1
|
Hardy ET, Wang YJ, Iyer S, Mannino RG, Sakurai Y, Barker TH, Chi T, Youn Y, Wang H, Brown AC, Lam WA. Interdigitated microelectronic bandage augments hemostasis and clot formation at low applied voltage in vitro and in vivo. LAB ON A CHIP 2018; 18:2985-2993. [PMID: 30109316 DOI: 10.1039/c8lc00573g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hemorrhage or uncontrolled bleeding can arise either due to a medical condition or from a traumatic injury and are typically controlled with the application of a hemostatic agent. Hemostatic agents are currently derived from animal or human products, which carry risks of blood borne infections and immune dysregulation. Therefore, the need exists for novel biomedical therapies not derived from animal or human products to achieve hemostasis. Accordingly, we created an interdigitated microelectronic bandage that applies low voltage electrical stimulation to an injury site, resulting in faster clot formation without excessive heating, accelerated fibrin formation, and hemostasis overall. Our interdigitated microelectronic bandage found fibrin formed 1.5× faster in vitro. In vivo, total cessation of bleeding was 2.5× faster, resulting in 2× less blood loss. Electricity has been used in medical applications such as defibrillation, cauterization, and electrosurgery, but scant research has focused on hemostasis. Here we report a novel surface treatment using an interdigitated microelectronic device that creates rapid hemostasis in both in vitro and in vivo bleeding models with low applied voltages, representing a new and novel class of hemostatic agents that are electrically-based.
Collapse
Affiliation(s)
- Elaissa T Hardy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Park H, Jung SY, Park JH, Kim JH, Lee SJ. Enhancement of measurement accuracy of X-ray PIV in comparison with the micro-PIV technique. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:552-559. [PMID: 29488936 DOI: 10.1107/s1600577517017398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/04/2017] [Indexed: 06/08/2023]
Abstract
The X-ray PIV (particle image velocimetry) technique has been used as a non-invasive measurement modality to investigate the haemodynamic features of blood flow. However, the extraction of two-dimensional velocity field data from the three-dimensional volumetric information contained in X-ray images is technically unclear. In this study, a new two-dimensional velocity field extraction technique is proposed to overcome technological limitations. To resolve the problem of finding a correction coefficient, the velocity field information obtained by X-ray PIV and micro-PIV techniques for disturbed flow in a concentric stenosis with 50% severity was quantitatively compared. Micro-PIV experiments were conducted for single-plane and summation images, which provide similar positional information of particles as X-ray images. The correction coefficient was obtained by establishing the relationship between velocity data obtained from summation images (VS) and centre-plane images (VC). The velocity differences between VS and VC along the vertical and horizontal directions were quantitatively analysed as a function of the geometric angle of the test model for applying the present two-dimensional velocity field extraction technique to a conduit of arbitrary geometry. Finally, the two-dimensional velocity field information at arbitrary positions could be successfully extracted from X-ray images by using the correction coefficient and several velocity parameters derived from VS.
Collapse
Affiliation(s)
- Hanwook Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongsangbuk-do 790-784, South Korea
| | - Sung Yong Jung
- Department of Mechanical Engineering, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 61452, South Korea
| | - Jun Hong Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongsangbuk-do 790-784, South Korea
| | - Jun Ho Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongsangbuk-do 790-784, South Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongsangbuk-do 790-784, South Korea
| |
Collapse
|
3
|
Tang R, Yan F, Yang GY, Chen KM. Microbubbles containing gadolinium as contrast agents for both phase contrast and magnetic resonance imaging. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:560-564. [PMID: 29488937 DOI: 10.1107/s1600577517017404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 06/08/2023]
Abstract
Portal vein imaging is an important method for investigating portal venous disorders. However, the diagnostic requirements are not usually satisfied when using single imaging techniques. Diagnostic accuracy can be improved by combining different imaging techniques. Contrast agents that can be used for combined imaging modalities are needed. In this study, the feasibility of using microbubbles containing gadolinium (MCG) as contrast agents for both phase contrast imaging (PCI) and magnetic resonance imaging (MRI) are investigated. MCG were made by encapsulating sulfur hexafluoride (SF6) gas with gadolinium and lyophilized powder. Absorption contrast imaging (ACI) and PCI of MCG were performed and compared in vitro. MCG were injected into the main portal trunk of living rats. PCI and MRI were performed at 2 min and 10 min after MCG injection, respectively. PCI exploited the differences in the refractive index and visibly showed the MCG, which were not detectable by ACI. PCI could facilitate clear revelation of the MCG-infused portal veins. The diameter of the portal veins could be determined by the largest MCG in the same portal vein. The minimum diameter of clearly detected portal veins was about 300 µm by MRI. These results indicate that MCG could enhance both PCI and MRI for imaging portal veins. The detection sensitivity of PCI and MRI could compensate for each other when using MCG contrast agents for animals.
Collapse
Affiliation(s)
- Rongbiao Tang
- Department of Radiology. Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Fuhua Yan
- Department of Radiology. Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Guo Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Ke Min Chen
- Department of Radiology. Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
4
|
Goonan GW, Fouras A, Dubsky S. Array-source X-ray velocimetry. OPTICS EXPRESS 2018; 26:935-950. [PMID: 29401982 DOI: 10.1364/oe.26.000935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
X-ray velocimetry (XV) has shown promise for investigations into various dynamic biological systems, including the motion of lungs and the flow of blood. Prior research in the field of XV has highlighted the need for both high spatial resolution to resolve features for tracking, and temporal resolution for accurate velocity measurement. In X-ray imaging systems, enhancement of spatial and temporal resolution requires a small focal spot size and high power output respectively, increasing anode power density requirements. In this paper, we present a multi-source XV regime whereby simultaneously illuminating a sample with multiple sources of small focal spot size, overall illumination can be increased whilst maintaining minimal source blurring without increasing power density requirements. Through a series of simulations, we demonstrate the capability for multi-source systems under various practical constraints, such as focal spot size and power density, to provide increased accuracy compared to single source systems.
Collapse
|
5
|
Docherty P, Geoghegan P, Huetter L, Jermy M, Sellier M. Regressive cross-correlation of pressure signals in the region of stenosis: Insights from particle image velocimetry experimentation. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2016.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
In vivo measurement of hemodynamic information in stenosed rat blood vessels using X-ray PIV. Sci Rep 2016; 6:37985. [PMID: 27892505 PMCID: PMC5125094 DOI: 10.1038/srep37985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/04/2016] [Indexed: 12/28/2022] Open
Abstract
Measurements of the hemodynamic information of blood flows, especially wall shear stress (WSS), in animal models with circulatory vascular diseases (CVDs) are important to understand the pathological mechanism of CVDs. In this study, X-ray particle image velocimetry (PIV) with high spatial resolution was applied to obtain velocity field information in stenosed blood vessels with high WSS. 3D clips fabricated with a 3D printer were applied to the abdominal aorta of a rat cadaver to induce artificial stenosis in the real blood vessel of an animal model. The velocity and WSS information of blood flows in the stenosed vessel were obtained and compared at various stenosis severities. In vivo measurement was also conducted by fastening a stenotic clip on a live rat model through surgical intervention to reduce the flow rate to match the limited temporal resolution of the present X-ray PIV system. Further improvement of the temporal resolution of the system might be able to provide in vivo measurements of hemodynamic information from animal disease models under physiological conditions. The present results would be helpful for understanding the relation between hemodynamic characteristics and the pathological mechanism in animal CVD models.
Collapse
|
7
|
Park H, Yeom E, Lee SJ. X-ray PIV measurement of blood flow in deep vessels of a rat: An in vivo feasibility study. Sci Rep 2016; 6:19194. [PMID: 26777719 PMCID: PMC4726095 DOI: 10.1038/srep19194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.
Collapse
Affiliation(s)
- Hanwook Park
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Eunseop Yeom
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
8
|
Murrie RP, Paganin DM, Fouras A, Morgan KS. Phase contrast x-ray velocimetry of small animal lungs: optimising imaging rates. BIOMEDICAL OPTICS EXPRESS 2016; 7:79-92. [PMID: 26819819 PMCID: PMC4722912 DOI: 10.1364/boe.7.000079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
Chronic lung diseases affect a vast portion of the world's population. One of the key difficulties in accurately diagnosing and treating chronic lung disease is our inability to measure dynamic motion of the lungs in vivo. Phase contrast x-ray imaging (PCXI) allows us to image the lungs in high resolution by exploiting the difference in refractive indices between tissue and air. Combining PCXI with x-ray velocimetry (XV) allows us to track the local motion of the lungs, improving our ability to locate small regions of disease under natural ventilation conditions. Via simulation, we investigate the optimal imaging speed and sequence to capture lung motion in vivo in small animals using XV on both synchrotron and laboratory x-ray sources, balancing the noise inherent in a short exposure with motion blur that results from a long exposure.
Collapse
Affiliation(s)
- R. P. Murrie
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
| | - D. M. Paganin
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
| | - A. Fouras
- Division of Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - K. S. Morgan
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
- Institute for Advanced Study E17, Technische Universität, München, Lichtenbergstrasse 2a, D-85748 Garching, Germany
| |
Collapse
|
9
|
Murrie RP, Morgan KS, Maksimenko A, Fouras A, Paganin DM, Hall C, Siu KKW, Parsons DW, Donnelley M. Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:1049-1055. [PMID: 26134810 DOI: 10.1107/s1600577515006001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances. A frame rate of 100 frames s(-1) allowed lung motion to be determined using X-ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user-directed display of relevant respiratory anatomy. The ability to perform X-ray velocimetry on live mice at the IMBL was successfully demonstrated. High-quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample-to-detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live-animal imaging and high-resolution micro-tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.
Collapse
Affiliation(s)
- Rhiannon P Murrie
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Kaye S Morgan
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Anton Maksimenko
- Imaging and Medical Beamline, Australian Synchrotron, Clayton, VIC 3800, Australia
| | - Andreas Fouras
- Division of Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - David M Paganin
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Chris Hall
- Imaging and Medical Beamline, Australian Synchrotron, Clayton, VIC 3800, Australia
| | - Karen K W Siu
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - David W Parsons
- Robinson Research Institute, University of Adelaide, SA 5001, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, SA 5001, Australia
| |
Collapse
|
10
|
Dubsky S, Fouras A. Imaging regional lung function: a critical tool for developing inhaled antimicrobial therapies. Adv Drug Deliv Rev 2015; 85:100-9. [PMID: 25819486 DOI: 10.1016/j.addr.2015.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022]
Abstract
Alterations in regional lung function due to respiratory infection have a significant effect on the deposition of inhaled treatments. This has consequences for treatment effectiveness and hence recovery of lung function. In order to advance our understanding of respiratory infection and inhaled treatment delivery, we must develop imaging techniques that can provide regional functional measurements of the lung. In this review, we explore the role of functional imaging for the assessment of respiratory infection and development of inhaled treatments. We describe established and emerging functional lung imaging methods. The effect of infection on lung function is described, and the link between regional disease, function, and inhaled treatments is discussed. The potential for lung function imaging to provide unique insights into the functional consequences of infection, and its treatment, is also discussed.
Collapse
Affiliation(s)
- Stephen Dubsky
- Department of Mechanical & Aerospace Engineering, Monash University, Victoria 3800, Australia.
| | - Andreas Fouras
- Department of Mechanical & Aerospace Engineering, Monash University, Victoria 3800, Australia.
| |
Collapse
|
11
|
Park H, Yeom E, Seo SJ, Lim JH, Lee SJ. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles. Sci Rep 2015; 5:8840. [PMID: 25744850 DOI: 10.1038/srep08840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/06/2015] [Indexed: 11/09/2022] Open
Abstract
Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Hanwook Park
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Eunseop Yeom
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Seung-Jun Seo
- Industrial Technology Convergence Center, Pohang Accelerator Laboratory, POSTECH, Pohang, 790-784, South Korea
| | - Jae-Hong Lim
- Industrial Technology Convergence Center, Pohang Accelerator Laboratory, POSTECH, Pohang, 790-784, South Korea
| | - Sang-Joon Lee
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
12
|
Murrie RP, Stevenson AW, Morgan KS, Fouras A, Paganin DM, Siu KKW. Feasibility study of propagation-based phase-contrast X-ray lung imaging on the Imaging and Medical beamline at the Australian Synchrotron. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:430-445. [PMID: 24562566 DOI: 10.1107/s1600577513034681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
Propagation-based phase-contrast X-ray imaging (PB-PCXI) using synchrotron radiation has achieved high-resolution imaging of the lungs of small animals both in real time and in vivo. Current studies are applying such imaging techniques to lung disease models to aid in diagnosis and treatment development. At the Australian Synchrotron, the Imaging and Medical beamline (IMBL) is well equipped for PB-PCXI, combining high flux and coherence with a beam size sufficient to image large animals, such as sheep, due to a wiggler source and source-to-sample distances of over 137 m. This study aimed to measure the capabilities of PB-PCXI on IMBL for imaging small animal lungs to study lung disease. The feasibility of combining this technique with computed tomography for three-dimensional imaging and X-ray velocimetry for studies of airflow and non-invasive lung function testing was also investigated. Detailed analysis of the role of the effective source size and sample-to-detector distance on lung image contrast was undertaken as well as phase retrieval for sample volume analysis. Results showed that PB-PCXI of lung phantoms and mouse lungs produced high-contrast images, with successful computed tomography and velocimetry also being carried out, suggesting that live animal lung imaging will also be feasible at the IMBL.
Collapse
Affiliation(s)
| | - Andrew W Stevenson
- CSIRO Materials Science and Engineering, Private Bag 33, Clayton South, Victoria 3169, Australia
| | - Kaye S Morgan
- School of Physics, Monash University, Victoria 3800, Australia
| | - Andreas Fouras
- Department of Mechanical and Aerospace Engineering, Monash University, Victoria 3800, Australia
| | - David M Paganin
- School of Physics, Monash University, Victoria 3800, Australia
| | - Karen K W Siu
- School of Physics, Monash University, Victoria 3800, Australia
| |
Collapse
|
13
|
Antoine E, Buchanan C, Fezzaa K, Lee WK, Rylander MN, Vlachos P. Flow measurements in a blood-perfused collagen vessel using x-ray micro-particle image velocimetry. PLoS One 2013; 8:e81198. [PMID: 24260559 PMCID: PMC3832459 DOI: 10.1371/journal.pone.0081198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/20/2013] [Indexed: 11/27/2022] Open
Abstract
Blood-perfused tissue models are joining the emerging field of tumor engineering because they provide new avenues for modulation of the tumor microenvironment and preclinical evaluation of the therapeutic potential of new treatments. The characterization of fluid flow parameters in such in-vitro perfused tissue models is a critical step towards better understanding and manipulating the tumor microenvironment. However, traditional optical flow measurement methods are inapplicable because of the opacity of blood and the thickness of the tissue sample. In order to overcome the limitations of optical method we demonstrate the feasibility of using phase-contrast x-ray imaging to perform microscale particle image velocimetry (PIV) measurements of flow in blood perfused hydrated tissue-representative microvessels. However, phase contrast x-ray images significantly depart from the traditional PIV image paradigm, as they have high intensity background, very low signal-to-noise ratio, and volume integration effects. Hence, in order to achieve accurate measurements special attention must be paid to the image processing and PIV cross-correlation methodologies. Therefore we develop and demonstrate a methodology that incorporates image preprocessing as well as advanced PIV cross-correlation methods to result in measured velocities within experimental uncertainty.
Collapse
Affiliation(s)
- Elizabeth Antoine
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Cara Buchanan
- VT-WFU School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kamel Fezzaa
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Wah-Keat Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - M. Nichole Rylander
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
- VT-WFU School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Pavlos Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
14
|
Daly SM, Leahy MJ. 'Go with the flow ': a review of methods and advancements in blood flow imaging. JOURNAL OF BIOPHOTONICS 2013; 6:217-55. [PMID: 22711377 DOI: 10.1002/jbio.201200071] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 05/25/2023]
Abstract
Physics has delivered extraordinary developments in almost every facet of modern life. From the humble thermometer and stethoscope to X-Ray, CT, MRI, ultrasound, PET and radiotherapy, our health has been transformed by these advances yielding both morphological and functional metrics. Recently high resolution label-free imaging of the microcirculation at clinically relevant depths has become available in the research domain. In this paper, we present a comprehensive review on current imaging techniques, state-of-the-art advancements and applications, and general perspectives on the prospects for these modalities in the clinical realm.
Collapse
Affiliation(s)
- Susan M Daly
- Biophotonics Research Facility, Department of Physics & Energy, University of Limerick, Ireland.
| | | |
Collapse
|
15
|
Jung SY, Ahn S, Seo E, Lee SJ. Detection of circulating tumor cells via an X-ray imaging technique. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:324-331. [PMID: 23412490 DOI: 10.1107/s090904951204873x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
Detailed information on the location and the size of tumor cells circulating through lymphatic and blood vessels is useful to cancer diagnosis. Metastasis of cancers to other non-adjacent organs is reported to cause 90% of deaths not from the primary tumors. Therefore, effective detection of circulating tumors cells (CTCs) related to metastasis is emphasized in cancer treatments. With the use of synchrotron X-ray micro-imaging techniques, high-resolution images of individual flowing tumor cells were obtained. Positively charged gold nanoparticles (AuNPs) which were inappropriate for incorporation into human red blood cells were selectively incorporated into tumor cells to enhance the image contrast. This approach enables images of individual cancer cells and temporal movements of CTCs to be captured by the high X-ray absorption efficiency of selectively incorporated AuNPs. This new technology for in vivo imaging of CTCs would contribute to improve cancer diagnosis and cancer therapy prognosis.
Collapse
Affiliation(s)
- Sung Yong Jung
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyojadong, Pohang, Republic of Korea
| | | | | | | |
Collapse
|
16
|
Jamison RA, Siu KKW, Dubsky S, Armitage JA, Fouras A. X-ray velocimetry within the ex vivo carotid artery. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:1050-1055. [PMID: 23093769 DOI: 10.1107/s0909049512033912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/29/2012] [Indexed: 06/01/2023]
Abstract
X-ray velocimetry offers a non-invasive method by which blood flow, blood velocity and wall shear stress can be measured in arteries prone to atherosclerosis. Analytical tools for measuring haemodynamics in artificial arteries have previously been developed and here the first quantification of haemodynamics using X-ray velocimetry in a living mammalian artery under physiologically relevant conditions is demonstrated. Whole blood seeded with a clinically used ultrasound contrast agent was pumped with a steady flow through live carotid arterial tissue from a rat, which was kept alive in a physiological salt solution. Pharmacological agents were then used to produce vascular relaxation. Velocity measurements were acquired with a spatial resolution of 14 µm × 14 µm and at a rate of 5000 acquisitions per second. Subtle velocity changes that occur are readily measurable, demonstrating the ability of X-ray velocimetry to sensitively and accurately measure haemodynamics ex vivo. Future applications and possible limitations of the technique are discussed, which allows for detailed living tissue investigations to be carried out for various disease models, including atherosclerosis and diabetic vasculopathy.
Collapse
Affiliation(s)
- R A Jamison
- Division of Biological Engineering, Monash University, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
17
|
Thurgood J, Hooper S, Siew M, Wallace M, Dubsky S, Kitchen M, Jamison RA, Carnibella R, Fouras A. Functional lung imaging during HFV in preterm rabbits. PLoS One 2012; 7:e48122. [PMID: 23118938 PMCID: PMC3484156 DOI: 10.1371/journal.pone.0048122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/20/2012] [Indexed: 11/27/2022] Open
Abstract
Although high frequency ventilation (HFV) is an effective mode of ventilation, there is limited information available in regard to lung dynamics during HFV. To improve the knowledge of lung function during HFV we have developed a novel lung imaging and analysis technique. The technique can determine complex lung motion information in vivo with a temporal resolution capable of observing HFV dynamics. Using high-speed synchrotron based phase contrast X-ray imaging and cross-correlation analysis, this method is capable of recording data in more than 60 independent regions across a preterm rabbit lung in excess of 300 frames per second (fps). This technique is utilised to determine regional intra-breath lung mechanics of preterm rabbit pups during HFV. Whilst ventilated at fixed pressures, each animal was ventilated at frequencies of 1, 3, 5 and 10 Hz. A 50% decrease in delivered tidal volume was measured at 10 Hz compared to 1 Hz, yet at the higher frequency a 500% increase in minute activity was measured. Additionally, HFV induced greater homogeneity of lung expansion activity suggesting this ventilation strategy potentially minimizes tissue damage and improves gas mixing. The development of this technique permits greater insight and further research into lung mechanics and may have implications for the improvement of ventilation strategies used to support severe pulmonary trauma and disease.
Collapse
Affiliation(s)
- Jordan Thurgood
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jou LD, Mawad ME. Analysis of intra-aneurysmal flow for cerebral aneurysms with cerebral angiography. AJNR Am J Neuroradiol 2012; 33:1679-84. [PMID: 22576897 DOI: 10.3174/ajnr.a3057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Hemodynamics is an important factor in the development and rupture of cerebral aneurysms. Current techniques for measuring blood flow in cerebral aneurysms suffer from various limitations and have not been able to address our clinical needs. A new technique has been developed for effective evaluation of intra-aneurysmal flow based on high-frame-rate cerebral angiography, especially for flow-diverters. MATERIALS AND METHODS Six patients with 7 unruptured ICA aneurysms were imaged with a specially designed DSA protocol (a 3D DSA and a 2D DSA acquired at 30 frames/s, with a 2-mL/s contrast injection rate). Images of these cases were analyzed to determine the intra-aneurysmal flow based on the newly developed technique. Patient-specific aneurysm models were used for CFD calculation, and intra-aneurysmal flow rates were computed numerically. The intra-aneurysmal flow rates from the 2 methods were then compared. RESULTS There is a linear relationship between intra-aneurysmal flow ratios obtained from high-frame-rate cerebral angiography and CFD calculation (R = 0.99). A high frame rate (30 frames/s) provides a better estimate of intra-aneurysmal flow than low frame rates (7.5 frames/s and 15 frames/s). CONCLUSIONS The CFD calculation validates the estimate of intra-aneurysmal hemodynamics from cerebral angiography. The linear relationship obtained by using these 2 techniques can be used for real-time assessment of intra-aneurysmal hemodynamics for cerebral aneurysms.
Collapse
Affiliation(s)
- L-D Jou
- Department of Radiology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
19
|
Jung SY, Lee SJ. Note: development of a compact x-ray particle image velocimetry for measuring opaque flows. II. Three-dimensional velocity field reconstruction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:046102. [PMID: 22559588 DOI: 10.1063/1.3700811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An x-ray particle image velocimetry (PIV) system using a cone-beam type x-ray was developed. The field of view and the spatial resolution are 36 × 24.05 mm(2) and 20 μm, respectively. The three-dimensional velocity field was reconstructed by adopting the least squares minimum residue and simultaneous multiplicative algebraic reconstruction techniques. According to a simulation study with synthetic images, the reconstructions were acceptable with 7 projections and 50 iterations. The reconstructed and supplied flow rates differed by only about 6.49% in experimental verification. The x-ray tomographic PIV system would be useful for 3D velocity field information of opaque flows.
Collapse
Affiliation(s)
- Sung Yong Jung
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyojadong, Pohang 790-784, South Korea.
| | | |
Collapse
|
20
|
Jamison RA, Fouras A, Bryson-Richardson RJ. Cardiac-phase filtering in intracardiac particle image velocimetry. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:036007. [PMID: 22502565 DOI: 10.1117/1.jbo.17.3.036007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to accurately measure velocity within the embryonic zebrafish heart, at high spatial and temporal resolution, enables further insight into the effects of hemodynamics on heart development. Unfortunately, currently available techniques are unable to provide the required resolution, both spatial and temporal, for detailed analysis. Advances in imaging hardware are allowing bright field imaging combined with particle image velocimetry to become a viable technique for the broader community at the required spatial and temporal resolutions. While bright field imaging offers the necessary temporal resolution, this approach introduces heart wall artifacts that interfere with accurate velocity measurement. This study presents a technique for cardiac-phase filtering of bright field images to remove the heart wall and improve velocimetry measurements. Velocity measurements were acquired for zebrafish embryos ranging from 3 to 6 days postfertilization. Removal of the heart wall was seen to correct a severe (3-fold) underestimation in velocity measurements obtained without filtering. Additionally, velocimetry measurements were used to quantitatively detect developmental changes in cardiac performance in vivo, investigating both changes in contractile period and maximum velocities present through the ventricular-bulbar valve.
Collapse
Affiliation(s)
- R Aidan Jamison
- Monash University, Division of Biological Engineering, Wellington Road, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
21
|
Fouras A, Allison BJ, Kitchen MJ, Dubsky S, Nguyen J, Hourigan K, Siu KKW, Lewis RA, Wallace MJ, Hooper SB. Altered Lung Motion is a Sensitive Indicator of Regional Lung Disease. Ann Biomed Eng 2011; 40:1160-9. [DOI: 10.1007/s10439-011-0493-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/15/2011] [Indexed: 01/19/2023]
|
22
|
Curtis MD, Sheard GJ, Fouras A. Feedback control system simulator for the control of biological cells in microfluidic cross slots and integrated microfluidic systems. LAB ON A CHIP 2011; 11:2343-2351. [PMID: 21611664 DOI: 10.1039/c1lc20191c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Control systems for lab on chip devices require careful characterisation and design for optimal performance. Traditionally, this involves either extremely computationally expensive simulations or lengthy iteration of laboratory experiments, prototype design, and manufacture. In this paper, an efficient control simulation technique, valid for typical microchannels, Computed Interpolated Flow Hydrodynamics (CIFH), is described that is over 500 times faster than conventional time integration techniques. CIFH is a hybrid approach, utilising a combination of pre-computed flows and hydrodynamic equations and allows the efficient simulation of dynamic control systems for the transport of cells through micro-fluidic devices. The speed-ups achieved by using pre-computed CFD solutions mapped to an n-dimensional control parameter space, significantly accelerate the evaluation and improvement of control strategies and chip design. Here, control strategies for a naturally unstable device geometry, the microfluidic cross-slot, have been simulated and optimal parameters have been found for proposed devices capable of trapping and sorting cells.
Collapse
Affiliation(s)
- Michael D Curtis
- Division of Biological Engineering, Monash University, Melbourne, Australia
| | | | | |
Collapse
|