1
|
Elhanafy A, Elsagheer S, Ookawara S, Nada S. Numerical simulation of cellular blood flow in curved micro-vessels with saccular aneurysms: Effect of curvature degree and hematocrit level. BIOMICROFLUIDICS 2024; 18:034101. [PMID: 38726374 PMCID: PMC11078268 DOI: 10.1063/5.0203220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
The dynamics of cellular blood flow in curved vessels considerably differ from those in straight vessels. It is reported that clotting development is significantly affected by vessel shape irregularities. Thus, the current study aims to investigate the effect of curvature degree and hematocrit level on cellular blood flow in a curved micro-vessel with a saccular aneurysm. Accordingly, a three-dimensional numerical simulation is performed using a validated code developed for cellular blood flow problems. The obtained results show that the cell-free layer thickness is highly dependent on the curvature degree and hematocrit level, which may have a remarkable impact on the apparent viscosity of blood as well as the dynamics of other particles such as drug particulates. The near-wall region exhibits the highest degree of cell deformation, whereas the red blood cells within the aneurysm zone remain nearly undeformed. Meanwhile, the velocity of the red blood cells decreases with the increase in curvature degree, which can affect the quality of the oxygenation process. Because of the saccular aneurysm, a considerable decrease in plasma velocity is predicted. Moreover, no secondary flows are detected in the curved vessel except in the aneurysm zone. An increase in the curvature degree is expected to reduce the blood flow rate by about 10%. Furthermore, low wall shear stress values are predicted in the straight case compared to the values at the apex of the curved vessel, which may affect the structure and function of the endothelial cells of the vessel wall and, hence, increase the aneurysm rupture possibility.
Collapse
Affiliation(s)
| | | | - Shinichi Ookawara
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Sameh Nada
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
2
|
Paone L, Szkolnicki M, DeOre BJ, Tran KA, Goldman N, Andrews AM, Ramirez SH, Galie PA. Effects of Drag-Reducing Polymers on Hemodynamics and Whole Blood-Endothelial Interactions in 3D-Printed Vascular Topologies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14457-14466. [PMID: 38488736 PMCID: PMC10982934 DOI: 10.1021/acsami.3c17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Most in vitro models use culture medium to apply fluid shear stress to endothelial cells, which does not capture the interaction between blood and endothelial cells. Here, we describe a new system to characterize whole blood flow through a 3D-printed, endothelialized vascular topology that induces flow separation at a bifurcation. Drag-reducing polymers, which have been previously studied as a potential therapy to reduce the pressure drop across the vascular bed, are evaluated for their effect on mitigating the disturbed flow. Polymer concentrations of 1000 ppm prevented recirculation and disturbed flow at the wall. Proteomic analysis of plasma collected from whole blood recirculated through the vascularized channel with and without drag-reducing polymers provides insight into the effects of flow regimes on levels of proteins indicative of the endothelial-blood interaction. The results indicate that blood flow alters proteins associated with coagulation, inflammation, and other processes. Overall, these proof-of-concept experiments demonstrate the importance of using whole blood flow to study the endothelial response to perfusion.
Collapse
Affiliation(s)
- Louis
S. Paone
- Department
of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Matthew Szkolnicki
- Department
of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Brandon J. DeOre
- Department
of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Kiet A. Tran
- Department
of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Noah Goldman
- Department
of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Allison M. Andrews
- Department
of Pathology, Immunology, & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Servio H. Ramirez
- Department
of Pathology, Immunology, & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Peter A. Galie
- Department
of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
3
|
Wiewiora M, Jopek J, Świętochowska E, Sławomir G, Piecuch J, Gąska M, Piecuch J. Blood-based protein biomarkers and red blood cell aggregation in pancreatic cancer. Clin Hemorheol Microcirc 2023; 85:371-383. [PMID: 37718785 DOI: 10.3233/ch-231814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is highly malignant with a low 5-year survival rate. Blood biomarkers may be of value for the noninvasive diagnosis of pancreatic cancer. OBJECTIVE This study assessed blood-based biomarkers and disturbances in red blood cell aggregation associated with pancreatic cancer. METHODS We studied 61 patients who underwent pancreatic resection. Of these 61 patients, 46 patients had PDAC, and 15 patients had inflammatory tumours. Serum VEGF, hypoxia-inducible factor (HIF-1α), elastin-derived peptides (EDPs), total sialic acid (TSA) and resistin levels were measured. Red blood cell aggregation was assessed by a laser-assisted optical rotational cell analyser. RESULTS VEGF (p < 0.000001), HIF-1α (p = 0.000002), resistin (p = 0.000349), EDP (p = 0.000089) and TSA (p = 0.000013) levels were significantly higher in the PDAC group than in the inflammatory tumour group. The aggregation index (AI), syllectogram amplitude (AMP) and threshold shear rate (γthr) were significantly higher in the PDAC group, whereas the aggregation half-time (t1/2) was lower than in the inflammatory tumour group. Multivariate analyses revealed that VEGF, TSA and EDP levels were variables that predicted PDAC. VEGF levels were the most powerful predictor of PDAC independent of CA 19-9 levels. The cut-off points for VEGF, TSA and EDP levels were 134.56 pg/ml, 109.11 mg/dl and 36.4 ng/ml, respectively, with sensitivities of 97.8%, 87% and 69.6%, respectively, and specificities of 86.7%, 86.7% and 93.3%, respectively. CONCLUSION This study indicated that there are significant differences in blood-based biomarkers for differentiating between PDAC and inflammatory tumours of the pancreas. We also confirmed that PDAC is associated with the excessive aggregation of RBCs.
Collapse
Affiliation(s)
- Maciej Wiewiora
- Department of Cardiac Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Janusz Jopek
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Gregorczyn Sławomir
- Chair and Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Mateusz Gąska
- Department of Cardiac Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
4
|
Maung Ye SS, Kim JK, Carretero NT, Phng LK. High-Throughput Imaging of Blood Flow Reveals Developmental Changes in Distribution Patterns of Hemodynamic Quantities in Developing Zebrafish. Front Physiol 2022; 13:881929. [PMID: 35795647 PMCID: PMC9251365 DOI: 10.3389/fphys.2022.881929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanical forces from blood flow and pressure (hemodynamic forces) contribute to the formation and shaping of the blood vascular network during embryonic development. Previous studies have demonstrated that hemodynamic forces regulate signaling and gene expression in endothelial cells that line the inner surface of vascular tubes, thereby modifying their cellular state and behavior. Given its important role in vascular development, we still know very little about the quantitative aspects of hemodynamics that endothelial cells experience due to the difficulty in measuring forces in vivo. In this study, we sought to determine the magnitude of wall shear stress (WSS) exerted on ECs by blood flow in different vessel types and how it evolves during development. Utilizing the zebrafish as a vertebrate model system, we have established a semi-automated high-throughput fluorescent imaging system to capture the flow of red blood cells in an entire zebrafish between 2- and 6-day post-fertilization (dpf). This system is capable of imaging up to 50 zebrafish at a time. A semi-automated analysis method was developed to calculate WSS in zebrafish trunk vessels. This was achieved by measuring red blood cell flow using particle tracking velocimetry analysis, generating a custom-made script to measure lumen diameter, and measuring local tube hematocrit levels to calculate the effective blood viscosity at each developmental stage. With this methodology, we were able to determine WSS magnitude in different vessels at different stages of embryonic and larvae growth and identified developmental changes in WSS, with absolute levels of peak WSS in all vessel types falling to levels below 0.3 Pa at 6 dpf. Additionally, we discovered that zebrafish display an anterior-to-posterior trend in WSS at each developmental stage.
Collapse
Affiliation(s)
- Swe Soe Maung Ye
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Jung Kyung Kim
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- School of Mechanical Engineering, Kookmin University, Seoul, South Korea
| | - Nuria Taberner Carretero
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- *Correspondence: Li-Kun Phng,
| |
Collapse
|
5
|
Piecuch J, Mertas A, Nowowiejska-Wiewiora A, Zurawel R, Gregorczyn S, Czuba Z, Wiewiora M. The relationship between the rheological behavior of RBCs and angiogenesis in the morbidly obese. Clin Hemorheol Microcirc 2019; 71:95-102. [PMID: 30530969 DOI: 10.3233/ch-180420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between red blood cell (RBC) aggregation and deformability and angiogenesis parameters in obese patients. METHODS We studied 35 obese subjects and 20 non-obese people as a control group. Angiogenesis was detected using Bio-Plex Pro Human Angiogenesis Multiplex Assays. The RBC aggregation and deformability of the red blood cell aggregation were performed by the Laser-assisted Optical Rotational Cell Analyser - LORCA. RESULTS The aggregation index and the syllectogram's amplitude were significantly higher in the obese patients, whereas the aggregation half-time (t1/2) was lower compared with the control group. The deformability of RBC expressed as EI was significantly lower in the obese group than it was in the control group. All angiogenesis parameters were higher in obese individuals than they were in the control group. Significant differences were observed in angiopoietin 2 (p = 0.048), folistin (p = 0.0017), G-CSF (p = 0.042), HGF (p = 0.016), and PECAM-1 (p = 0.014). The VEGF tended to be higher in the obese patients than in the control group (p = 0.09); nevertheless, the concentration of PDGF-BB was similar in both groups. EI at shear stresses of 18.49 Pa and 30.2 Pa was strongly correlated with all angiogenesis parameters. No correlations were found between the studied RBC aggregation indices and angiogenesis parameters. Multivariate analyses indicated that only HGF was an independent predictor of RBC deformability at 18.49 Pa (β-0.83, P < 0.000005) and at 30.2 Pa (β-0.83, P < 0.00005). CONCLUSIONS The study found that there are relationships between enhanced RBC rigidity and angiogenesis status in obese subjects. Because this correlation between angiogenesis and RBC deformability is presented for the first time, the physiological importance of the relationship requires further research.
Collapse
Affiliation(s)
- Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Anna Mertas
- Department of Microbiology and Immunology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Alicja Nowowiejska-Wiewiora
- Third Department of Cardiology, Silesian Centre for Heart Disease, School of Medicine, Division of Dentistry, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Robert Zurawel
- Department of General and Vascular Surgery, University Hospital, Opole, Poland
| | - Sławomir Gregorczyn
- Chair and Department of Biophysics, Medical University of Silesia, Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Maciej Wiewiora
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
6
|
Hogan B, Shen Z, Zhang H, Misbah C, Barakat AI. Shear stress in the microvasculature: influence of red blood cell morphology and endothelial wall undulation. Biomech Model Mechanobiol 2019; 18:1095-1109. [PMID: 30840162 DOI: 10.1007/s10237-019-01130-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/09/2019] [Indexed: 01/26/2023]
Abstract
The effect of red blood cells and the undulation of the endothelium on the shear stress in the microvasculature is studied numerically using the lattice Boltzmann-immersed boundary method. The results demonstrate a significant effect of both the undulation of the endothelium and red blood cells on wall shear stress. Our results also reveal that morphological alterations of red blood cells, as occur in certain pathologies, can significantly affect the values of wall shear stress. The resulting fluctuations in wall shear stress greatly exceed the nominal values, emphasizing the importance of the particulate nature of blood as well as a more realistic description of vessel wall geometry in the study of hemodynamic forces. We find that within the channel widths investigated, which correspond to those found in the microvasculature, the inverse minimum distance normalized to the channel width between the red blood cell and the wall is predictive of the maximum wall shear stress observed in straight channels with a flowing red blood cell. We find that the maximum wall shear stress varies several factors more over a range of capillary numbers (dimensionless number relating strength of flow to membrane elasticity) and reduced areas (measure of deflation of the red blood cell) than the minimum wall shear stress. We see that waviness reduces variation in minimum and maximum shear stresses among different capillary and reduced areas.
Collapse
Affiliation(s)
- Brenna Hogan
- Hydrodynamics Laboratory (LadHyX), École Polytechnique, Palaiseau, France
| | - Zaiyi Shen
- Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux, Talence, France
| | - Hengdi Zhang
- Laboratoire Interdisciplinaire de Physique (LiPhy), Université Joseph Fourier, Saint-Martin-d'Hères, France
| | - Chaouqi Misbah
- Laboratoire Interdisciplinaire de Physique (LiPhy), Université Joseph Fourier, Saint-Martin-d'Hères, France
| | - Abdul I Barakat
- Hydrodynamics Laboratory (LadHyX), École Polytechnique, Palaiseau, France.
| |
Collapse
|
7
|
Barshtein G, Arbell D, Yedgar S. Hemodynamic Functionality of Transfused Red Blood Cells in the Microcirculation of Blood Recipients. Front Physiol 2018; 9:41. [PMID: 29441026 PMCID: PMC5797635 DOI: 10.3389/fphys.2018.00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/11/2018] [Indexed: 01/23/2023] Open
Abstract
The primary goal of red blood cell (RBC) transfusion is to supply oxygen to tissues and organs. However, due to a growing number of studies that have reported negative transfusion outcomes, including reduced blood perfusion, there is rising concern about the risks in blood transfusion. RBC are characterized by unique flow-affecting properties, specifically adherence to blood vessel wall endothelium, cell deformability, and self-aggregability, which define their hemodynamic functionality (HF), namely their potential to affect blood circulation. The role of the HF of RBC in blood circulation, particularly the microcirculation, has been documented in numerous studies with animal models. These studies indicate that the HF of transfused RBC (TRBC) plays an important role in the transfusion outcome. However, studies with animal models must be interpreted with reservations, as animal physiology may not reflect human physiology. To test this concept in humans, we have directly examined the effect of the HF of TRBC, as expressed by their deformability and adherence to vascular endothelium, on the transfusion-induced effect on the skin blood flow and hemoglobin increment in β-thalassemia major patients. The results demonstrated, for the first time in humans, that the TRBC HF is a potent effector of the transfusion outcome, expressed by the transfusion-induced increase in the recipients' hemoglobin level, and the change in the skin blood flow, indicating a link between the microcirculation and the survival of TRBC in the recipients' vascular system. The implication of these findings for blood transfusion practice and to vascular function in blood recipients is discussed.
Collapse
Affiliation(s)
- Gregory Barshtein
- Department of Biochemistry, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Dan Arbell
- Department of Pediatric Surgery, Hadassah University Hospital, Jerusalem, Israel
| | - Saul Yedgar
- Department of Biochemistry, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
8
|
Namgung B, Ng YC, Leo HL, Rifkind JM, Kim S. Near-Wall Migration Dynamics of Erythrocytes in Vivo: Effects of Cell Deformability and Arteriolar Bifurcation. Front Physiol 2017; 8:963. [PMID: 29238303 PMCID: PMC5712576 DOI: 10.3389/fphys.2017.00963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023] Open
Abstract
Red blood cell (RBC) deformability has a significant impact on microcirculation by affecting cell dynamics. Despite previous studies that have demonstrated the margination of rigid cells and particles in vitro, little information is available on the in vivo margination of deformability-impaired RBCs under physiological flow and hematocrit conditions. Thus, in this study, we examined how the deformability-dependent, RBC migration alters the cell distribution under physiological conditions, particularly in arteriolar network flows. The hardened RBCs (hRBCs) were found to preferentially flow near the vessel walls of small arterioles (diameter = 47.1-93.3 μm). The majority of the hRBCs (63%) were marginated within the range of 0.7R-0.9R (R: radial position normalized by vessel radius), indicating that the hRBCs preferentially accumulated near the vessel walls. The laterally marginated hRBCs maintained their lateral positions near the walls while traversing downstream with attenuated radial dispersion. In addition, the immediate displacement of RBCs while traversing a bifurcation also contributes to the near-wall accumulation of hRBCs. The notable difference in the inward migration between the marginated nRBCs and hRBCs after bifurcations further supports the potential role of bifurcations in the accumulation of hRBCs near the walls.
Collapse
Affiliation(s)
- Bumseok Namgung
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore, Singapore
| | - Yan Cheng Ng
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Joseph M. Rifkind
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Sangho Kim
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Choi W, Kim HM, Park S, Yeom E, Doh J, Lee SJ. Variation in wall shear stress in channel networks of zebrafish models. J R Soc Interface 2017; 14:rsif.2016.0900. [PMID: 28148768 DOI: 10.1098/rsif.2016.0900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023] Open
Abstract
Physiological functions of vascular endothelial cells (ECs) vary depending on wall shear stress (WSS) magnitude, and the functional change affects the pathologies of various cardiovascular systems. Several in vitro and in vivo models have been used to investigate the functions of ECs under different WSS conditions. However, these models have technical limitations in precisely mimicking the physiological environments of ECs and monitoring temporal variations of ECs in detail. Although zebrafish (Danio rerio) has several strategies to overcome these technical limitations, zebrafish cannot be used as a perfect animal model because applying various WSS conditions on blood vessels of zebrafish is difficult. This study proposes a new zebrafish model in which various WSS can be applied to the caudal vein. The WSS magnitude is controlled by blocking some parts of blood-vessel networks. The accuracy and reproducibility of the proposed method are validated using an equivalent circuit model of blood vessels in zebrafish. The proposed method is applied to lipopolysaccharide (LPS)-stimulated zebrafish as a typical application. The proposed zebrafish model can be used as an in vivo animal model to investigate the relationship between WSS and EC physiology or WSS-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Woorak Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Hye Mi Kim
- Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Sungho Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Eunseop Yeom
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Junsang Doh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea
| |
Collapse
|
10
|
Ju M, Leo HL, Kim S. Numerical investigation on red blood cell dynamics in microflow: Effect of cell deformability. Clin Hemorheol Microcirc 2017; 65:105-117. [PMID: 27447420 DOI: 10.3233/ch-16128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The radial dispersion of red blood cells (RBCs) near the vessel wall can significantly affect the transport dynamics in small vessels. The radial dispersion of RBCs is mainly caused by collisions between RBCs and this can be enhanced by aggregation. The objective of this study is to numerically investigate on the effect of RBC deformability on the radial motion of individual RBCs in a range of flow rates. Immersed Boundary - Lattice Boltzmann Method was utilized to study the radial motion of RBCs in a two-dimensional flow domain. The RBC flow simulations were performed at 40% hematocrit in a microvessel with diameter of 25μm and length of 100μm. The dispersion of less deformable RBCs was notably greater than that of normal RBCs at all flow rates and this effect seemed to be more pronounced when the flow rate was increased. The cell dispersion was higher near the vessel wall than the flow center regardless of flow rate and RBCs deformability. Thus, the dispersion of RBCs could be enhanced with flow rate and RBC rigidity. Our findings would be especially useful in investigating blood flows in arterioles and venules.
Collapse
|
11
|
Namgung B, Sakai H, Kim S. Influence of erythrocyte aggregation at pathological levels on cell-free marginal layer in a narrow circular tube. Clin Hemorheol Microcirc 2016; 61:445-57. [PMID: 25335815 DOI: 10.3233/ch-141909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human red blood cells (RBCs) were perfused in a circular micro-tube (inner diameter of 25 μm) to examine the dynamic changes of cell-free marginal region at both physiological (normal) and pathophysiological (hyper) levels of RBC aggregation. The cell-free area (CFA) was measured to provide additional information on the cell-free layer (CFL) width changes in space and time domains. A prominent enhancement in the mean CFL width was found in hyper-aggregating conditions as compared to that in non-aggregating conditions (P < 0.001). The frequent contacts between RBC and the tube wall were observed and the contact frequency was greatly decreased when the aggregation level was increased from none to normal (P < 0.05) and to hyper (P < 0.001) levels. In addition, the enhanced aggregation from none to hyper levels significantly enlarged the CFA (P < 0.01). We concluded that the RBC aggregation at pathophysiological levels could promote not only the CFL width (one-dimensional parameter) but also the spatiotemporal variation of CFA (two-dimensional parameter).
Collapse
Affiliation(s)
- Bumseok Namgung
- Department of Biomedical Engineering and Department of Surgery, National University of Singapore, Singapore
| | - Hiromi Sakai
- Department of Chemistry, School of Medicine, Nara Medical University, Nara, Japan
| | - Sangho Kim
- Department of Biomedical Engineering and Department of Surgery, National University of Singapore, Singapore
| |
Collapse
|
12
|
Ng YC, Namgung B, Tien SL, Leo HL, Kim S. Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation. Am J Physiol Heart Circ Physiol 2016; 311:H487-97. [PMID: 27233764 DOI: 10.1152/ajpheart.00223.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/26/2016] [Indexed: 11/22/2022]
Abstract
Heterogeneous distribution of red blood cells (RBCs) in downstream vessels of arteriolar bifurcations can be promoted by an asymmetric formation of cell-free layer (CFL) in upstream vessels. Consequently, the CFL widths in subsequent downstream vessels become an important determinant for tissue oxygenation (O2) and vascular tone change by varying nitric oxide (NO) availability. To extend our previous understanding on the formation of CFL in arteriolar bifurcations, this study investigated the formation of CFL widths from 2 to 6 vessel-diameter (2D-6D) downstream of arteriolar bifurcations in the rat cremaster muscle (D = 51.5 ± 1.3 μm). As the CFL widths are highly influenced by RBC aggregation, the degree of aggregation was adjusted to simulate levels seen during physiological and pathological states. Our in vivo experimental results showed that the asymmetry of CFL widths persists along downstream vessels up to 6D from the bifurcating point. Moreover, elevated levels of RBC aggregation appeared to retard the recovery of CFL width symmetry. The required length of complete symmetry recovery was estimated to be greater than 11D under reduced flow conditions, which is relatively longer than interbifurcation distances of arterioles for vessel diameter of ∼50 μm. In addition, our numerical prediction showed that the persistent asymmetry of CFL widths could potentially result in a heterogeneous vasoactivity over the entire arteriolar network in such abnormal flow conditions.
Collapse
Affiliation(s)
- Yan Cheng Ng
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Bumseok Namgung
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Sim Leng Tien
- Department of Hematology, Singapore General Hospital, Singapore; and
| | - Hwa Liang Leo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Sangho Kim
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore; Department of Surgery, National University of Singapore, Singapore
| |
Collapse
|
13
|
Al-Khazraji BK, Jackson DN, Goldman D. A Microvascular Wall Shear Rate Function Derived From In Vivo Hemodynamic and Geometric Parameters in Continuously Branching Arterioles. Microcirculation 2016; 23:311-9. [PMID: 27018869 DOI: 10.1111/micc.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/26/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Conventional approaches to WSR estimation in the microcirculation involve assumptions that may result in under-/over-estimation of WSR. Therefore, our objectives were: (i) calculate WSR from RBC velocity profiles for a wide range of arteriolar diameters, (ii) provide an experimentally derived and straightforward WSR estimation function, and (iii) compare calculated to conventional WSR estimations. METHODS We characterized RBC velocity profiles in arterioles (n = 39) of branching networks (21-115 μm) in the rat gluteus maximus muscle (n = 6). Measures included mean and maximum velocities, CFL thickness, and RBC column edge velocity, and an experiment-based WSR function was derived. RESULTS CFL thickness (1-4.3 μm) positively correlated with arteriolar diameter (r(2) = 0.64). Results from the WSR equation were similar to values from edge RBC velocities/CFL. Experimental WSRs (1317-4334/sec) were independent of arteriolar diameter, and were greater than pseudoshear rates (for VRatio of 1.6, 2, or diameter-dependent VRatio function) (p < 0.05). CONCLUSION A WSR equation was derived from experimental hemodynamic parameters, and is adaptable to other velocity measurement techniques in order to obtain WSR and stress (when plasma viscosity is known). These findings provide insight on the nature of conventional WSR calculation methods in underestimating microvascular WSR values.
Collapse
Affiliation(s)
- Baraa K Al-Khazraji
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada.,Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada.,Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Ng YC, Namgung B, Leo HL, Kim S. Erythrocyte aggregation may promote uneven spatial distribution of NO/O2 in the downstream vessel of arteriolar bifurcations. J Biomech 2015; 49:2241-2248. [PMID: 26684432 DOI: 10.1016/j.jbiomech.2015.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/07/2015] [Indexed: 11/16/2022]
Abstract
This study examined the effect of red blood cell (RBC) aggregation on nitric oxide (NO) and oxygen (O2) distributions in the downstream vessels of arteriolar bifurcations. Particular attention was paid to the inherent formation of asymmetric cell-free layer (CFL) widths in the downstream vessels and its consequential impact on the NO/O2 bioavailability after the bifurcations. A microscopic image-based two-dimensional transient model was used to predict the NO/O2 distribution by utilizing the in vivo CFL width data obtained under non-, normal- and hyper-aggregating conditions at the pseudoshear rate of 15.6±2.0s(-1). In vivo experimental result showed that the asymmetry of CFL widths was enhanced by the elevation in RBC aggregation level. The model demonstrated that NO bioavailability was regulated by the dynamic fluctuation of the local CFL widths, which is corollary to its modulation of wall shear stress. Accordingly, the uneven distribution of NO/O2 was prominent at opposite sides of the arterioles up to six vessel-diameter (6D) away from the bifurcating point, and this was further enhanced by increasing the levels of RBC aggregation. Our findings suggested that RBC aggregation potentially augments both the formation of asymmetric CFL widths and its influence on the uneven distribution of NO/O2 in the downstream flow of an arteriolar bifurcation. The extended heterogeneity of NO/O2 downstream (2D-6D) also implied its potential propagation throughout the entire arteriolar microvasculature.
Collapse
Affiliation(s)
- Yan Cheng Ng
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Bumseok Namgung
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Hwa Liang Leo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Sangho Kim
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore; Department of Surgery, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Park SW, Intaglietta M, Tartakovsky DM. Impact of stochastic fluctuations in the cell free layer on nitric oxide bioavailability. Front Comput Neurosci 2015; 9:131. [PMID: 26578944 PMCID: PMC4621848 DOI: 10.3389/fncom.2015.00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/08/2015] [Indexed: 11/13/2022] Open
Abstract
A plasma stratum (cell free layer or CFL) generated by flowing blood interposed between the red blood cell (RBC) core and the endothelium affects generation, consumption, and transport of nitric oxide (NO) in the microcirculation. CFL width is a principal factor modulating NO diffusion and vessel wall shears stress development, thus significantly affecting NO bioavailability. Since the CFL is bounded by the surface formed by the chaotically moving RBCs and the stationary but spatially non-uniform endothelial surface, its width fluctuates randomly in time and space. We analyze how these stochastic fluctuations affect NO transport in the CFL and NO bioavailability. We show that effects due to random boundaries do not average to zero and lead to an increase of NO bioavailability. Since endothelial production of NO is significantly enhanced by temporal variability of wall shear stress, we posit that stochastic shear stress stimulation of the endothelium yields the baseline continual production of NO by the endothelium. The proposed stochastic formulation captures the natural continuous and microscopic variability, whose amplitude is measurable and is of the scale of cellular dimensions. It provides a realistic model of NO generation and regulation.
Collapse
Affiliation(s)
- Sang-Woo Park
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| | - Marcos Intaglietta
- Bioengineering Department, University of California San Diego, La Jolla, CA, USA
| | - Daniel M Tartakovsky
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Lee SJ, Choi W, Seo E, Yeom E. Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish. PLoS One 2015; 10:e0142945. [PMID: 26561854 PMCID: PMC4643039 DOI: 10.1371/journal.pone.0142945] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/28/2015] [Indexed: 11/18/2022] Open
Abstract
Although atherosclerosis is a multifactorial disease, the role of hemodynamic information has become more important. Low and oscillating wall shear stress (WSS) that changes its direction is associated with the early stage of atherosclerosis. Several in vitro and in vivo models were proposed to reveal the relation between the WSS and the early atherosclerosis. However, these models possess technical limitations in mimicking real physiological conditions and monitoring the developmental course of the early atherosclerosis. In this study, a hypercholesterolaemic zebrafish model is proposed as a novel experimental model to resolve these limitations. Zebrafish larvae are optically transparent, which enables temporal observation of pathological variations under in vivo condition. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro particle image velocimetry (PIV) technique, and spatial distribution of lipid deposition inside the model was quantitatively investigated after feeding high cholesterol diet for 10 days. Lipids were mainly deposited in blood vessel of low WSS. The oscillating WSS was not induced by the blood flows in zebrafish models. The present hypercholesterolaemic zebrafish would be used as a potentially useful model for in vivo study about the effects of low WSS in the early atherosclerosis.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790–784, Republic of Korea
- * E-mail:
| | - Woorak Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790–784, Republic of Korea
| | - Eunseok Seo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong, Daegu 711–873, Republic of Korea
| | - Eunseop Yeom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790–784, Republic of Korea
| |
Collapse
|
17
|
Ng YC, Namgung B, Kim S. Two-dimensional transient model for prediction of arteriolar NO/O2 modulation by spatiotemporal variations in cell-free layer width. Microvasc Res 2014; 97:88-97. [PMID: 25312045 DOI: 10.1016/j.mvr.2014.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
Abstract
Despite the significant roles of the cell-free layer (CFL) in balancing nitric oxide (NO) and oxygen (O2) bioavailability in arteriolar tissue, many previous numerical approaches have relied on a one-dimensional (1-D) steady-state model for simplicity. However, these models are unable to demonstrate the influence of spatiotemporal variations in the CFL on the NO/O2 transport under dynamic flow conditions. Therefore, the present study proposes a new two-dimensional (2-D) transient model capable of predicting NO/O2 transport modulated by the spatiotemporal variations in the CFL width. Our model predicted that NO bioavailability was inversely related to the CFL width as expected. The enhancement of NO production by greater wall shear stress with a thinner CFL could dominate the diffusion barrier role of the CFL. In addition, NO/O2 availability along the vascular wall was inhomogeneous and highly regulated by dynamic changes of local CFL width variation. The spatial variations of CFL widths on opposite sides of the arteriole exhibited a significant inverse relation. This asymmetric formation of CFL resulted in a significantly imbalanced NO/O2 bioavailability on opposite sides of the arteriole. The novel integrative methodology presented here substantially highlighted the significance of spatiotemporal variations of the CFL in regulating the bioavailability of NO/O2, and provided further insight about the opposing effects of the CFL on arteriolar NO production.
Collapse
Affiliation(s)
- Yan Cheng Ng
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Bumseok Namgung
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Sangho Kim
- Department of Biomedical Engineering, National University of Singapore, Singapore; Department of Surgery, National University of Singapore, Singapore.
| |
Collapse
|
18
|
Ong PK, Kim S. Effect of erythrocyte aggregation on spatiotemporal variations in cell-free layer formation near on arteriolar bifurcation. Microcirculation 2014; 20:440-53. [PMID: 23360227 DOI: 10.1111/micc.12045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/24/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate how red blood cell aggregation could modulate the spatial variations in cell-free layer formation in the vicinity of an arteriolar bifurcation. METHODS Visualization of blood flow was performed in upstream and downstream vessels of arteriolar bifurcations in the rat cremaster muscles under reduced flow conditions before and after induction of red blood cell aggregation to both physiological normal- and pathological hyperlevels seen in humans. RESULTS Large asymmetries of layer widths on opposite sides of the downstream vessel were attenuated along the vessel and this effect could be prominently enhanced by the hyperaggregation due to a higher formation rate of the layer which was greater on one side than the other of the vessel. The proportion of downstream layer formation constituted by the smaller downstream vessel generally increased with a thicker layer width at the wall of the upstream vessel adjacent it. A greater tendency of the layer formation in the smaller downstream vessel was found under the hyperaggregating condition than normal-aggregating and nonaggregating conditions. CONCLUSION Red blood cell aggregation could attenuate the asymmetry in cell-free layer formation on opposite sides of the downstream vessel, but enhances the heterogeneity of the layer formation between downstream vessels.
Collapse
Affiliation(s)
- Peng Kai Ong
- Department of Bioengineering & Department of Surgery, National University of Singapore, Singapore
| | | |
Collapse
|
19
|
Namgung B, Liang LH, Kim S. Physiological Significance of Cell-Free Layer and Experimental Determination of its Width in Microcirculatory Vessels. VISUALIZATION AND SIMULATION OF COMPLEX FLOWS IN BIOMEDICAL ENGINEERING 2014. [DOI: 10.1007/978-94-007-7769-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Sherwood JM, Dusting J, Kaliviotis E, Balabani S. The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel. BIOMICROFLUIDICS 2012; 6:24119. [PMID: 23667411 PMCID: PMC3401208 DOI: 10.1063/1.4717755] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/27/2012] [Indexed: 05/10/2023]
Abstract
Red blood cell (RBC) aggregation is a multifaceted phenomenon, and whether it is generally beneficial or deleterious remains unclear. In order to better understand its effect on microvascular blood flow, the phenomenon must be studied in complex geometries, as it is strongly dependent on time, flow, and geometry. The cell-depleted layer (CDL) which forms at the walls of microvessels has been observed to be enhanced by aggregation; however, details of the characteristics of the CDL in complex regions, such as bifurcations, require further investigation. In the present study, a microchannel with a T-junction was used to analyze the influence of aggregation on the flow field and the CDL. Micro-PIV using RBCs as tracers provided high resolution cell velocity data. CDL characteristics were measured from the same data using a newly developed technique based on motion detection. Skewed and sharpened velocity profiles in the daughter branches were observed, contrary to the behavior of a continuous Newtonian fluid. RBC aggregation was observed to increase the skewness, but decrease the sharpening, of the velocity profiles in the daughter branches. The CDL width was found to be significantly greater, with a wider distribution, in the presence of aggregation and the mean width increased proportionally with the reciprocal of the fraction of flow entering the daughter branch. Aggregation also significantly increased the roughness of the interface between the CDL and the RBC core. The present results provide further insight into how RBC aggregation may affect the flow in complex geometries, which is of importance in both understanding its functions invivo, and utilizing it as a tool in microfluidic devices.
Collapse
Affiliation(s)
- J M Sherwood
- Department of Mechanical Engineering, University College London, London WC1E 7JE, United Kingdom
| | | | | | | |
Collapse
|
21
|
Ong PK, Jain S, Kim S. Spatio-temporal variations in cell-free layer formation near bifurcations of small arterioles. Microvasc Res 2012; 83:118-25. [DOI: 10.1016/j.mvr.2011.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/09/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
|
22
|
Ong PK, Cho S, Namgung B, Kim S. Effects of cell-free layer formation on NO/O2 bioavailability in small arterioles. Microvasc Res 2011; 83:168-77. [PMID: 22155421 DOI: 10.1016/j.mvr.2011.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/04/2011] [Accepted: 11/27/2011] [Indexed: 11/25/2022]
Abstract
We developed a new time-dependent computational model for coupled NO/O(2) transport in small arterioles that incorporates potential physiological responses (temporal changes in NO scavenging rate and O(2) partial pressure in blood lumen and NO production rate in endothelium) to the temporal cell-free layer width variations. Two relations between wall shear stress (WSS) and NO production rate based on the linear and sigmoidal functions were considered in this simulation study. The cell-free layer data used for the simulation were acquired from arteriolar flows (D=48.3 ± 1.9 μm) in the rat cremaster muscles under normal flow conditions (WSS=3.4-5.6 Pa). For both cases of linear and sigmoidal relations, temporal layer width variations were found to be capable of significantly enhancing NO bioavailability and this effect was more pronounced in the latter (P<0.0005) than the former (P<0.005). In contrast, O(2) bioavailability in the arteriolar wall was not considerably altered by the temporal layer width variations, irrespective of the relation. Prominent enhancement (P<0.005) of soluble guanylyl cyclase (sGC) activation in the smooth muscle by the temporal layer width variations were predicted for both relations. The extent of sGC activation was generally lower (P<0.01) in the case of the sigmoidal relation than that of the linear relation, suggesting a lesser tendency for arterioles to dilate with the former.
Collapse
Affiliation(s)
- Peng Kai Ong
- Department of Bioengineering, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
23
|
ONG PENGKAI, JAIN SWATI, NAMGUNG BUMSEOK, WOO YEONI, KIM SANGHO. Cell-Free Layer Formation in Small Arterioles at Pathological Levels of Erythrocyte Aggregation. Microcirculation 2011; 18:541-51. [DOI: 10.1111/j.1549-8719.2011.00114.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Hightower CM, Salazar Vázquez BY, Woo Park S, Sriram K, Martini J, Yalcin O, Tsai AG, Cabrales P, Tartakovsky DM, Johnson PC, Intaglietta M. Integration of cardiovascular regulation by the blood/endothelium cell-free layer. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:458-70. [PMID: 21523919 DOI: 10.1002/wsbm.150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cell-free layer (CFL) width separating red blood cells in flowing blood from the endothelial cell membrane is shown to be a regulator of the balance between nitric oxide (NO) production by the endothelium and NO scavenging by blood hemoglobin. The CFL width is determined by hematocrit (Hct) and the vessel wall flow velocity gradient. These factors and blood and plasma viscosity determine vessel wall shear stress which regulates the production of NO in the vascular wall. Mathematical modeling and experimental findings show that vessel wall NO concentration is a strong nonlinear function of Hct and that small Hct variations have comparatively large effects on blood pressure regulation. Furthermore, NO concentration is a regulator of inflammation and oxygen metabolism. Therefore, small, sustained perturbations of Hct may have long-term effects that can promote pro-hypertensive and pro-inflammatory conditions. In this context, Hct and its variability are directly related to vascular tone, peripheral vascular resistance, oxygen transport and delivery, and inflammation. These effects are relevant to the analysis and understanding of blood pressure regulation, as NO bioavailability regulates the contractile state of blood vessels. Furthermore, regulation of the CFL is a direct function of blood composition therefore understanding of its physiology relates to the design and management of fluid resuscitation fluids. From a medical perspective, these studies propose that it should be of clinical interest to note small variations in patient's Hct levels given their importance in modulating the CFL width and therefore NO bioavailability. WIREs Syst Biol Med 2011 3 458-470 DOI: 10.1002/wsbm.150
Collapse
Affiliation(s)
- C Makena Hightower
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ong PK, Jain S, Kim S. Temporal variations of the cell-free layer width may enhance NO bioavailability in small arterioles: Effects of erythrocyte aggregation. Microvasc Res 2011; 81:303-12. [PMID: 21345341 DOI: 10.1016/j.mvr.2011.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 11/29/2022]
Abstract
Recently, we have shown that temporal variations in the cell-free layer width can potentially enhance nitric oxide (NO) bioavailability in small arterioles. Since the layer width variations can be augmented by red blood cell aggregation, we tested the hypothesis that an increase in the layer width variations due to red blood cell aggregation could provide an underlying mechanism to improve NO bioavailability in the endothelium and promote vasodilatory effects. Utilizing cell-free layer width data acquired from arterioles of the rat cremaster muscle before and after dextran infusion in reduced flow conditions (wall shear stress=0.13-0.24Pa), our computational model predicted exponential enhancements of NO bioavailability in the endothelium and soluble guanylyl cyclase (sGC) activation in the smooth muscle layer with increasing temporal variability of the layer width. These effects were mediated primarily by the transient responses of wall shear stress and NO production rate to the layer width variations. The temporal variations in the layer width were significantly enhanced (P<0.05) by aggregation, leading to significant improvements (P<0.05) in NO bioavailability and sGC activation. As a result, the significant reduction (P<0.05) of sGC activation due to the increased width of the layer after aggregation induction was diminished by the opposing effect of the layer variations. These findings highlighted the possible enhancement of NO bioavailability and vascular tone in the arteriole by the augmented layer width variations due to the aggregation.
Collapse
Affiliation(s)
- Peng Kai Ong
- Division of Bioengineering & Department of Surgery, National University of Singapore, Singapore
| | | | | |
Collapse
|
26
|
Modulation of NO bioavailability by temporal variation of the cell-free layer width in small arterioles. Ann Biomed Eng 2010; 39:1012-23. [PMID: 21120696 DOI: 10.1007/s10439-010-0216-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
The cell-free layer exhibits dynamic characteristics in the time domain that may be capable of altering nitric oxide (NO) bioavailability in small arterioles. However, this effect has not been fully elucidated. This study utilized a computational model on NO transport to predict how temporal variations in the layer width could modulate NO bioavailability in the arterioles. Data on the layer width was acquired from high-speed video recordings in arterioles (ID = 48.4 ± 1.8 μm) of the rat cremaster muscle. We found that when wall shear stress response was not considered, the layer variability could lead to a slight decrease (1.6-6.6%) in NO bioavailability that was independent of transient changes in NO scavenging rate. Conversely, the transient response in wall shear stress and NO production rate played a dominant role in reversing this decline such that a significant augmentation (5.3-21.0%) in NO bioavailability was found with increasing layer variability from 24.6 to 63.8%. This study highlighted the importance of the temporal changes in wall shear stress and NO production rate caused by the layer width variations in prediction of NO bioavailability in arterioles.
Collapse
|