. [PMID: 28242824 PMCID: PMC5328775 DOI: 10.14814/phy2.13143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/05/2017] [Accepted: 01/08/2017] [Indexed: 11/24/2022] Open
Abstract
The purpose of the investigation was to study lower body negative pressure recovery in response to head down tilt position in men and women. The study examined the primary hypothesis that tibial bone microvascular flow responses to HDT and lower body negative pressure (LBNP) differ in women and men. Nine women and nine men between 20 to 30 years of age participated in the study. Tibial microvascular flow, head and tibial oxygenation and calf circumference were measured using photoplethysmography (PPG), near‐infrared spectroscopy (NIRS) and strain gauge plethysmography (SGP), respectively, during sitting (control baseline), supine, 15° HDT, and 15° HDT with 25 mmHg LBNP. Tibial microvascular flow with HDT increased by 57% from supine position (from 1.4V ± 0.7 to 2.2V ± 1.0 HDT; ANOVA P < 0.05) in men but there is no significant difference between supine and HDT in women. Ten minutes of LBNP during 15oHDT restored tibial bone microvascular flows to supine levels, (from 2.2V±1.0 HDT to 1.1V ± 0.7 supine; ANOVA P < 0.05) in men but not in women. These data support the concept that there are gender specific microvascular responses to a fluid‐shift countermeasure such as LBNP. Thus, gender differences should be considered while developing future countermeasure strategies to headward fluid shifts in microgravity.
Collapse
Affiliation(s)
- Jamila H Siamwala
- Department of Orthopedic Surgery, University of California, San Diego, California
| | - Brandon R Macias
- Department of Orthopedic Surgery, University of California, San Diego, California
| | - Paul C Lee
- Department of Orthopedic Surgery, University of California, San Diego, California
| | - Alan R Hargens
- Department of Orthopedic Surgery, University of California, San Diego, California
| |
Collapse
|
15
|
Janmaleki M, Pachenari M, Seyedpour SM, Shahghadami R, Sanati-Nezhad A. Impact of Simulated Microgravity on Cytoskeleton and Viscoelastic Properties of Endothelial Cell. Sci Rep 2016; 6:32418. [PMID: 27581365 PMCID: PMC5007526 DOI: 10.1038/srep32418] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
This study focused on the effects of simulated microgravity (s-μg) on mechanical properties, major cytoskeleton biopolymers, and morphology of endothelial cells (ECs). The structural and functional integrity of ECs are vital to regulate vascular homeostasis and prevent atherosclerosis. Furthermore, these highly gravity sensitive cells play a key role in pathogenesis of many diseases. In this research, impacts of s-μg on mechanical behavior of human umbilical vein endothelial cells were investigated by utilizing a three-dimensional random positioning machine (3D-RPM). Results revealed a considerable drop in cell stiffness and viscosity after 24 hrs of being subjected to weightlessness. Cortical rigidity experienced relatively immediate and significant decline comparing to the stiffness of whole cell body. The cells became rounded in morphology while western blot analysis showed reduction of the main cytoskeletal components. Moreover, fluorescence staining confirmed disorganization of both actin filaments and microtubules (MTs). The results were compared statistically among test and control groups and it was concluded that s-μg led to a significant alteration in mechanical behavior of ECs due to remodeling of cell cytoskeleton.
Collapse
Affiliation(s)
- M. Janmaleki
- BioMEMS and Bioinspired Microfluidic Laboratory, Center for
BioEngineering Research and Education, Department of Mechanical and Manufacturing
Engineering, University of Calgary, Canada
- Medical Nanotechnology and Tissue Engineering Research Center,
Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - M. Pachenari
- Medical Nanotechnology and Tissue Engineering Research Center,
Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - S. M. Seyedpour
- Chair of Mechanics - Structural Analysis - Dynamics, Faculty of
Architecture and Civil Engineering, TU
Dortmund, Germany
| | - R. Shahghadami
- Department of Medical Physics and Biomedical Engineering, Shahid
Beheshti University of Medical Sciences, Tehran,
Iran
| | - A. Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Center for
BioEngineering Research and Education, Department of Mechanical and Manufacturing
Engineering, University of Calgary, Canada
| |
Collapse
|
16
|
Gnyubkin V, Guignandon A, Laroche N, Vanden-Bossche A, Normand M, Lafage-Proust MH, Vico L. Effects of chronic hypergravity: from adaptive to deleterious responses in growing mouse skeleton. J Appl Physiol (1985) 2015; 119:908-17. [PMID: 26228999 DOI: 10.1152/japplphysiol.00364.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/27/2015] [Indexed: 11/22/2022] Open
Abstract
One of the most important but least studied environmental factors playing a major role in bone physiology is gravity. While the knowledge of deleterious effects of microgravity on the skeleton is expanding, little is known about hypergravity and its osteogenic potential. Centrifugation was used to assess effects of 21-day continuous 2- or 3-g acceleration on femur and L2-vertebra of 7-wk-old male C57BL/6 mice. Under 3 g, body mass growth slowed down, and deleterious skeletal effects were found (P < 0.05 compared with control): cortical thinning, osteoclasts surface increase (+41% in femur, +20% in vertebra), and bone formation rate decrease (-34% in femur, -38% in vertebra). A 2-g centrifugation did not reduce body mass and improved trabecular volume (+18% in femur, +13% in vertebra) and microarchitecture (+32% connectivity density in femur, +9% trabecular thickness in vertebra, P < 0.05 compared with control). Centrifugation at 2 g also decreased osteoclast surfaces (-36% in femur, -16% in vertebra) and increased the extent of mineralized surfaces (+31% in femur, +48% in vertebra, P < 0.05 compare to control). Quantitative immunohistochemistry revealed an increase of dentin matrix acidic phosphoprotein 1 (DMP1) and decrease of sclerostin (+60% and -35% respectively, P < 0.001 compared with control) in the femur cortex of 2-g mice. In the distal femur metaphysis, the number and volume of blood vessels increased by 22 and 44%, respectively (P < 0.05 compared with control). In conclusion, the effects of continuous hypergravity were bone compartment-specific and depended on the gravity level, with a threshold between beneficial 2-g and deleterious 3-g effects.
Collapse
Affiliation(s)
- Vasily Gnyubkin
- Institut National de la Santé et de la Recherche Médicale U1059, laboratoire de Biologie intégrative du Tissu Osseux, Université de Lyon, Saint-Etienne, France
| | - Alain Guignandon
- Institut National de la Santé et de la Recherche Médicale U1059, laboratoire de Biologie intégrative du Tissu Osseux, Université de Lyon, Saint-Etienne, France
| | - Norbert Laroche
- Institut National de la Santé et de la Recherche Médicale U1059, laboratoire de Biologie intégrative du Tissu Osseux, Université de Lyon, Saint-Etienne, France
| | - Arnaud Vanden-Bossche
- Institut National de la Santé et de la Recherche Médicale U1059, laboratoire de Biologie intégrative du Tissu Osseux, Université de Lyon, Saint-Etienne, France
| | - Myriam Normand
- Institut National de la Santé et de la Recherche Médicale U1059, laboratoire de Biologie intégrative du Tissu Osseux, Université de Lyon, Saint-Etienne, France
| | - Marie-Hélène Lafage-Proust
- Institut National de la Santé et de la Recherche Médicale U1059, laboratoire de Biologie intégrative du Tissu Osseux, Université de Lyon, Saint-Etienne, France
| | - Laurence Vico
- Institut National de la Santé et de la Recherche Médicale U1059, laboratoire de Biologie intégrative du Tissu Osseux, Université de Lyon, Saint-Etienne, France
| |
Collapse
|
17
|
Strategies of Manipulating BMP Signaling in Microgravity to Prevent Bone Loss. VITAMINS AND HORMONES 2015; 99:249-72. [PMID: 26279379 DOI: 10.1016/bs.vh.2015.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bone structure and function is shaped by gravity. Prolonged exposure to microgravity leads to 1-2% bone loss per month in crew members compared to 1% bone loss per year in postmenopausal women. Exercise countermeasures developed to date are ineffective in combating bone loss in microgravity. The search is on for alternate therapies to prevent bone loss in space. Microgravity is an ideal stimulus to understand bone interactions at different levels of organizations. Spaceflight experiments are limited by high costs and lack of opportunity. Ground-based microgravity analogs have proven to simulate biological responses in space. Mice experiments have given important signaling clues in microgravity-associated bone loss, but are restricted by numbers and human application. Cell-based systems provide initial clues to signaling changes; however, the information is simplistic and limited to the cell type. There is a need to integrate information at different levels and provide a complete picture which will help develop a unique strategy to prevent bone weakening. Limited exposure to simulated microgravity using random positioning machine induces proliferation and differentiation of bipotential murine oval liver stem cells. Bone morphogenetic proteins (BMPs) are the prototypal osteogenic signaling molecule with multitude of bone protective functions. In this chapter, we discuss the basic BMP structure, its significance in bone repair, and stem cell differentiation in microgravity. Based on the current information, we propose a model for BMP signaling in space. Development of new technologies may help osteoporosis patients, bedridden people, spinal injuries, or paralytic patients.
Collapse
|
18
|
Shuai B, Yang YP, Shen L, Zhu R, Xu XJ, Ma C, Lv L, Zhao J, Rong JH. Local renin-angiotensin system is associated with bone mineral density of glucocorticoid-induced osteoporosis patients. Osteoporos Int 2015; 26:1063-71. [PMID: 25516362 DOI: 10.1007/s00198-014-2992-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/05/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED The local renin-angiotensin system (RAS) is closely related to bone metabolism. However, it is unknown whether the local RAS is related to bone mineral density (BMD) in glucocorticoid-induced osteoporosis (GIOP). Here, we revealed that the two main characteristics of GIOP might inhibit bone formation and enhance bone resorption. INTRODUCTION The aim of this study is to assess the expression of the main RAS components in the trabecular bone of lumbar vertebrae in GIOP and analyze the relationship between the major RAS components and BMD. METHODS We collected 96 inpatient cases of lumbar disc herniation from patients who underwent dual-energy X-ray absorptiometry examinations followed by surgical treatment in our hospital. Patients were divided into the GIOP group (n = 48) and control group (n = 48). The circulating and local expression levels of the main RAS components were examined. The correlation between the main RAS components and BMD was then analyzed. RESULTS The mRNA expression of local bone angiotensin type 1 and 2 receptors (AT1R and AT2R, respectively) and RANKL was higher in the GIOP group compared with the control group (p < 0.001), but there was no difference in the circulating protein levels between groups (p > 0.05). Multiple logistic regression analysis revealed that AT1R and AT2R expression and the RANKL/OPG ratio in local bone were negatively associated with BMD (p < 0.001, odds ratio (OR) 1.236, 95 % confidence interval (CI) 1.207-1.333; p < 0.001, OR 1.971, 95% CI 1.809-2.233; and p < 0.001, OR 1.676, 95% CI 1.546-1.845, respectively). CONCLUSION This study provides evidence that the role of local RAS is related to BMD in GIOP patients, and suggests that local RAS might influence RANKL/OPG signaling to modulate bone metabolism.
Collapse
Affiliation(s)
- B Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yongtao Z, Kunzheng W, Jingjing Z, Hu S, Jianqiang K, Ruiyu L, Chunsheng W. Glucocorticoids activate the local renin-angiotensin system in bone: possible mechanism for glucocorticoid-induced osteoporosis. Endocrine 2014; 47:598-608. [PMID: 24519760 DOI: 10.1007/s12020-014-0196-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/28/2014] [Indexed: 11/26/2022]
Abstract
Bone metabolism disorder has been identified to play a vital role in the pathogenesis of glucocorticoid-induced osteoporosis (GIOP). The local renin-angiotensin system (RAS) in bone is newly defined to be closely related to the bone metabolism. However, it is unknown whether the local RAS is involved in GIOP. Adult male New Zealand white rabbits were treated with saline, dexamethasone (DXM) alone, or DXM combined with perindopril. The expression of main RAS components in trabecular bone was examined at mRNA and/or protein levels. Bone metabolism was analyzed using dual-energy X-ray absorptiometry, histomorphometry, biomechanics, biochemical techniques, and quantitative RT-PCR. The expressions of local bone angiotensin II, angiotensin types 1 and 2 receptors, and angiotensin-converting enzyme at mRNA and/or protein levels increased when DXM-induced osteoporosis was present. Whereas, perindopril significantly blocked the activation of the local RAS and partially reversed GIOP. Mineralizing surface, mineral apposition rate, and bone formation rate were decreased by DXM, along with serum osteocalcin being downregulated. These changes were then reversed by the use of perindopril. Osteoclast number, osteoclast surface, and eroded surface increased after the administration of DXM, and urinary deoxypyridinoline was upregulated. These were also inhibited when perindopril was given. Quantitative RT-PCR using RNA isolated from the lumbar vertebrae revealed an increase in the SOST expression and a decrease in the Runx2 expression, whereas the receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio and the expression of tartrate resistant acid phosphatase were increased, which were all inhibited by perindopril. The results of this study provide evidence for the role of local RAS is involved in GIOP, and GIOP may be ameliorated by blocking the activation of local RAS in the bone.
Collapse
Affiliation(s)
- Zhang Yongtao
- Department of Orthopaedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Ruggiu A, Cancedda R. Bone mechanobiology, gravity and tissue engineering: effects and insights. J Tissue Eng Regen Med 2014; 9:1339-51. [PMID: 25052837 DOI: 10.1002/term.1942] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 01/10/2023]
Abstract
Bone homeostasis strongly depends on fine tuned mechanosensitive regulation signals from environmental forces into biochemical responses. Similar to the ageing process, during spaceflights an altered mechanotransduction occurs as a result of the effects of bone unloading, eventually leading to loss of functional tissue. Although spaceflights represent the best environment to investigate near-zero gravity effects, there are major limitations for setting up experimental analysis. A more feasible approach to analyse the effects of reduced mechanostimulation on the bone is represented by the 'simulated microgravity' experiments based on: (1) in vitro studies, involving cell cultures studies and the use of bioreactors with tissue engineering approaches; (2) in vivo studies, based on animal models; and (3) direct analysis on human beings, as in the case of the bed rest tests. At present, advanced tissue engineering methods allow investigators to recreate bone microenvironment in vitro for mechanobiology studies. This group and others have generated tissue 'organoids' to mimic in vitro the in vivo bone environment and to study the alteration cells can go through when subjected to unloading. Understanding the molecular mechanisms underlying the bone tissue response to mechanostimuli will help developing new strategies to prevent loss of tissue caused by altered mechanotransduction, as well as identifying new approaches for the treatment of diseases via drug testing. This review focuses on the effects of reduced gravity on bone mechanobiology by providing the up-to-date and state of the art on the available data by drawing a parallel with the suitable tissue engineering systems.
Collapse
Affiliation(s)
- Alessandra Ruggiu
- University of Genova, Department of Experimental Medicine, Genova, Italy
| | - Ranieri Cancedda
- University of Genova, Department of Experimental Medicine & IRCCS AOU San Martino-IST, National Institute for Cancer Research, Genova, Italy
| |
Collapse
|
21
|
Arfat Y, Xiao WZ, Iftikhar S, Zhao F, Li DJ, Sun YL, Zhang G, Shang P, Qian AR. Physiological effects of microgravity on bone cells. Calcif Tissue Int 2014; 94:569-79. [PMID: 24687524 DOI: 10.1007/s00223-014-9851-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/12/2014] [Indexed: 01/07/2023]
Abstract
Life on Earth developed under the influence of normal gravity (1g). With evidence from previous studies, scientists have suggested that normal physiological processes, such as the functional integrity of muscles and bone mass, can be affected by microgravity during spaceflight. During the life span, bone not only develops as a structure designed specifically for mechanical tasks but also adapts for efficiency. The lack of weight-bearing forces makes microgravity an ideal physical stimulus to evaluate bone cell responses. One of the most serious problems induced by long-term weightlessness is bone mineral loss. Results from in vitro studies that entailed the use of bone cells in spaceflights showed modification in cell attachment structures and cytoskeletal reorganization, which may be involved in bone loss. Humans exposed to microgravity conditions experience various physiological changes, including loss of bone mass, muscle deterioration, and immunodeficiency. In vitro models can be used to extract valuable information about changes in mechanical stress to ultimately identify the different pathways of mechanotransduction in bone cells. Despite many in vivo and in vitro studies under both real microgravity and simulated conditions, the mechanism of bone loss is still not well defined. The objective of this review is to summarize the recent research on bone cells under microgravity conditions based on advances in the field.
Collapse
Affiliation(s)
- Yasir Arfat
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Faculty of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an, 710072, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vacek TP, Kalani A, Voor MJ, Tyagi SC, Tyagi N. The role of homocysteine in bone remodeling. Clin Chem Lab Med 2013; 51:579-90. [PMID: 23449525 DOI: 10.1515/cclm-2012-0605] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/31/2013] [Indexed: 01/08/2023]
Abstract
Bone remodeling is a very complex process. Homocysteine (Hcy) is known to modulate this process via several known mechanisms such as increase in osteoclast activity, decrease in osteoblast activity and direct action of Hcy on bone matrix. Evidence from previous studies further support a detrimental effect on bone via decrease in bone blood flow and an increase in matrix metalloproteinases (MMPs) that degrade extracellular bone matrix. Hcy binds directly to extracellular matrix and reduces bone strength. There are several bone markers that can be used as parameters to determine how high levels of plasma Hcy (hyperhomocysteinemia, HHcy) affect bone such as: hydroxyproline, N-terminal collagen 1 telopeptides. Mitochondrion serves an important role in generating reactive oxygen species (ROS). Mitochondrial abnormalities have been identified during HHcy. The mechanism of Hcy-induced bone remodeling via the mitochondrial pathway is largely unknown. Therefore, we propose a mitochondrial mechanism by which Hcy can contribute to alter bone properties. This may occur both through generations of ROS that activate MMPs and could be extruded into matrix to degrade bone matrix. However, there are contrasting reports on whether Hcy affects bone density, with some reports in favour and others not. Earlier studies also found an alteration in bone biomechanical properties with deficiencies of vitamin B12, folate and HHcy conditions. Moreover, existing data opens speculation that folate and vitamin therapy act not only via Hcy-dependent pathways but also via Hcy-independent pathways. However, more studies are needed to clarify the mechanistic role of Hcy during bone diseases.
Collapse
Affiliation(s)
- Thomas P Vacek
- Department of Physiology and Biophysics, University of Louisville School of Medicine Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
23
|
Nagaraja MP, Risin D. The current state of bone loss research: data from spaceflight and microgravity simulators. J Cell Biochem 2013; 114:1001-8. [PMID: 23150462 DOI: 10.1002/jcb.24454] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/01/2012] [Indexed: 11/11/2022]
Abstract
Bone loss is a well documented phenomenon occurring in humans both in short- and in long-term spaceflights. This phenomenon can be also reproduced on the ground in human and animals and also modeled in cell-based analogs. Since space flights are infrequent and expensive to study the biomedical effects of microgravity on the human body, much of the known pathology of bone loss comes from experimental studies. The most commonly used in vitro simulators of microgravity are clinostats while in vivo simulators include the bed rest studies in humans and hindlimb unloading experiments in animals. Despite the numerous reports that have documented bone loss in wide ranges in multiple crew members, the pathology remains a key concern and development of effective countermeasures is still a major task. Thus far, the offered modalities have not shown much success in preventing or alleviating bone loss in astronauts and cosmonauts. The objective of this review is to capture the most recent research on bone loss from spaceflights, bed rest and hindlimb unloading, and in vitro studies utilizing cellular models in clinostats. Additionally, this review offers projections on where the research has to focus to ensure the most rapid development of effective countermeasures.
Collapse
|
24
|
Mateus J, Hargens AR. Bone hemodynamic responses to changes in external pressure. Bone 2013; 52:604-10. [PMID: 23168293 DOI: 10.1016/j.bone.2012.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 10/15/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022]
Abstract
Adequate blood supply and circulation to the bones is required to maintain a healthy skeleton. Inadequate blood perfusion is associated with numerous bone pathologies and a decrease in bone mineral density, yet bone hemodynamics remains poorly understood. This study aims to 1) quantify bone hemodynamic responses to changes in external pressure, and 2) identify the predominant mechanisms regulating bone hemodynamic responses to pressure changes. Photoplethysmography was used to measure bone and skin perfusion in response to changes in external pressure. Single-limb pressure chamber experiments were performed over a pressure range of -50 to +50mmHg. Bone perfusion is decreased at all negative pressures, and larger decrements in perfusion are observed at the more extreme pressure differences. At positive pressures we observed an initial increase in perfusion followed by activation of intramuscular pressure receptors at +30mmHg, which overrides the initial response and results in decreased perfusion at the highest positive pressure levels. The myogenic effect is observed and is shown to be the predominant control mechanism in bone over a wide range of pressure exposures. Greater understanding of these hemodynamic mechanisms may be important in developing new drugs and therapies to treat various bone disorders.
Collapse
Affiliation(s)
- Jaime Mateus
- Massachusetts Institute of Technology, Man-Vehicle Laboratory, Department of Aeronautics and Astronautics, 77 Massachusetts Avenue, Room 37-219, Cambridge, MA 02139, USA.
| | | |
Collapse
|
25
|
Blood flow restriction: rationale for improving bone. Med Hypotheses 2012; 78:523-7. [PMID: 22305335 DOI: 10.1016/j.mehy.2012.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/13/2012] [Indexed: 11/21/2022]
Abstract
Low intensity exercise with blood flow restriction has been shown to increase muscle hypertrophy and strength similar to high intensity resistance exercise. Interestingly, low intensity resistance exercise to failure has shown the same muscle protein synthesis response as higher intensity exercise, questioning the need for blood flow restriction during low intensity exercise. The purpose of this manuscript is to discuss the mechanisms and potential benefits of blood flow restricted exercise on bone adaptation and provide rationale as to why low load resistance exercise to failure would be unlikely to produce these benefits. The studies completed thus far support the hypothesis that training with blood flow restriction may provide not only a novel modality to induce adaptation in muscle but also bone, which was previously thought to only occur with higher intensity/impact exercise. We hypothesize that the main mechanism behind the proposed favorable bone responses observed thus far is through increased intramedullary pressure and interstitial fluid flow within the bone caused by venous occlusion. Therefore, although similar muscular benefits may be observed from low intensity exercise performed to failure (e.g. strength, hypertrophy, and endurance), the response of bone might be different, highlighting the potential importance of the blood flow restriction stimulus.
Collapse
|
26
|
Affiliation(s)
- Edward F McCarthy
- Department of Pathology, Johns Hopkins Hospital, 401. N. Broadway, Weinberg 2261, Baltimore, MD 21231, USA.
| |
Collapse
|
27
|
Ulbrich C, Leder A, Pietsch J, Flick B, Wehland M, Grimm D. The impact of vascular endothelial growth factor and basic fibroblast growth factor on cardiac fibroblasts grown under altered gravity conditions. Cell Physiol Biochem 2011; 26:1011-22. [PMID: 21220932 DOI: 10.1159/000323976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2010] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Myocardium is very sensitive to gravitational changes. During a spaceflight cardiovascular atrophy paired with rhythm problems and orthostatic intolerance can occur. The aim of this study was to investigate the impact of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) on cardiac fibroblasts (CF) grown under altered gravity conditions. METHODS We examined the influence of exposure to a Random Positioning Machine (RPM) on CF, derived from porcine hearts. We focused on growth, extracellular matrix protein (ECMP) synthesis and apoptosis. RESULTS When cultured on a RPM, CF began to form 3D spheroids within 24h, irrespective of growth factor treatment. Exposure to RPM induced an increased synthesis of ECMP and also resulted in elevated apoptosis in adherent CF as measured by terminal deoxynucleotidyl transferase-mediated dUTP digoxigenin nick end labeling (TUNEL) analysis, 4',6-diamidino-2-phenylindole (DAPI) staining, and caspase-3 detection. bFGF and VEGF significantly decreased the amount of ECMP (collagen type I, III, chondroitin sulfate) in 1g and RPM cultures, and also significantly reduced the amount of apoptotic CF as well as caspase-3. CONCLUSIONS Altered gravity conditions on a RPM induced 3D growth, elevated ECMP synthesis and apoptosis in cardiac fibroblasts. Growth factor treatment attenuated programmed cell death and ECMP secretion.
Collapse
Affiliation(s)
- Claudia Ulbrich
- Institute of Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Bergmann P, Body JJ, Boonen S, Boutsen Y, Devogelaer JP, Goemaere S, Kaufman J, Reginster JY, Rozenberg S. Loading and skeletal development and maintenance. J Osteoporos 2010; 2011:786752. [PMID: 21209784 PMCID: PMC3010667 DOI: 10.4061/2011/786752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/06/2010] [Indexed: 12/12/2022] Open
Abstract
Mechanical loading is a major regulator of bone mass and geometry. The osteocytes network is considered the main sensor of loads, through the shear stress generated by strain induced fluid flow in the lacuno-canalicular system. Intracellular transduction implies several kinases and phosphorylation of the estrogen receptor. Several extra-cellular mediators, among which NO and prostaglandins are transducing the signal to the effector cells. Disuse results in osteocytes apoptosis and rapid imbalanced bone resorption, leading to severe osteoporosis. Exercising during growth increases peak bone mass, and could be beneficial with regards to osteoporosis later in life, but the gain could be lost if training is abandoned. Exercise programs in adults and seniors have barely significant effects on bone mass and geometry at least at short term. There are few data on a possible additive effect of exercise and drugs in osteoporosis treatment, but disuse could decrease drugs action. Exercise programs proposed for bone health are tedious and compliance is usually low. The most practical advice for patients is to walk a minimum of 30 to 60 minutes per day. Other exercises like swimming or cycling have less effect on bone, but could reduce fracture risk indirectly by maintaining muscle mass and force.
Collapse
Affiliation(s)
- P. Bergmann
- Department of Nuclear Medicine, Laboratory of Clinical Chemistry and Experimental Medicine, CHU Brugmann, Université Libre de Bruxelles, 4 Pl. Van Gehuchten, 1020 Brussels, Belgium,*P. Bergmann:
| | - J. J. Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, 1020 Brussels, Belgium
| | - S. Boonen
- Division of Gerontology and Geriatrics, Center for Musculoskeletal Research, Department of Experimental Medicine, Catholic Leuven University, 3000 Leuven, Belgium
| | - Y. Boutsen
- Department of Rheumatology, Mont-Godinne University Hospital, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - J. P. Devogelaer
- Rheumatology Unit, Saint-Luc University Hospital, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - S. Goemaere
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
| | - J. Kaufman
- Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, 9000 Ghent, Belgium
| | - J. Y. Reginster
- Department of Public Health Sciences, University of Liège, 4000 Liège, Belgium
| | - S. Rozenberg
- Department of Gynaecology-Obstetrics, Free University of Brussels, 1090 Brussels, Belgium
| |
Collapse
|
29
|
Knothe Tate ML. Top down and bottom up engineering of bone. J Biomech 2010; 44:304-12. [PMID: 21146825 DOI: 10.1016/j.jbiomech.2010.10.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 12/15/2022]
Abstract
The goal of this retrospective article is to place the body of my lab's multiscale mechanobiology work in context of top-down and bottom-up engineering of bone. We have used biosystems engineering, computational modeling and novel experimental approaches to understand bone physiology, in health and disease, and across time (in utero, postnatal growth, maturity, aging and death, as well as evolution) and length scales (a single bone like a femur, m; a sample of bone tissue, mm-cm; a cell and its local environment, μm; down to the length scale of the cell's own skeleton, the cytoskeleton, nm). First we introduce the concept of flow in bone and the three calibers of porosity through which fluid flows. Then we describe, in the context of organ-tissue, tissue-cell and cell-molecule length scales, both multiscale computational models and experimental methods to predict flow in bone and to understand the flow of fluid as a means to deliver chemical and mechanical cues in bone. Addressing a number of studies in the context of multiple length and time scales, the importance of appropriate boundary conditions, site specific material parameters, permeability measures and even micro-nanoanatomically correct geometries are discussed in context of model predictions and their value for understanding multiscale mechanobiology of bone. Insights from these multiscale computational modeling and experimental methods are providing us with a means to predict, engineer and manufacture bone tissue in the laboratory and in the human body.
Collapse
Affiliation(s)
- Melissa L Knothe Tate
- Department of Mechanical & Aerospace Engineering, Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7222, USA.
| |
Collapse
|
30
|
Ciftçioğlu N, McKay DS. Pathological calcification and replicating calcifying-nanoparticles: general approach and correlation. Pediatr Res 2010; 67:490-9. [PMID: 20094006 DOI: 10.1203/pdr.0b013e3181d476ce] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcification, a phenomenon often regarded by pathologists little more than evidence of cell death, is becoming recognized to be important in the dynamics of a variety of diseases from which millions of beings suffer in all ages. In calcification, all that is needed for crystal formation to start is nidi (nuclei) and an environment of available dissolved components at or near saturation concentrations, along with the absence of inhibitors for crystal formation. Calcifying nanoparticles (CNP) are the first calcium phosphate mineral containing particles isolated from human blood and were detected in numerous pathologic calcification related diseases. Controversy and critical role of CNP as nidi and triggering factor in human pathologic calcification are discussed.
Collapse
Affiliation(s)
- Neva Ciftçioğlu
- Astromaterials Research and Exploration Science [N.C., D.S.M.], National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas 77058, USA.
| | | |
Collapse
|
31
|
Garcia P, Schwenzer S, Slotta JE, Scheuer C, Tami AE, Holstein JH, Histing T, Burkhardt M, Pohlemann T, Menger MD. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation - role of a local renin-angiotensin system. Br J Pharmacol 2010; 159:1672-80. [PMID: 20233225 DOI: 10.1111/j.1476-5381.2010.00651.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE The renin-angiotensin system (RAS) regulates blood pressure and electrolyte homeostasis. In addition, 'local' tissue-specific RAS have been identified, regulating regeneration, cell growth, apoptosis, inflammation and angiogenesis. Although components of the RAS are expressed in osteoblasts and osteoclasts, a local RAS in bone has not yet been described and there is no information on whether the RAS is involved in fracture healing. Therefore, we studied the expression and function of the key RAS component, angiotensin-converting enzyme (ACE), during fracture healing. EXPERIMENTAL APPROACH In a murine femur fracture model, animals were treated with the ACE inhibitor perindopril or vehicle only. Fracture healing was analysed after 2, 5 and 10 weeks using X-ray, micro-CT, histomorphometry, immunohistochemistry, Western blotting and biomechanical testing. KEY RESULTS ACE was expressed in osteoblasts and hypertrophic chondrocytes in the periosteal callus during fracture healing, accompanied by expression of the angiotensin type-1 and type-2 receptors. Perindopril treatment reduced blood pressure and bone mineral density in unfractured femora. However, it improved periosteal callus formation, bone bridging of the fracture gap and torsional stiffness. ACE inhibition did not affect cell proliferation, but reduced apoptotic cell death. After 10 week treatment, a smaller callus diameter and bone volume after perindopril treatment indicated an advanced stage of bone remodelling. CONCLUSIONS Our study provides evidence for a local RAS in bone that influenced the process of fracture healing. We show for the first time that inhibition of ACE is capable of accelerating bone healing and remodelling.
Collapse
Affiliation(s)
- P Garcia
- Department of Trauma-, Hand- and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Frost ML, Blake GM, Cook GJR, Marsden PK, Fogelman I. Differences in regional bone perfusion and turnover between lumbar spine and distal humerus: (18)F-fluoride PET study of treatment-naïve and treated postmenopausal women. Bone 2009; 45:942-8. [PMID: 19660584 DOI: 10.1016/j.bone.2009.07.081] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/25/2009] [Accepted: 07/19/2009] [Indexed: 11/28/2022]
Abstract
The functional imaging technique of (18)F-fluoride positron emission tomography ((18)F-PET) allows the non-invasive assessment of regional bone blood perfusion and turnover. Bone perfusion and turnover measured using (18)F-PET correlate closely with those obtained experimentally and so they can be readily applied in clinical research studies. The aim of this study was to compare bone perfusion and turnover between the lumbar spine and humerus in both treatment naïve postmenopausal women (n=11) and those on stable antiresorptive therapy (n=12). All women had a BMD T-score of less than -2 at the spine and/or hip. Each woman had a dynamic PET scan of the lumbar spine and distal humerus after injection of 90 MBq (18)F-fluoride. Using a three-compartmental model bone perfusion (K(1)), the net plasma clearance of tracer to bone mineral (K(i)) reflecting regional bone turnover and the rate constants k(2)-k(4) describing the transport of fluoride between plasma, an extravascular bone compartment and bone mineral compartment were calculated. Mean bone perfusion (K(1)) and bone turnover (K(i)) were significantly higher at the lumbar spine compared to the humerus for both treatment-naïve and antiresorptive groups. K(1) values were on average 3 times greater while K(i) was approximately 50% greater at the lumbar spine. The rate constant k(2), the reverse transport of fluoride from the extravascular compartment to plasma, was significantly lower at the humerus compared to the lumbar spine in both groups. The ratio K(i)/K(1) describing the unidirectional extraction efficiency to bone mineral was significantly greater at the humerus compared to the lumbar spine for both study groups. No significant differences between skeletal sites were observed for k(3) or k(4). In conclusion a significant skeletal heterogeneity was observed in terms of bone perfusion and turnover between the lumbar spine and humerus. (18)F-PET may aid in our understanding of the importance of bone perfusion in osteoporosis and differences in regional bone turnover with disease and in response to therapy.
Collapse
|
33
|
Baiotto S, Labat B, Vico L, Zidi M. Bone remodeling regulation under unloading conditions: Numerical investigations. Comput Biol Med 2009; 39:46-52. [DOI: 10.1016/j.compbiomed.2008.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022]
|
34
|
Qin YX, Lam H. Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation. J Biomech 2008; 42:140-5. [PMID: 19081096 DOI: 10.1016/j.jbiomech.2008.10.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/04/2008] [Accepted: 10/13/2008] [Indexed: 11/15/2022]
Abstract
Intramedullary pressure (ImP) and low-level bone strain induced by oscillatory muscle stimulation (MS) has the potential to mitigate bone loss induced by disuse osteopenia, i.e., hindlimb suspension (HLS). To test this hypothesis, we evaluated (a) MS-induced ImP and bone strain as function of stimulation frequency and (b) the adaptive responses to functional disuse, and disuse plus 1 and 20 Hz stimulation in vivo. Femoral ImP and bone strain generated by MS were measured in the frequencies of 1-100 Hz in four rats. Forty retired breeder rats were used for the in vivo HLS study. The quadriceps muscle was stimulated at frequencies of 1 and 20 Hz, 10 min/d for four weeks. The metaphyseal trabecular bone quantity and microstructure at the distal femur were evaluated using microCT, while bone formation indices were analyzed using histomorphometric technique. Oscillatory MS generated a maximum ImP of 45+/-9 mmHg at 20 Hz and produced a maximum matrix strain of 128+/-19 microepsilon at 10 Hz. Our analyses from the in vivo study showed that MS at 20 Hz was able to attenuate trabecular bone loss and partially maintain the microstructure induced by HLS. Conversely, there was no evidence of an adaptive effect of stimulation at 1 Hz on disused skeleton. The results suggested that oscillatory MS regulates fluid dynamics and mechanical strain in bone, which serves as a critical mediator of adaptation. These results clearly demonstrated the ability of MS in attenuating bone loss from the disuse osteopenia, which may hold potential in mitigating skeletal degradation imposed by conditions of disuse, and may serve as a biomechanical intervention in clinic application.
Collapse
Affiliation(s)
- Yi-Xian Qin
- Department of Biomedical Engineering, State University of New York at Stony Brook, 350 Psychology-A Building, Stony Brook, NY 11794-2580, USA.
| | | |
Collapse
|
35
|
Biological Basis of Bone Formation, Remodeling, and Repair—Part III: Biomechanical Forces. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:285-93. [DOI: 10.1089/ten.teb.2008.0084] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Gronstal A, Cockell CS, Perino MA, Bittner T, Clacey E, Clark O, Ingold O, Alves de Oliveira C, Wathiong S. Lunar astrobiology: a review and suggested laboratory equipment. ASTROBIOLOGY 2007; 7:767-782. [PMID: 17963476 DOI: 10.1089/ast.2006.0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In October of 2005, the European Space Agency (ESA) and Alcatel Alenia Spazio released a "call to academia for innovative concepts and technologies for lunar exploration." In recent years, interest in lunar exploration has increased in numerous space programs around the globe, and the purpose of our study, in response to the ESA call, was to draw on the expertise of researchers and university students to examine science questions and technologies that could support human astrobiology activity on the Moon. In this mini review, we discuss astrobiology science questions of importance for a human presence on the surface of the Moon and we provide a summary of key instrumentation requirements to support a lunar astrobiology laboratory.
Collapse
Affiliation(s)
- Aaron Gronstal
- Planetary and Space Sciences Research Institute, Open University, Milton Keynes, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
INTRODUCTION Bone circulation plays an important role in bone physiology, but has been relatively poorly studied, because most techniques of circulatory research are difficult to apply to bone. This article summarizes briefly some of the important aspects of the physiology of bone blood flow most relevant to orthopaedics. METHODS The gold standard for experimental measurement of bone blood flow is the radioactive microsphere technique, though advances are being made in other techniques, such as positron emission tomography, laser and ultra-sound Doppler velocimetry, and near infrared spectroscopy, that may provide useful clinical measurement in the future. RESULTS Multiple vascular pathways contribute to an adaptive response to traumatic disruption of bone circulation. The microcirculation is not merely a passive conduit for blood flow, but plays an active role in controlling bone processes such as osteochondral ossification. DISCUSSION The pathophysiology of bone circulation has been associated with osteonecrosis, but more and more evidence is pointing to the importance of bone circulation in fracture repair and osteoporosis, both of which are potentially very exciting areas for future studies.
Collapse
Affiliation(s)
- Ian McCarthy
- Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP United Kingdom.
| |
Collapse
|
38
|
Affiliation(s)
- Neva Ciftcioglu
- Nanobac Pharmaceuticals Inc., NASA Johnson Space Center, Houston, TX 77058, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
Exposure to microgravity during space flight affects almost all human physiological systems. The affected systems that are of key importance to human space exploration are the musculoskeletal, neurovestibular, and cardiovascular systems. However, alterations in the immune and endocrine functions have also been described. Bone loss has been shown to be site specific, predominantly in the weight-bearing regions of the legs and lumbar spine. This phenomenon has been attributed to a reduction in bone formation resulting from a decrease in osteoblastic function and an increase in osteoclastic resorption. In order to examine the effects of microgravity on cellular function here on earth, several ground-based studies have been performed using different systems to model microgravity. Our studies have shown that modeled microgravity (MMG) inhibits the osteoblastic differentiation of human mesenchymal stem cells (hMSCs) while increasing their adipogenic differentiation. Here, we discuss the potential molecular mechanisms that could be altered in microgravity. In particular, we examine the role of RhoA kinase in maintaining the formation of actin stress fibers and the expression of nitric oxide synthase under MMG conditions. These proposed mechanisms, although only examined in hMSCs, could be part of a global response to microgravity that ultimately alters human physiology.
Collapse
Affiliation(s)
- Majd Zayzafoon
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35233-7331, USA
| | | | | |
Collapse
|