1
|
Wang Y, Liu M, Zhang W, Liu H, Jin F, Mao S, Han C, Wang X. Mechanical strategies to promote vascularization for tissue engineering and regenerative medicine. BURNS & TRAUMA 2024; 12:tkae039. [PMID: 39350780 PMCID: PMC11441985 DOI: 10.1093/burnst/tkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 10/04/2024]
Abstract
Vascularization is a major challenge in the field of tissue engineering and regenerative medicine. Mechanical factors have been demonstrated to play a fundamental role in vasculogenesis and angiogenesis and can affect the architecture of the generated vascular network. Through the regulation of mechanical factors in engineered tissues, various mechanical strategies can be used to optimize the preformed vascular network and promote its rapid integration with host vessels. Optimization of the mechanical properties of scaffolds, including controlling scaffold stiffness, increasing surface roughness and anisotropic structure, and designing interconnected, hierarchical pore structures, is beneficial for the in vitro formation of vascular networks and the ingrowth of host blood vessels. The incorporation of hollow channels into scaffolds promotes the formation of patterned vascular networks. Dynamic stretching and perfusion can facilitate the formation and maturation of preformed vascular networks in vitro. Several indirect mechanical strategies provide sustained mechanical stimulation to engineered tissues in vivo, which further promotes the vascularization of implants within the body. Additionally, stiffness gradients, anisotropic substrates and hollow channels in scaffolds, as well as external cyclic stretch, boundary constraints and dynamic flow culture, can effectively regulate the alignment of vascular networks, thereby promoting better integration of prevascularized engineered tissues with host blood vessels. This review summarizes the influence and contribution of both scaffold-based and external stimulus-based mechanical strategies for vascularization in tissue engineering and elucidates the underlying mechanisms involved.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Meixuan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Wei Zhang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Huan Liu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Fang Jin
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Shulei Mao
- Department of Burns and Plastic Surgery, Quhua Hospital of Zhejiang, 62 Wenchang Road, Quhua, Quzhou 324004, China
| | - Chunmao Han
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| | - Xingang Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, China
| |
Collapse
|
2
|
Pan C, Hao X, Deng X, Lu F, Liu J, Hou W, Xu T. The roles of Hippo/YAP signaling pathway in physical therapy. Cell Death Discov 2024; 10:197. [PMID: 38670949 PMCID: PMC11053014 DOI: 10.1038/s41420-024-01972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular behavior is regulated by mechanical signals within the cellular microenvironment. Additionally, changes of temperature, blood flow, and muscle contraction also affect cellular state and the development of diseases. In clinical practice, physical therapy techniques such as ultrasound, vibration, exercise, cold therapy, and hyperthermia are commonly employed to alleviate pain and treat diseases. However, the molecular mechanism about how these physiotherapy methods stimulate local tissues and control gene expression remains unknow. Fortunately, the discovery of YAP filled this gap, which has been reported has the ability to sense and convert a wide variety of mechanical signals into cell-specific programs for transcription, thereby offering a fresh perspective on the mechanisms by which physiotherapy treat different diseases. This review examines the involvement of Hippo/YAP signaling pathway in various diseases and its role in different physical therapy approaches on diseases. Furthermore, we explore the potential therapeutic implications of the Hippo/YAP signaling pathway and address the limitations and controversies surrounding its application in physiotherapy.
Collapse
Affiliation(s)
- Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Han Y, Zhu J, Zhang X, Hu S, Li C. Er:YAG Laser Therapy on Alveolar Osteitis After Mandibular Third Molar Surgery: A Randomized Controlled Clinical Study. Photobiomodul Photomed Laser Surg 2024; 42:238-245. [PMID: 38416636 DOI: 10.1089/photob.2023.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Background: Alveolar osteitis (AO) or "dry socket" affects the quality of life of patients, and there is a high clinical demand for its effective treatment. Objective: To evaluate the effect of Er:YAG laser therapy (ErLT) on AO after mandibular third molar surgery. Methods: Eighty-three patients were randomly divided into Er (n = 43) and control groups (n = 40). In the Er group, the Er:YAG laser (2940 nm; AT Fidelis Fotona, Ljubljana, Slovenia) was used to irradiate the AO site directly in micro short-pulsed mode (pulse duration 0.1 ms, pulse energy 100 mJ, frequency 40 Hz, water 4, and air 2) until all debris and necrotic material had been removed, exposing fresh bone and soft tissue surfaces with blood exudation. The control group received mechanical therapy until the treated lesions resembled those in the Er group. Pain assessment was performed at baseline and on days 1-7 post-intervention using the visual analog scale (VAS). Wound healing was assessed using the wound healing index (WHI). The operating times of the two therapies were also recorded. Results: Group Er had lower VAS scores than the control group on days 1-3 (p = 0.00). There was no significant difference between the two groups on days 4-7 (p = 0.15). The WHI scores were better in the Er group than those in the control group (t = 2.65, p = 0.01), especially in terms of redness (t = 2.70, p = 0.01). There was no significant difference in the operating time between the two groups (t = 0.76, p = 0.45). Conclusions: Compared with mechanical therapy, ErLT for AO provides rapid pain relief and improved wound healing.
Collapse
Affiliation(s)
- Yang Han
- Department of Stomatology, Peking University International Hospital, Beijing, China
| | - Jie Zhu
- Department of Stomatology, Peking University International Hospital, Beijing, China
| | - Xiqian Zhang
- Department of Stomatology, Peking University International Hospital, Beijing, China
| | - Suning Hu
- Department of Stomatology, Peking University International Hospital, Beijing, China
| | - Cong Li
- Department of Stomatology, Peking University International Hospital, Beijing, China
| |
Collapse
|
4
|
Wang Y, Cao X, Shen Y, Zhong Q, Wu Z, Wu Y, Weng W, Xu C. Evaluate the effects of low-intensity pulsed ultrasound on dental implant osseointegration under type II diabetes. Front Bioeng Biotechnol 2024; 12:1356412. [PMID: 38371421 PMCID: PMC10869464 DOI: 10.3389/fbioe.2024.1356412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
Objective: The objective of this study is to assess the impact of low-intensity pulsed ultrasound (LIPUS) therapy on the peri-implant osteogenesis in a Type II diabetes mellitus (T2DM) rat model. Methods: A total of twenty male Sprague-Dawley (SD) rats were randomly allocated into four groups: Control group, T2DM group, Control-LIPUS group, and T2DM-LIPUS group. Implants were placed at the rats' bilateral maxillary first molar sites. The LIPUS treatment was carried out on the rats in Control-LIPUS group and T2DM-LIPUS group, immediately after the placement of the implants, over three consecutive weeks. Three weeks after implantation, the rats' maxillae were extracted for micro-CT, removal torque value (RTV), and histologic analysis. Results: Micro-CT analysis showed that T2DM rats experienced more bone loss around implant cervical margins compared with the non-T2DM rats, while the LIPUS treated T2DM rats showed similar bone heights to the non-T2DM rats. Bone-implant contact ratio (BIC) were lower in T2DM rats but significantly improved in the LIPUS treated T2DM rats. Bone formation parameters including bone volume fraction (BV/TV), trabecular thickness (Tb.Th), bone mineral density (BMD) and RTV were all positively influenced by LIPUS treatment. Histological staining further confirmed LIPUS's positive effects on peri-implant new bone formation in T2DM rats. Conclusion: As an effective and safe treatment in promoting osteogenesis, LIPUS has a great potential for T2DM patients to attain improved peri-implant osteogenesis. To confirm its clinical efficacy and to explore the underlying mechanism, further prospective cohort studies or randomized controlled trials are needed in the future.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ximeng Cao
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingyi Shen
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qi Zhong
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ziang Wu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Weimin Weng
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
5
|
Al-Hanbali LMS, Burhan AS, Hajeer MY, Nawaya FR. The effectiveness of low-level laser therapy and low-intensity pulsed ultrasound in reducing pain induced by orthodontic separation: a randomized controlled trial. BMC Oral Health 2024; 24:166. [PMID: 38308275 PMCID: PMC10835832 DOI: 10.1186/s12903-024-03926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND The low-level laser therapy (LLLT) and low-intensity pulsed ultrasound (LIPUS) have been recently applied to control pain during orthodontic treatment. OBJECTIVE To evaluate and compare the effectiveness of LLLT and LIPUS in reducing pain induced by orthodontic separation. STUDY DESIGN A single-blinded randomized controlled trial. METHODS One hundred and fifty patients were randomly assigned into three groups; LLLT group, LIPUS group, and control group. After 5 min from the separators' placement, the first dose of the laser or the ultrasound was applied, the second dose was applied after 24 h, and the third dose was applied after 48 h on both maxillary and mandibular first molars. The exposure of laser was for 20 s at each point (maxillary and mandibular first molars), with an 810-nm aluminum-gallium-arsenide (AlGaAs) diode laser on continuous mode. The output power set at 150 mW, the energy density of 4 J/cm2, and a laser spot diameter of 7 mm were applied. Whereas the frequency of ultrasonic toothbrush was 1.6 MHz; and average output intensity was 0.2 W/cm2. The application was for 20 min (5 min on each first molar). The control group received the separators without another intervention. A Visual Analog Scale (VAS 100 mm) was used to assess pain intensity at several time intervals during the first four days after the separators' placement. RESULTS A total of 145 patients were assessed. There was a significant difference in pain perception among the three groups after 5 min (P = .002). The maximum pain level was reached after 24 h. However, the laser group and the ultrasound group showed a statistically significant decrease in pain scores compared to the control group at all the assessment time points (P < .001). Whereas there was no difference between the laser group and the ultrasound group in reducing the pain scores (P > .05). CONCLUSIONS The LLLT and the LIPUS effectively reduce the separation pain when applied in multiple doses without differences between them. TRIAL REGISTRATION This trial was registered with the German Clinical Trials Register (DRKS). ( https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID= DRKS00029991). Date of registration: 26/08/2022.
Collapse
Affiliation(s)
- Lama Mohammad Saffouh Al-Hanbali
- Department of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Medicine, Damascus University, Al-Mazzeh Street, Damascus, Syria.
| | - Ahmad Sharafeddin Burhan
- Department of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Medicine, Damascus University, Al-Mazzeh Street, Damascus, Syria
| | - Mohammad Younis Hajeer
- Department of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Medicine, Damascus University, Al-Mazzeh Street, Damascus, Syria
| | - Fehmieh Rafik Nawaya
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Syrian Private University, Daraa, Syria
| |
Collapse
|
6
|
Vaddamanu SK, Alhamoudi FH, Vyas R, Gurumurthy V, Siurkel Y, Cicciù M, Minervini G. Attenuation of orthodontically induced inflammatory root resorption by using low-intensity pulsed ultrasound as a therapeutic modality- a systematic review. BMC Oral Health 2024; 24:67. [PMID: 38200481 PMCID: PMC10782536 DOI: 10.1186/s12903-023-03741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Ultrasound is an effective tool for both diagnostic and therapeutic applications. As an imaging tool, ultrasound has mostly been used for real-time noninvasive diagnostic imaging. As ultrasound propagates through a material, a reflected radio-frequency (RF) signal is generated when encountering a mismatch in acoustic impedance. While traditionally recognized for its diagnostic imaging capabilities, the application of ultrasound has broadened to encompass therapeutic interventions, most notably in the form of Low-Intensity Pulsed Ultrasound (LIPUS). Low-Intensity Pulsed Ultrasound (LIPUS) is a form of mechanical energy transmitted transcutaneously by high-frequency acoustic pressure waves. The intensity of LIPUS (30 mW/cm2) is within the range of ultrasound intensities used for diagnostic purposes (1-50 mW/cm2) and is regarded as non-thermal, non-destructive, permeating living tissues and triggering a cascade of biochemical responses at the cellular level. The LIPUS device produces a 200 µs burst of 1.5 MHz acoustic sine waves, that repeats at a modulation frequency of 1 kHz and provides a peak pressure of 30 mW/cm2. Low-intensity pulsed ultrasound (LIPUS) forms one of the currently available non-invasive healing-enhancing devices besides electro-stimulation (pulsed electro-magnetic field, PEMF). This modality has been leveraged to enhance drug delivery, expedite injury recovery, improve muscle mobility, alleviate joint stiffness and muscle pain, and enhance bone fracture healing. Although LIPUS has been embraced within various medical disciplines, its integration into standard dental practices is still in its nascent stages, signifying an unexplored frontier with potentially transformative implications. Low-intensity pulsed ultrasound (LIPUS) has emerged as an attractive adjuvant therapy in various dental procedures, such as orthodontic treatment and maxillary sinus augmentation. Its appeal lies in its simplicity and non-invasive nature, positioning LIPUS as a promising avenue for clinical innovation. One particular area of interest is orthodontically induced inflammatory root resorption (OIIRR), an oftenunavoidable outcome of the orthodontic intervention, resulting in the permanent loss of root structure. Notably, OIIRR is the second most common form of root resorption (RR), surpassed only by root resorption related to pulpal infection. Given the high prevalence and potential long-term consequences of OIIRR, this literature review seeks to evaluate the efficacy of LIPUS as a therapeutic approach, with an emphasis on assessing its capacity to reduce the severity of OIIRR to a level of clinical significance. To conduct this systematic review, a comprehensive automated literature search was executed across multiple databases, including MEDLINE, Embase, PsycINFO, Web of Knowledge, Scopus, CINAHL, LILACS, SciELO, Cochrane, PubMed, trials registries, 3ie, and Google Scholar. Both forward and backward citation tracking was employed, encompassing studies published from database inception through January 2009 to April 2023. The review focused on randomized controlled trials (RCTs) that specifically evaluated the effects of low-intensity pulsed ultrasound therapy on orthodontically induced inflammatory root resorption (OIIRR), without restrictions of publication date. A stringent selection criterion was applied, and only studies demonstrating high levels of statistical significance were included. Ultimately, fourteen studies met the inclusion criteria and were subjected to further analysis. The overall quality of the included randomized controlled trials (RCTs) was rigorously assessed utilizing the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. This analysis revealed certain methodological limitations that posed challenges in drawing definitive conclusions from the available evidence. Despite these constraints, the review offers invaluable insights that can inform and guide future research. Specifically, it delineates recommendations for targeted populations, necessary interventions, appropriate outcome measures, suitable study designs, and essential infrastructure to facilitate further investigations. The synthesis of these insights aims to enhance the development and application of low-intensity pulsed ultrasound therapy within the field of dentistry, thereby contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Sunil Kumar Vaddamanu
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia.
| | - Fahad Hussain Alhamoudi
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| | - Rajesh Vyas
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| | - Vishwanath Gurumurthy
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yulia Siurkel
- International European University School of Medicine, Akademika Hlushkova Ave, 42В, Kyiv, 03187, Ukraine.
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, 95123, Italy
| | - Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Caserta, 81100, Italy.
| |
Collapse
|
7
|
Ouchi D, Mori S, Arakawa M, Shindo T, Shimokawa H, Yasuda S, Kanai H. Optimizing irradiation conditions for low-intensity pulsed ultrasound to upregulate endothelial nitric oxide synthase. J Med Ultrason (2001) 2024; 51:39-48. [PMID: 38052761 DOI: 10.1007/s10396-023-01382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/18/2023] [Indexed: 12/07/2023]
Abstract
PURPOSE Here we aimed to develop a minimally invasive treatment for ischemic heart disease and demonstrate that low-intensity pulsed ultrasound (LIPUS) therapy improves myocardial ischemia by promoting myocardial angiogenesis in a porcine model of chronic myocardial ischemia. Studies to date determined the optimal treatment conditions within the range of settings available with existing ultrasound equipment and did not investigate a wider range of conditions. METHODS We investigated a broad range of five parameters associated with ultrasound irradiation conditions that promote expression of endothelial nitric oxide synthase (eNOS), a key molecule that promotes angiogenesis in human coronary artery endothelial cells (HCAEC). RESULTS Suboptimal irradiation conditions included 1-MHz ultrasound frequency, 500-kPa sound pressure, 20-min total irradiation time, 32-48-[Formula: see text] pulse duration, and 320-[Formula: see text] pulse repetition time. Furthermore, a proposed index, [Formula: see text], calculated as the product of power and the total number of irradiation cycles applied to cells using LIPUS, uniformly revealed the experimental eNOS expression associated with the various values of five parameters under different irradiation conditions. CONCLUSION We determined the suboptimal ultrasound irradiation conditions for promoting eNOS expression in HCAEC.
Collapse
Affiliation(s)
- Daiki Ouchi
- Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8579, Japan
| | - Shohei Mori
- Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8579, Japan
| | - Mototaka Arakawa
- Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8579, Japan.
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8579, Japan.
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Graduate School, International University of Health and Welfare, Narita, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kanai
- Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8579, Japan.
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|
8
|
Chu G, Niu H. Knowledge mapping and global trends in the field of low-intensity pulsed ultrasound and endocrine and metabolic diseases: a bibliometric and visual analysis from 2012 to 2022. Front Endocrinol (Lausanne) 2023; 14:1237864. [PMID: 37732128 PMCID: PMC10508976 DOI: 10.3389/fendo.2023.1237864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background Low-intensity pulsed ultrasound (LIPUS) is a highly promising therapeutic method that has been widely used in rehabilitation, orthopedics, dentistry, urology, gynecology, and other multidisciplinary disease diagnoses and treatments. It has attracted extensive attention worldwide. However, there is currently a lack of comprehensive and systematic research on the current status and future development direction of the LIPUS field. Therefore, this study comprehensively analyzed LIPUS-related reports from the past decade using bibliometrics methods, and further conducted research specifically focusing on its application in endocrine and metabolic diseases. Methods We downloaded LIPUS literature from 2012 to 2022 reported in the Web of Science Core Collection Science Citation Index-Expanded and Social Sciences Citation Index, and used bibliometric analysis software such as VOSviewer and CiteSpace to execute the analysis and visualize the results. Results We searched for 655 English articles published on LIPUS from 2012 to 2022. China had the highest number of published articles and collaborations between China and the United States were the closest in this field. Chongqing Medical University was the institution with the highest output, and ULTRASOUND IN MEDICINE AND BIOLOGY was the journal with the most related publications. In recent years, research on the molecular mechanisms of LIPUS has continued to deepen, and its clinical applications have also continued to expand. The application of LIPUS in major diseases such as oxidative stress, regeneration mechanism, and cancer is considered to be a future research direction, especially in the field of endocrinology and metabolism, where it has broad application value. Conclusion Global research on LIPUS is expected to continue to increase, and future research will focus on its mechanisms of action and clinical applications. This study comprehensively summarizes the current development status and global trends in the field of LIPUS, and its research progress in the field of endocrine and metabolic diseases, providing valuable reference for future research in this field.
Collapse
Affiliation(s)
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Rodriguez Betancourt A, Samal A, Chan HL, Kripfgans OD. Overview of Ultrasound in Dentistry for Advancing Research Methodology and Patient Care Quality with Emphasis on Periodontal/Peri-implant Applications. Z Med Phys 2023; 33:336-386. [PMID: 36922293 PMCID: PMC10517409 DOI: 10.1016/j.zemedi.2023.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Ultrasound is a non-invasive, cross-sectional imaging technique emerging in dentistry. It is an adjunct tool for diagnosing pathologies in the oral cavity that overcomes some limitations of current methodologies, including direct clinical examination, 2D radiographs, and cone beam computerized tomography. Increasing demand for soft tissue imaging has led to continuous improvements on transducer miniaturization and spatial resolution. The aims of this study are (1) to create a comprehensive overview of the current literature of ultrasonic imaging relating to dentistry, and (2) to provide a view onto investigations with immediate, intermediate, and long-term impact in periodontology and implantology. METHODS A rapid literature review was performed using two broad searches conducted in the PubMed database, yielding 576 and 757 citations, respectively. A rating was established within a citation software (EndNote) using a 5-star classification. The broad search with 757 citations allowed for high sensitivity whereas the subsequent rating added specificity. RESULTS A critical review of the clinical applications of ultrasound in dentistry was provided with a focus on applications in periodontology and implantology. The role of ultrasound as a developing dental diagnostic tool was reviewed. Specific uses such as soft and hard tissue imaging, longitudinal monitoring, as well as anatomic and physiological evaluation were discussed. CONCLUSIONS Future efforts should be directed towards the transition of ultrasonography from a research tool to a clinical tool. Moreover, a dedicated effort is needed to introduce ultrasonic imaging to dental education and the dental community to ultimately improve the quality of patient care.
Collapse
Affiliation(s)
| | - Ankita Samal
- Department of Radiology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Hsun-Liang Chan
- Department of Periodontology and Oral Medicine, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Department of Radiology, Medical School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Chen Y, Yang H, Wang Z, Zhu R, Cheng L, Cheng Q. Low-intensity pulsed ultrasound promotes mesenchymal stem cell transplantation-based articular cartilage regeneration via inhibiting the TNF signaling pathway. Stem Cell Res Ther 2023; 14:93. [PMID: 37069673 PMCID: PMC10111837 DOI: 10.1186/s13287-023-03296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/22/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) transplantation therapy is highly investigated for the regenerative repair of cartilage defects. Low-intensity pulsed ultrasound (LIPUS) has the potential to promote chondrogenic differentiation of MSCs. However, its underlying mechanism remains unclear. Here, we investigated the promoting effects and mechanisms underlying LIPUS stimulation on the chondrogenic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) and further evaluated its regenerative application value in articular cartilage defects in rats. METHODS LIPUS was applied to stimulate cultured hUC-MSCs and C28/I2 cells in vitro. Immunofluorescence staining, qPCR analysis, and transcriptome sequencing were used to detect mature cartilage-related markers of gene and protein expression for a comprehensive evaluation of differentiation. Injured articular cartilage rat models were established for further hUC-MSC transplantation and LIPUS stimulation in vivo. Histopathology and H&E staining were used to evaluate the repair effects of the injured articular cartilage with LIPUS stimulation. RESULTS The results showed that LIPUS stimulation with specific parameters effectively promoted the expression of mature cartilage-related genes and proteins, inhibited TNF-α gene expression in hUC-MSCs, and exhibited anti-inflammation in C28/I2 cells. In addition, the articular cartilage defects of rats were significantly repaired after hUC-MSC transplantation and LIPUS stimulation. CONCLUSIONS Taken together, LIPUS stimulation could realize articular cartilage regeneration based on hUC-MSC transplantation due to the inhibition of the TNF signaling pathway, which is of clinical value for the relief of osteoarthritis.
Collapse
Affiliation(s)
- Yiming Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
- School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
- School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Tongji University, Shanghai, 200065, China.
- Frontiers Science Center for Intelligent Autonomous Systems, Shanghai, 201210, China.
| |
Collapse
|
11
|
Lin H, Wang Q, Quan C, Ren Q, He W, Xiao H. Low-intensity pulsed ultrasound enhances immunomodulation and facilitates osteogenesis of human periodontal ligament stem cells by inhibiting the NF-κB pathway. Cell Tissue Bank 2023; 24:45-58. [PMID: 35644018 PMCID: PMC9148194 DOI: 10.1007/s10561-022-10010-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/22/2022] [Indexed: 01/20/2023]
Abstract
Human periodontal ligament stem cells (hPDLSCs) are vital in cellular regeneration and tissue repair due to their multilineage differentiation potential. Low intensity pulsed ultrasound (LIPUS) has been applied for treating bone and cartilage defects. This study explored the role of LIPUS in the immunomodulation and osteogenesis of hPDLSCs. hPDLSCs were cultured in vitro, and the effect of different intensities of LIPUS (30, 60, and 90 mW/cm2) on hPDLSC viability was measured. hPDLSCs irradiated by LIPUS and stimulated by lipopolysaccharide (LPS) and LIPUS (90 mW/cm2) were co-cultured with peripheral blood mononuclear cells (PBMCs). Levels of immunomodulatory factors in hPDLSCs and inflammatory factors in PBMCs were estimated, along with determination of osteogenesis-related gene expression in LIPUS-irradiated hPDLSCs. The mineralized nodules and alkaline phosphatase (ALP) activity of hPDLSCs and levels of IκBα, p-IκBα, and p65 subunits of NF-κB were determined. hPDLSC viability was increased as LIPUS intensity increased. Immunomodulatory factors were elevated in LIPUS-irradiated hPDLSCs, and inflammatory factors were reduced in PBMCs. Osteogenesis-related genes, mineralized nodules, and ALP activity were promoted in LIPUS-irradiated hPDLSCs. The cytoplasm of hPDLSCs showed increased IκBα and p65 and decreased p-IκBα at increased LIPUS intensity. After LPS and LIPUS treatment, the inhibitory effect of LIPUS irradiation on the NF-κB pathway was partially reversed, and the immunoregulation and osteogenic differentiation of hPDLSCs were decreased. LIPUS irradiation enhanced immunomodulation and osteogenic differentiation abilities of hPDLSCs by inhibiting the NF-κB pathway, and the effect is dose-dependent. This study may offer novel insights relevant to periodontal tissue engineering.
Collapse
Affiliation(s)
- Haiyan Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
- Department of Orthodontics, Nanning Angel Stomatological Hospital, No. 20-1, Xinmin Road, Nanning, 530029, Guangxi, People's Republic of China
| | - Qing Wang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Chuntian Quan
- Department of Orthodontics, Nanning Angel Stomatological Hospital, No. 20-1, Xinmin Road, Nanning, 530029, Guangxi, People's Republic of China
| | - Qingyuan Ren
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China
| | - Wulin He
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
| | - Hui Xiao
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, No. 366 South Jiangnan Road, Haizhu District, Guangzhou, 510280, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Li X, Zhong Y, Zhou W, Song Y, Li W, Jin Q, Gao T, Zhang L, Xie M. Low-intensity pulsed ultrasound (LIPUS) enhances the anti-inflammatory effects of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles. Cell Mol Biol Lett 2023; 28:9. [PMID: 36717768 PMCID: PMC9885645 DOI: 10.1186/s11658-023-00422-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs) have shown potent anti-inflammatory function in various pathological conditions, such as osteoarthritis and neurodegenerative diseases. Since the number of EVs naturally secreted by cells is finite and they usually bear specific repertoires of bioactive molecules to perform manifold cell-cell communication, but not one particular therapeutic function as expected, their practical application is still limited. Strategies are needed to increase the production of EVs and enhance their therapeutic function. Recent studies have suggested that low-intensity pulsed ultrasound (LIPUS) is a promising non-invasive method to increase the secretion of EVs and promote their anti-inflammatory effects. However, the effect of LIPUS stimulation of BMSCs on EVs derived from the cells remains unclear. The objective of this study was to investigate whether LIPUS stimulation on BMSCs could increase the secretion of EVs and enhance their anti-inflammatory effects. METHODS BMSCs were exposed to LIPUS (300 mW/cm2) for 15 min and EVs were isolated by ultracentrifugation. Anti-inflammatory effects of EVs were investigated on RAW264.7 cells in vitro and in the allogeneic skin transplantation model. Small RNA-seq was utilized to identify components difference in EVs with/without LIPUS irradiation. RESULTS In this study, we found that LIPUS stimulation could lead to a 3.66-fold increase in the EVs release from BMSCs. Moreover, both in vitro and in vivo experimental results suggested that EVs secreted from LIPUS-treated BMSCs (LIPUS-EVs) possessed stronger anti-inflammatory function than EVs secreted from BMSCs without LIPUS stimulation (C-EVs). RNA-seq analysis revealed that miR-328-5p and miR-487b-3p were significantly up-regulated in LIPUS-EVs compare with C-EVs. The suppression of MAPK signaling pathway by these two up-regulated miRNAs could be the potential mechanism of strengthened anti-inflammatory effects of LIPUS-EVs. CONCLUSION LIPUS stimulation on BMSCs could significantly increase the secretion of EVs. Moreover, EVs generated from LIPUS-treated BMSCs possessed much stronger anti-inflammatory function than C-EVs. Therefore, LIPUS could be a promising non-invasive strategy to promote the production of EVs from BMSCs and augment their anti-inflammatory effects.
Collapse
Affiliation(s)
- Xueke Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yi Zhong
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
13
|
Xiao H, Yan A, Li M, Wang L, Xiang J. LIPUS accelerates bone regeneration via HDAC6-mediated ciliogenesis. Biochem Biophys Res Commun 2023; 641:34-41. [PMID: 36521283 DOI: 10.1016/j.bbrc.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Delayed fracture union and nonunion are common complications of fracture encountered, while Low-intensity pulsed ultrasound (LIPUS) can stimulate bone regeneration. Still, the underlying mechanism of LIPUS on bone regeneration has been poorly understood, which resulted in varied outcomes in the clinic. Therefore, figuring out the mechanism of LIPUS on bone regeneration can lay the foundation for better use of LIPUS in clinical bone regenerative therapies. In this study, we created transgenic mice to reveal the relationship between the periosteal cells' fate and the number of ciliated cells under the LIPUS stimulation. In vitro, we isolated the periosteal cell and aim to figure out the relationship between LIPUS and HDAC6-mediated ciliogenesis and find out a potential target for LIPUS-based bone regeneration strategies. The results showed that LIPUS promoted femoral bone defect regeneration and enhanced osteogenic differentiation of Prrx1+ cells. However, these pro-effects were significantly weakened when the Prrx1+ cell's primary cilia were knocked down. Besides, LIPUS stimulated the formation of Prrx1+ cells' primary cilia in the bone defect microenvironment. In vitro, the results supported that LIPUS enhanced the osteogenic differentiation of Prrx1+ cells through HDAC6-mediated ciliogenesis. In conclusion, λ LIPUS could promote the osteogenic differentiation of Prrx1+ cells to stimulate bone regeneration and inhibit the expression of HDAC6 to increase the prevalence of primary cilia in Prrx1+ cells. LIPUS could enhance the osteogenic differentiation of Prrx1+ cells mainly through HDAC6-mediated ciliogenesis.
Collapse
Affiliation(s)
- Han Xiao
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, Changsha, Hunan, 410007, China; The Pediatric Academy of University of South China, Changsha, Hunan, 410007, China
| | - An Yan
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, Changsha, Hunan, 410007, China; The Pediatric Academy of University of South China, Changsha, Hunan, 410007, China
| | - Miao Li
- Department of Pediatric Orthopaedics, Hunan Children's Hospital, Changsha, Hunan, 410007, China; The Pediatric Academy of University of South China, Changsha, Hunan, 410007, China
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Xiang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China.
| |
Collapse
|
14
|
Aimaijiang M, Liu Y, Zhang Z, Qin Q, Liu M, Abulikemu P, Liu L, Zhou Y. LIPUS as a potential strategy for periodontitis treatment: A review of the mechanisms. Front Bioeng Biotechnol 2023; 11:1018012. [PMID: 36911184 PMCID: PMC9992218 DOI: 10.3389/fbioe.2023.1018012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Periodontitis is a chronic inflammatory condition triggered by oral bacteria. A sustained inflammatory state in periodontitis could eventually destroy the alveolar bone. The key objective of periodontal therapy is to terminate the inflammatory process and reconstruct the periodontal tissues. The traditional Guided tissue regeneration (GTR) procedure has unstable results due to multiple factors such as the inflammatory environment, the immune response caused by the implant, and the operator's technique. Low-intensity pulsed ultrasound (LIPUS), as acoustic energy, transmits the mechanical signals to the target tissue to provide non-invasive physical stimulation. LIPUS has positive effects in promoting bone regeneration, soft-tissue regeneration, inflammation inhibition, and neuromodulation. LIPUS can maintain and regenerate alveolar bone during an inflammatory state by suppressing the expression of inflammatory factors. LIPUS also affects the cellular behavior of periodontal ligament cells (PDLCs), thereby protecting the regenerative potential of bone tissue in an inflammatory state. However, the underlying mechanisms of the LIPUS therapy are still yet to be summarized. The goal of this review is to outline the potential cellular and molecular mechanisms of periodontitis-related LIPUS therapy, as well as to explain how LIPUS manages to transmit mechanical stimulation into the signaling pathway to achieve inflammatory control and periodontal bone regeneration.
Collapse
Affiliation(s)
- Maierhaba Aimaijiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yiping Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhiying Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qiuyue Qin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Palizi Abulikemu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Lijun Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
15
|
Liang C, Liu X, Yan Y, Sun R, Li J, Geng W. Effectiveness and Mechanisms of Low-Intensity Pulsed Ultrasound on Osseointegration of Dental Implants and Biological Functions of Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:7397335. [PMID: 36199628 PMCID: PMC9529500 DOI: 10.1155/2022/7397335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Dental implant restoration is the preferred choice for patients with dentition defects or edentulous patients, and obtaining stable osseointegration is the determining factor for successful implant healing. The risk of implant failure during the healing stage is still an urgent problem in clinical practice due to differences in bone quality at different implant sites and the impact of some systemic diseases on bone tissue metabolism. Low-intensity pulsed ultrasound (LIPUS) is a noninvasive physical intervention method widely recognized in the treatment of bone fracture and joint damage repair. Moreover, many studies indicated that LIPUS could effectively promote the osseointegration of dental implants and improve the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). This review is aimed at investigating the research progress on the use of LIPUS in dental implant medicine from three aspects: (1) discuss the promoting effects of LIPUS on osseointegration and peri-implant bone regeneration, (2) summarize the effects and associated mechanisms of LIPUS on the biological functions of BMSCs, and (3) introduce the application and prospects of LIPUS in the clinical work of dental implantation. Although many challenges need to be overcome in the future, LIPUS is bound to be an efficient and convenient therapeutic method to improve the dental implantation success rate and expand clinical implant indications.
Collapse
Affiliation(s)
- Chao Liang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuwei Yan
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Rongxin Sun
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| |
Collapse
|
16
|
Wang Y, Xiao Q, Zhong W, Zhang C, Yin Y, Gao X, Song J. Low-intensity pulsed ultrasound promotes periodontal regeneration in a beagle model of furcation involvement. Front Bioeng Biotechnol 2022; 10:961898. [PMID: 36091440 PMCID: PMC9458930 DOI: 10.3389/fbioe.2022.961898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To evaluate the regeneration potential of periodontitis tissue treated by low-intensity pulsed ultrasound (LIPUS) combined with the guided tissue regeneration (GTR) technique in a beagle model of furcation involvement (FI).Background: Achieving predictable regeneration remains a clinical challenge for periodontitis tissue due to the compromised regenerative potential caused by chronic inflammation stimulation. LIPUS, an FDA-approved therapy for long bone fracture and non-unions, has been demonstrated effective in the in vitro attenuation of inflammation-induced dysfunction of periodontal ligament stem cells (PDLSCs), the key cells contributing to periodontal regeneration. However, the in vivo effect of LIPUS on periodontitis tissue is rarely reported.Methods: A beagle model of FI was established, and the experimental teeth were randomly assigned into three groups: control group, GTR group, and GTR+LIPUS group. Radiographic examinations were performed, and clinical periodontal parameters were recorded to reflect the periodontal condition of different groups. Histological analyses using H&E and Masson’s staining were conducted to evaluate the periodontal tissue regeneration.Results: LIPUS could enhance new periodontal bone formation and bone matrix maturity in FI after GTR treatment. Moreover, clinical assessment and histomorphometric analyses revealed less inflammatory infiltration and superior vascularization within bone grafts in the LIPUS treatment group, indicating the anti-inflammatory and pro-angiogenic effects of LIPUS in FI.Conclusion: Our investigation on a large animal model demonstrated that LIPUS is a promising adjunctive approach for the regeneration of periodontitis tissue, paving a new avenue for LIPUS application in the field of periodontal regenerative medicine.
Collapse
Affiliation(s)
- Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Xiang Gao, ; Jinlin Song,
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Xiang Gao, ; Jinlin Song,
| |
Collapse
|
17
|
Chauvel-Picard J, Gourmet R, Vercherin P, Béra JC, Gleizal A. Stimulation of dental implant osseointegration by low-Intensity pulsed ultrasound: An in vivo preliminary study in a porcine model. J Prosthodont Res 2022; 66:639-645. [PMID: 35135957 DOI: 10.2186/jpr.jpr_d_21_00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSES Several studies have evaluated the interest of Low Intensity Pulsed Ultrasound (LIPUS) in the osseointegration of dental implants in murine or rabbit models. However, the thinness and narrowness bones make it difficult to study the effect of LIPUS. The purpose of this study is to assess the ability of LIPUS to stimulate bone formation in contact with a titanium dental implant in a porcine model. METHODS Eight adults mini-pigs were used. An implant is placed on each tibial crest in the metaphysis. The right side was treated with LIPUS at 1 MHz and 300 mW/cm2 of acoustic intensity during 15 minutes per day on 5 consecutive days and during 42 days. The left side was not treated. The Bone Volume/Total Volume ratio (BV/TV), the Intersection Surface (IS) of the volume of interest by the binarized bone and the Trabecular bone Thickness (TbTh) around the implant were analyzed. RESULTS At 42 days, BV/TV ratio is significantly higher on the treated side (42,1+/-8,76% versus 32,31+/-10,11%, p < 0,02); as well as TbTh with 0,13+/-0,01 mm versus 0,10+/-0,01 mm (p < 0,01). IS is also significantly higher on the treated side (40,7 +/- 12,68 mm2 versus 33,68+/-9,44 mm2 at 200 μm from the implant surface; p < 0,01). CONCLUSION The present study showed that LIPUS can significantly increase bone formation and accelerate the healing process at the bone-implant interface in a porcine model. Its low toxicity, low immunogenicity and non-invasion make it a complementary treatment of choice for improving the bone formation around titanium implants.
Collapse
Affiliation(s)
- Julie Chauvel-Picard
- Department of Cranio-Maxillo-Facial Surgery, Centre Hospitalo-Universitaire Nord, France.,Université Jean Monnet Saint-Etienne, France
| | - René Gourmet
- INSERM, National Institute of Health and Medical Research, Unit 1032, Lab of Therapeutic Applications of Ultrasound, France
| | - Paul Vercherin
- Public Health department, Centre Hospitalo-Universitaire Nord, France
| | - Jean-Christophe Béra
- INSERM, National Institute of Health and Medical Research, Unit 1032, Lab of Therapeutic Applications of Ultrasound, France
| | - Arnaud Gleizal
- Department of Cranio-Maxillo-Facial Surgery, Centre Hospitalo-Universitaire Nord, France.,Université Jean Monnet Saint-Etienne, France
| |
Collapse
|
18
|
Du S, Liang C, Sun Y, Ma B, Gao W, Geng W. The Attenuating Effect of Low-Intensity Pulsed Ultrasound on Hypoxia-Induced Rat Chondrocyte Damage in TMJ Osteoarthritis Based on TMT Labeling Quantitative Proteomic Analysis. Front Pharmacol 2022; 12:752734. [PMID: 34970140 PMCID: PMC8712703 DOI: 10.3389/fphar.2021.752734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease with a complex and multifactorial etiology. An increased intrajoint pressure or weakened penetration can exacerbate the hypoxic state of the condylar cartilage microenvironment. Our group previously simulated the hypoxic environment of TMJOA in vitro. Low-intensity pulsed ultrasound (LIPUS) stimulation attenuates chondrocyte matrix degradation via a hypoxia-inducible factor (HIF) pathway-associated mechanism, but the mode of action of LIPUS is currently poorly understood. Moreover, most recent studies investigated the pathological mechanisms of osteoarthritis, but no biomarkers have been established for assessing the therapeutic effect of LIPUS on TMJOA with high specificity, which results in a lack of guidance regarding clinical application. Here, tandem mass tag (TMT)-based quantitative proteomic technology was used to comprehensively screen the molecular targets and pathways affected by the action of LIPUS on chondrocytes under hypoxic conditions. A bioinformatic analysis identified 902 and 131 differentially expressed proteins (DEPs) in the <1% oxygen treatment group compared with the control group and in the <1% oxygen + LIPUS stimulation group compared with the <1% oxygen treatment group, respectively. The DEPs were analyzed by gene ontology (GO), KEGG pathway and protein-protein interaction (PPI) network analyses. By acting on extracellular matrix (ECM)-associated proteins, LIPUS increases energy production and activates the FAK signaling pathway to regulate cell biological behaviors. DEPs of interest were selected to verify the reliability of the proteomic results. In addition, this experiment demonstrated that LIPUS could upregulate chondrogenic factors (such as Sox9, Collagen Ⅱ and Aggrecan) and increase the mucin sulfate content. Moreover, LIPUS reduced the hydrolytic degradation of the ECM by decreasing the MMP3/TIMP1 ratio and vascularization by downregulating VEGF. Interestingly, LIPUS improved the migration ability of chondrocytes. In summary, LIPUS can regulate complex biological processes in chondrocytes under hypoxic conditions and alter the expression of many functional proteins, which results in reductions in hypoxia-induced chondrocyte damage. ECM proteins such as thrombospondin4, thrombospondin1, IL1RL1, and tissue inhibitors of metalloproteinase 1 play a central role and can be used as specific biomarkers determining the efficacy of LIPUS and viable clinical therapeutic targets of TMJOA.
Collapse
Affiliation(s)
- Sa Du
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chao Liang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yujie Sun
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Bowen Ma
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wenmo Gao
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Tsuchimochi A, Endo C, Motoyoshi M, Tamura M, Hitomi S, Hayashi Y, Shinoda M. Effect of low-intensity pulsed ultrasound on orofacial sensory disturbance following inferior alveolar nerve injury: Role of neurotrophin-3 signaling. Eur J Oral Sci 2021; 129:e12810. [PMID: 34236109 DOI: 10.1111/eos.12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/27/2022]
Abstract
Percutaneous treatment of low-intensity pulsed ultrasound (LIPUS) to the site of inferior alveolar nerve (IAN) transection promotes functional regeneration, but the detailed mechanism is unknown. We examined the involvement of neurotrophin-3 (NT-3), which primarily binds with tropomyosin receptor kinase C (TrkC), in functional transected IAN regeneration following LIPUS treatment in rats. Daily LIPUS treatment to the transected IAN was performed, and the mechanical sensitivity of the facial skin was measured for 14 d. On day 5 after IAN transection, the expression of NT-3 in the transected IAN and TrkC-positive trigeminal ganglion neurons were immunohistochemically examined. Further, the effect of TrkC neutralization on the acceleration of facial mechanosensory disturbance restoration due to LIPUS treatment was analyzed. LIPUS treatment to the site of IAN transection significantly facilitated functional recovery from sensory disturbance on facial skin. Schwann cells in the transected IAN expressed NT-3, and LIPUS treatment increased the amount of NT-3. The facilitated recovery from the mechanosensory disturbance by continuous LIPUS treatment was inhibited by the ongoing TrkC neutralization at the IAN transection site. These results suggest that LIPUS treatment accelerates the recovery of orofacial mechanosensory function following IAN transection through the enhancement of NT-3 signaling in the transected IAN.
Collapse
Affiliation(s)
- Akane Tsuchimochi
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Chitose Endo
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Miki Tamura
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
20
|
Al-Dboush R, Esfahani AN, El-Bialy T. Impact of photobiomodulation and low-intensity pulsed ultrasound adjunctive interventions on orthodontic treatment duration during clear aligner therapy: A retrospective study. Angle Orthod 2021; 91:619-625. [PMID: 33909012 DOI: 10.2319/112420-956.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To assess the efficiency of low-intensity pulsed ultrasound (LIPUS) and photobiomodulation (PBM) interventions in accelerating orthodontic tooth movement during clear aligner therapy (CAT). MATERIALS AND METHODS This retrospective study was carried out on the records of 84 subjects who were treated using CAT. Twenty-eight patients were treated using CAT with a daily use of LIPUS for 20 minutes, 28 patients were treated using CAT with a daily use of PBM for 10 minutes, and 28 patients were treated using CAT alone. The total duration of treatment was recorded for all patients. One-way analysis of variance and post hoc Tukey test were used to assess whether there was any significant difference in total treatment duration among the three groups (P < .05). RESULTS The mean treatment durations in days were 719 ± 220, 533 ± 242, and 528 ± 323 for the control, LIPUS, and PBM groups, respectively. The LIPUS group showed a 26% reduction, on average, in treatment duration when compared with the control group, whereas the PBM group showed an average 26.6% reduction in the treatment duration when compared with the control group. The results showed that there were statistically significant differences among the groups (P = .011). Treatment durations were significantly reduced in the LIPUS and PBM groups as compared with the control (P = .027 and P = .023, respectively), with no statistically significant differences between the LIPUS and PBM groups (P = .998). CONCLUSIONS Daily use of LIPUS or PBM as adjunctive interventions during CAT could reduce the duration of orthodontic treatment.
Collapse
|
21
|
Xu M, Wang L, Wu S, Dong Y, Chen X, Wang S, Li X, Zou C. Review on experimental study and clinical application of low-intensity pulsed ultrasound in inflammation. Quant Imaging Med Surg 2021; 11:443-462. [PMID: 33392043 DOI: 10.21037/qims-20-680] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS), as physical therapy, is widely used in both research and clinical settings. It induces multiple bioeffects, such as alleviating pain, promoting tissue repair, and shortening disease duration. LIPUS can also mediate inflammation. This paper reviews the application of LIPUS in inflammation and discusses the underlying mechanism. In basic experiments, LIPUS can regulate inflammatory responses at the cellular level by affecting some signaling pathways. In a clinical trial, LIPUS has been shown to alleviate inflammatory responses efficiently. As a cheap, safe, and convenient physical method, LIPUS is promising as anti-inflammatory therapy.
Collapse
Affiliation(s)
- Maosheng Xu
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Wang
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Senmin Wu
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanyan Dong
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiu Chen
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shijia Wang
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiuyun Li
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunpeng Zou
- Department of Ultrasonography, The Second Affiliated Hospital, and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Chauvel-Picard J, Korn P, Corbin S, Brosset S, Bera JC, Gleizal A. Stimulation of oral mucosal regeneration by low intensity pulsed ultrasound: an in vivo study in a porcine model. J Prosthodont Res 2020; 65:46-51. [PMID: 32938859 DOI: 10.2186/jpr.jpor_2019_345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Many studies have shown the ability of low intensity pulsed ultrasound (LIPUS) to stimulate the bone, cartilage and tendon regeneration but only a few studied LIPUS interest in the regeneration of the oral mucosa. The purpose of this study is to assess the ability of LIPUS to stimulate the regeneration of the palatal mucosa in a porcine model. METHODS Ten adults mini-pigs were used. Two mucosal wounds were realised on the left and right side of the palate of each pig. The right side was treated with LIPUS at 1 MHz of frequency and 300 mW/cm2 of acoustic intensity. The left side was not treated. The morphology of the wound was evaluated using a polymer silicone molding. RESULTS The difference between two sides was significant from day 7 with a p value < 0.0001. At day 21, the wound is completely healed on all pigs with LIPUS. The control soft tissue defect exposed a healing of 80%. CONCLUSIONS The present study showed that the use of LIPUS on the oral mucosa accelerates the healing of the masticatory mucosa.
Collapse
Affiliation(s)
- Julie Chauvel-Picard
- Department of Cranio-Maxillo-Facial Surgery, Centre Hospitalo-Universitaire Nord, Avenue Albert Raimond, 42000 SAINT-ETIENNE.,Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne
| | - Paula Korn
- Department of Oral and Maxillofacial Surgery Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität in Berlin
| | - Sara Corbin
- Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne.,Lyon Public Health Association, Hôpital Edouard Herriot, 5 place d'Arsonval, 69437 LYON CEDEX 03
| | - Sophie Brosset
- Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne.,Department of Plastic and Reconstructive Surgery, Hôpital Croix Rousse, 103 Grande Rue de la Croix Rousse, 69004 LYON
| | - Jean-Christophe Bera
- INSERM, National Institute of Health and Medical Research, Unit 1032, 151 Cours Albert Thomas 69424 LYON CEDEX 03
| | - Arnaud Gleizal
- Department of Cranio-Maxillo-Facial Surgery, Centre Hospitalo-Universitaire Nord, Avenue Albert Raimond, 42000 SAINT-ETIENNE.,Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne.,INSERM, National Institute of Health and Medical Research, Unit 1032, 151 Cours Albert Thomas 69424 LYON CEDEX 03
| |
Collapse
|
23
|
Kamal A, Salman B, Razak NHA, Samsudin ABR. A Comparative Clinical Study between Concentrated Growth Factor and Low-Level Laser Therapy in the Management of Dry Socket. Eur J Dent 2020; 14:613-620. [PMID: 32777838 PMCID: PMC7535966 DOI: 10.1055/s-0040-1714765] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE A dry socket is a well-recognized complication of wound healing following tooth extraction. Its etiology is poorly understood and commonly occur among healthy patients. As such, management strategies for dry socket has always been empirical rather than scientific with varying outcome. The aim of this study is to investigate the efficacy of concentrated growth factor (CGF) and low-level laser therapy (LLLT) and compared them to the conventional treatment in the management of dry socket. MATERIALS AND METHODS Sixty patients with one dry socket each, at University Dental Hospital Sharjah, were divided into three treatment groups based on their choice. In group I (n = 30), conventional treatment comprising of gentle socket curettage and saline irrigation was done. Group II (n = 15) dry sockets were treated with CGF and group III (n = 15) sockets were lased with LLLT. All dry socket patients were seen at day 0 for treatment and subsequently followed-up at 4, 7, 14, and 21 days. Pain score, perisocket inflammation, perisocket tenderness, and amount of granulation tissue formation were noted. STATISTICAL ANALYSIS Data were analyzed as mean values for each treatment group. Comparisons were made for statistical analysis within the group and among the three groups to rank the efficacy of treatment using one-way analysis of variance (ANOVA). Statistically significant difference is kept at p < 0.05. RESULTS Conventional treatment group I took more than 7 days to match the healing phase of group II CGF treated socket and group III LLLT irradiated socket (p = 0.001). When healing rate between CGF and LLLT are compared, LLLT group III showed a delay of 4 days compared with CGF in granulation tissue formation and pain control. CONCLUSION CGF treated socket was superior to LLLT in its ability to generate 75% granulation tissue and eliminate pain symptom by day 7 (p = 0.001).
Collapse
Affiliation(s)
- Aqsa Kamal
- College of Dental Medicine, University of Sharjah, UAE.,School of Dental Sciences, Universiti Sains Malaysia, Malaysia
| | | | | | | |
Collapse
|
24
|
Effectiveness of low-intensity pulsed ultrasound on osteoarthritis of the temporomandibular joint: A review. Ann Biomed Eng 2020; 48:2158-2170. [PMID: 32514932 DOI: 10.1007/s10439-020-02540-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023]
Abstract
Loading is indispensable for the growth, development, and maintenance of joint tissues, including mandibular condylar cartilage, but excessive loading or reduced host adaptive capacity can considerably damage the temporomandibular joint (TMJ), leading to temporomandibular joint osteoarthritis (TMJ-OA). TMJ-OA, associated with other pathological conditions and aging processes, is a highly degenerative disease affecting the articular cartilage. Many treatment modalities for TMJ-OA have been developed. Traditional clinical treatment includes mainly nonsurgical options, such as occlusal splints. However, non-invasive therapy does not achieve joint tissue repair and regeneration. Growing evidence suggests that low-intensity pulsed ultrasound (LIPUS) accelerates bone fracture healing and regeneration, as well as having extraordinary effects in terms of soft tissue repair and regeneration. The latter have received much attention, and various studies have been performed to evaluate the potential role of LIPUS in tissue regeneration including that applied to articular cartilage. The present article provides an overview of the status of LIPUS stimulation used to prevent the onset and progression of TMJ-OA and enhance the tissue regeneration of mandibular condylar cartilage. The etiology and management of TMJ-OA are explained briefly, animal models of TMJ-OA are described, and the effectiveness of LIPUS on cell metabolism and tissue regeneration in the TMJ is discussed.
Collapse
|
25
|
The Efficacy of Concentrated Growth Factor in the Healing of Alveolar Osteitis: A Clinical Study. Int J Dent 2020; 2020:9038629. [PMID: 32454827 PMCID: PMC7240629 DOI: 10.1155/2020/9038629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background A dry socket also referred to as alveolar osteitis (AO) is a common postoperative complication following tooth extraction, due to the disruption of the clot within the wound. This study aimed to evaluate the efficacy of concentrated growth factor (CGF) in the healing of alveolar osteitis following tooth extraction. Methods The study was conducted at University Dental Hospital Sharjah, UAE. Patients undergoing tooth extraction at the oral surgery clinic were advised to return immediately if they suffer from pain. Over the following first week after tooth extraction, patients who reported pain symptoms were recalled and all dry sockets were identified. The patients were divided into two groups. Group I patients received conventional treatment with socket curettage and saline irrigation only, while in group II CGF was inserted into the socket. Both groups were observed for pain score and quantification of granulation tissue formation. Results A total of 40 dry socket patients, aged between 18 and 60 years, from a total of 1,250 patients, were included in the study. 30 patients were given conventional treatment while another 10 patients were given CGF. Patients who received CGF had a pain score of 7-10 at presentation, and the pain score dropped to 0-3 on day 4 and further improved to 0-1 on day 7 (p = 0.001). Granulation tissue formation appeared in the conventional group I on day 7 while the CGF group II showed earlier granulation tissue formation by day 4 (p = 0.001). The posttreatment pain score is inversely proportional to the amount and rate of granulation tissue formation in the socket. Conclusion The study suggests that delivery of CGF into a dry socket helps relieve pain and expedite the wound healing process as shown by a statistically much lower pain score and earlier and more rapid formation of granulation tissue when compared to the conventional alveolar osteitis therapy.
Collapse
|
26
|
Kaur H, El-Bialy T. Shortening of Overall Orthodontic Treatment Duration with Low-Intensity Pulsed Ultrasound (LIPUS). J Clin Med 2020; 9:jcm9051303. [PMID: 32370099 PMCID: PMC7290339 DOI: 10.3390/jcm9051303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this retrospective clinical study was to determine if there is a reduction in the overall treatment duration in orthodontic patients using low-intensity pulsed ultrasound (LIPUS) and Invisalign SmartTrack® clear aligners. Data were collected from the first thirty-four patients (9 males, 25 females; average age 41.37 ± 15.02) who finished their orthodontic treatment using an intraoral LIPUS device and Invisalign clear aligners in a private clinic. The LIPUS parameters used by patients at home for 20 min/day were: ultrasonic frequency 1.5 MHz, pulse duration 200µs, pulse repetition rate 1 kHz, and spatial average-temporal average intensity 30mW/cm2. A control group (11 males, 23 females; average age 31.36 ± 14.41) matching for the same malocclusions was randomly selected from finished treatment cases of the same clinician. The date of first Invisalign attachment placement and first use of LIPUS application was recorded as T0, and the date of retainer delivery was recorded as T1. The treatment duration (T1–T0) and treatment reduction percentage with LIPUS device were collected and analyzed using two-sample t-test in Microsoft Excel. Treatment duration was significantly reduced in the LIPUS group (541.44 ± 192.23 days) compared to control group (1061.05 ± 455.64 days) (p < 0.05). The LIPUS group showed on average 49% reduction in the overall treatment time as compared to the control group. The average compliance of the patients using LIPUS was 66.02%. Patients who used LIPUS showed a clinically significant reduction in the overall orthodontic treatment duration compared to the control group who used Invisalign clear aligners only.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Division of Oral Biology, School of Dentistry, Katz Group for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Tarek El-Bialy
- Division of Orthodontics, School of Dentistry, Katz Group for Pharmacy and Health Research, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Correspondence: ; Tel.: +1-780-492-2751
| |
Collapse
|
27
|
Jiang Y, Yuan Y, Xiong Y, Wang B, Guo Y, Gong P, Zhang L. Low-intensity pulsed ultrasound improves osseointegration of dental implant in mice by inducing local neuronal production of αCGRP. Arch Oral Biol 2020; 115:104736. [PMID: 32371135 DOI: 10.1016/j.archoralbio.2020.104736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/04/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to explore the effect of Low-intensity pulsed ultrasound (LIPUS) on implant osseointegration and elucidate the role of α-calcitonin gene-related peptide (αCGRP) in this process. DESIGN In vivo, αCGRP+/+ (Wild-type model) mice and αCGRP-/- (Knock-out model) mice with implants immediately placed in the maxillary first molars extraction sockets were treated with LIPUS. We detected details of peri-implant bone tissues by micro-CT, real-time PCR and histological analysis. In vitro, αCGRP+/+ and αCGRP-/- dorsal root ganglia (DRG) neurons were cultured and exposed to LIPUS. Then conditioned media from these neurons were collected and added to osteoblasts to analyze cell differentiation, mineralization and proliferation by real-time PCR, alkaline phosphatase (ALP) and cell counting kit-8 (CCK-8) assay. Besides, ELISA was performed to determine the effect of LIPUS on the αCGRP secretion in neurons. RESULTS In vivo tests revealed that αCGRP-/- mice displayed worse osseointegration when compared to αCGRP+/+ mice. LIPUS could enhance implant osseointegration in αCGRP+/+ mice but had little effect on αCGRP-/- mice. Meanwhile, αCGRP was elevated during the osseointegration with LIPUS treatment. In vitro, LIPUS promoted αCGRP secretion in DRG neurons, thereby enhanced osteogenic differentiation and mineralization of osteoblasts. Also we proved that the effects of LIPUS was duty cycle-related and LIPUS of 80% duty cycle had the strongest impacts. CONCLUSIONS Our findings demonstrated that LIPUS could enhance osseointegration of dental implant by inducing local neuronal production of αCGRP, providing a new idea to promote peri-implant osseointegration and bone regeneration.
Collapse
Affiliation(s)
- Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Effect of Low Intensity Pulsed Ultrasound (LIPUS) on Tooth Movement and Root Resorption: A Prospective Multi-Center Randomized Controlled Trial. J Clin Med 2020; 9:jcm9030804. [PMID: 32188053 PMCID: PMC7141368 DOI: 10.3390/jcm9030804] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the possible effect of low intensity pulsed ultrasound (LIPUS) on tooth movement and root resorption in orthodontic patients. Twenty-one patients were included in a split-mouth study design (group 1). Ten additional patients were included with no LIPUS device being used and this group was used as the negative control group (group 2). Group 1 patients were given LIPUS devices that were randomly assigned to right or left side on upper or lower arches. LIPUS was applied to the assigned side that was obtained by randomization, using transducers that produce ultrasound with a pulse frequency of 1.5 MHz, a pulse repetition rate of 1 kHz, and average output intensity of 30 mW/cm2. Cone-beam computed tomography (CBCT) images were taken before and after treatment. The extraction space dimensions were measured every four weeks and root lengths of canines were measured before and after treatment. The data were analyzed using paired t-test. The study outcome showed that the mean rate of tooth movement in LIPUS side was 0.266 ± 0.092 mm/week and on the control side was 0.232 ± 0.085 mm/week and the difference was statistically significant. LIPUS increased the rate of tooth movement by an average of 29%. For orthodontic root resorption, the LIPUS side (0.0092 ± 0.022 mm/week) showed a statistically significant decrease as compared to control side (0.0223 ± 0.022 mm/week). The LIPUS application accelerated tooth movement and minimized orthodontically induced tooth root resorption at the same time.
Collapse
|
29
|
Jiang X, Savchenko O, Li Y, Qi S, Yang T, Zhang W, Chen J. A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications. IEEE Trans Biomed Eng 2019; 66:2704-2718. [DOI: 10.1109/tbme.2018.2889669] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Liu S, Zhou M, Li J, Hu B, Jiang D, Huang H, Song J. LIPUS inhibited the expression of inflammatory factors and promoted the osteogenic differentiation capacity of hPDLCs by inhibiting the NF-κB signaling pathway. J Periodontal Res 2019; 55:125-140. [PMID: 31541455 DOI: 10.1111/jre.12696] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 07/16/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES As a chronic infectious disease, periodontitis could lead to tooth and bone loss. Low-intensity pulsed ultrasound (LIPUS) is a safe, noninvasive treatment method to effectively inhibit inflammation and promote bone differentiation. However, the application of LIPUS in curing periodontitis is still rare. Our study aimed to explore the ability of LIPUS to inhibit inflammatory factors and promote the osteogenic differentiation capacity of human periodontal ligament cells (hPDLCs), and its underlying mechanism. MATERIAL AND METHODS Human periodontal ligament cells were obtained and cultured from the premolar tissue samples for experiments. First, hPDLCs were treated for 24 hours using lipopolysaccharide (LPS) and then exposed to LIPUS (10 mW/cm2 , 30 mW/cm2 , 60 mW/cm2 , and 90 mW/cm2 ) to determine the appropriate intensity to inhibit expression of the inflammatory factors interleukin-6 (IL-6) and interleukin-8 (IL-8) expression. The expression of IL-6 and IL-8 was detected by real-time PCR and enzyme-linked immunosorbent assay. The safety of the most appropriate intensity of LIPUS was tested by a cell counting kit 8 test and an apoptosis assay. Then, LPS-induced hPDLCs were treated in osteogenic medium for 7-21 days with or without LIPUS (90 mW/cm2 , 30 min/d) stimulation. The osteogenic genes RUNX2, OPN, OSX, and OCN were measured by real-time PCR. Additionally, osteogenic differentiation capacity was determined using alkaline phosphatase (ALP) staining, ALP activity analysis, and Alizarin red staining. The activity of the nuclear factor-kappa B (NF-κB) signaling pathway was determined by western blotting, real-time PCR, immunofluorescence, and pathway blockade assays. RESULTS Lipopolysaccharide significantly upregulated the production and gene expression of IL-6 and IL-8, while LIPUS stimulation significantly inhibited IL-6 and IL-8 expression in an intensity-dependent manner. LIPUS (90 mW/cm2 ) was chosen as the most appropriate intensity, and there was no detrimental influence on cell proliferation and status with or without osteogenic medium. In addition, consecutive stimulation with LIPUS (90 mW/cm2 ) for 30 min/d for 7 days could also inhibit IL-6 and IL-8 gene expression, upregulate the expression of the osteogenesis-related genes RUNX2, OPN, OSX, and OCN, and promote osteogenic differentiation capacity in osteogenic medium in inflamed hPDLCs. The NF-κB signaling pathway was inhibited with LIPUS (90 mW/cm2 ) via inhibition of the phosphorylation of IκBα and the translocation of p65 into the nucleus in inflamed hPDLCs. Additional investigations of the NF-κB inhibitor, BAY 11-7082, revealed that LIPUS (90 mW/cm2 ) acted similarly to BAY 11-7802 to inhibit the NF-κB signaling pathway and increase osteogenesis-related genes and promote the osteogenic differentiation capacity of inflamed hPDLCs. CONCLUSION Low-intensity pulsed ultrasound (90 mW/cm2 ) stimulation could be a safe method to inhibit IL-6 and IL-8 in hPDLCs by inhibiting the NF-κB signaling pathway. The effect of LIPUS (90 mW/cm2 ) and BAY 11-7082 on LPS-induced inflammation demonstrated that both of these agents were capable of promoting osteogenesis-related gene expression and osteogenic differentiation in hPDLCs, suggesting that the effect of LIPUS on the promotion of osteogenic activity could be mediated in part through its ability to inhibit the NF-κB signal pathway. Hence, LIPUS could be a potential therapeutic method to cure periodontitis.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mengjiao Zhou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Bo Hu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Dan Jiang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hong Huang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Hidaka K, Mikuni-Takagaki Y, Wada-Takahashi S, Saita M, Kawamata R, Sato T, Kawata A, Miyamoto C, Maehata Y, Watabe H, Tani-Ishii N, Hamada N, Takahashi SS, Deguchi S, Takeuchi R. Low-Intensity Pulsed Ultrasound Prevents Development of Bisphosphonate-Related Osteonecrosis of the Jaw-Like Pathophysiology in a Rat Model. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1721-1732. [PMID: 31006496 DOI: 10.1016/j.ultrasmedbio.2019.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/21/2018] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
We developed a rat model of bisphosphonate-related osteonecrosis of the jaw (BRONJ) by removing a maxillary molar tooth (M1) from ovariectomized rats after treatment with alendronate. To mimic periodontitis, some of the rats were administered Porphyromonas gingivalis (p. gingivalis) at the M1 site every 2 to 3 d for 2 wk. Rats pretreated with alendronate plus p. gingivalis showed delayed healing of socket epithelia, periosteal reaction of alveolar bone formation and lower bone mineral density in the alveolus above adjacent M2 teeth. These abnormalities were prevented by tooth socket exposure to 20 min/d low-intensity pulsed ultrasound (LIPUS), which restored diminished expression of RANKL, Bcl-2, IL-6, Hsp70, NF-κB and TNF-α messenger ribonucleic acids in remote bone marrow, suggesting LIPUS prevented development of BRONJ-like pathophysiology in rat by inducing systemic responses for regeneration, in addition to accelerating local healing. Non-invasive treatment by LIPUS, as well as low-level laser therapy, may be useful for medication-related osteonecrosis of the jaw patients.
Collapse
Affiliation(s)
- Kouki Hidaka
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan; Department of Oral Interdisciplinary Medicine, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Yuko Mikuni-Takagaki
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan.
| | - Satoko Wada-Takahashi
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Makiko Saita
- Department of Oral Interdisciplinary Medicine, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Ryota Kawamata
- Department of Dentomaxillofacial Diagnosis and Treatment, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Takenori Sato
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Akira Kawata
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Chihiro Miyamoto
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Yojiro Maehata
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Hirotaka Watabe
- Department of Oral Interdisciplinary Medicine, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Nobuyuki Tani-Ishii
- Department of Oral Interdisciplinary Medicine, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Nobushiro Hamada
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Shun-Suke Takahashi
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Shinji Deguchi
- Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan
| | - Ryohei Takeuchi
- Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan; Joint Surgery Center, Kawasaki Saiwai Hospital, Kawasaki, Japan
| |
Collapse
|
32
|
Kaur H, Siraki AG, Sharma M, Uludağ H, Dederich DN, Flood P, El-Bialy T. Reactive Oxygen Species Mediate Therapeutic Ultrasound-Induced, Mitogen-Activated Protein Kinase Activation in C28/I2 Chondrocytes. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2105-2114. [PMID: 30037475 DOI: 10.1016/j.ultrasmedbio.2018.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/03/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been used for the treatment of non-healing fractures because of its therapeutic properties of stimulating enhancing endochondral bone formation. However, its mechanism of action remains unclear. In this study, we hypothesized that LIPUS activates mitogen-activated protein kinases through generation of reactive oxygen species. C28/I2 cells were stimulated with LIPUS for 10 and 20 min, while the control group was treated using a sham LIPUS transducer. Through quantitative reverse transcription polymerase chain reaction and immunoblot analyses, we determined that LIPUS application increased reactive oxygen species generation and cell viability in C28/I2 cells. There were increases in the phosphorylation level of ERK1/2 and in expression of SOX9, COL2 A1 and ACAN genes. These effects were reversed when cells were treated with diphenylene iodonium, which is known to inhibit NADPH oxidase. It was concluded that exposure of chondrocytes to LIPUS led to reactive oxygen species generation, which activated MAPK signaling and further increased chondrocyte-specific gene markers involved in chondrocyte differentiation and extracellular matrix formation.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Monika Sharma
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Hasan Uludağ
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas N Dederich
- Department of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick Flood
- Department of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tarek El-Bialy
- Department of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Li F, Liu Y, Cai Y, Li X, Bai M, Sun T, Du L. Ultrasound Irradiation Combined with Hepatocyte Growth Factor Accelerate the Hepatic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1044-1052. [PMID: 29499919 DOI: 10.1016/j.ultrasmedbio.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the impact of ultrasound (US) irradiation on the hepatic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) induced by hepatocyte growth factor (HGF) and the possible mechanisms. We treated hBMSCs, using HGF with and without US irradiation. Cell viability and stem cell surface markers were analyzed. Hepatocyte-like cell markers and functional markers including α-fetoprotein (αFP/AFP), cytokeratin 18 (CK18), albumin (ALB) and glycogen content were analyzed at the time point of day 1, 3 and 5 after treatment. The involvement of Wnt/β-catenin signaling pathway was evaluated as well. The results showed that the US treatment at 1.0 W/cm2 or 1.5 W/cm2 for 30 s or 60 s conditions yielded favorable cell viability and engendered stem cell differentiation. At day 5, the expressions of AFP, CK18, ALB and the glycogen content were significantly elevated in the US-treated group at both messenger ribonucleic acid and protein levels (all p <0.05), in comparison with HGF and control groups. Among all the US treated groups, the expression levels of specific hepatic markers in the (1.5 W/cm2 for 60 s) group were the highest. Furthermore, Wnt1, β-Catenin, c-Myc and Cyclin D1 were significantly increased after US irradiation (all p <0.05), and the enhancements of c-Myc and Cyclin D1 could be obviously impaired by the inhibitor ICG-001 (p <0.05, p <0.05), in accordance with decreased ALB and CK18 expression and glycogen content (all p <0.05). In conclusion, US irradiation was able to promote the hBMSCs' differentiation mediated by HGF in vitro safely, easily and controllably. The activation of Wnt/β-catenin signaling pathway was involved in this process. US irradiation could serve as a potentially beneficial tool for the research and application of stem cell differentiation.
Collapse
Affiliation(s)
- Fan Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyu Cai
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Bai
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Sun
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianfang Du
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Zuo J, Zhen J, Wang F, Li Y, Zhou Z. Effect of Low-Intensity Pulsed Ultrasound on the Expression of Calcium Ion Transport-Related Proteins during Tertiary Dentin Formation. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:223-233. [PMID: 29079395 DOI: 10.1016/j.ultrasmedbio.2017.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 08/02/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is known for its positive effect on bone healing and reparative regeneration. This study investigated whether LIPUS affects reparative progression of the tooth and the expression of calcium ion transport-related proteins in odontoblasts and dental pulp cells using a rat dentin-pulp complex injury model. Forty male adult Sprague-Dawley rats underwent cavity preparation in the right maxillary first molar: 20 received LIPUS irradiation on the cavity-prepared tooth; 20 received LIPUS irradiation on the left maxillary first molar. Rats were randomly allocated into four groups: blank control group, LIPUS group, cavity-prepared group, cavity-prepared + LIPUS group. LIPUS irradiation (frequency: 1.5 MHz, 200-µs pulse width, 1-kHz pulse repetition frequency, 30 mW/cm2 spatial averaged temporal averaged intensity) was administered individually for 20 min daily. Rats were sacrificed 1, 3, 7 and 14 d post-operation. The histopathological and cellular morphologic changes in the dentin-pulp complex were detected with hematoxylin and eosin staining. Expression of calcium ion transport-related proteins (Cav1.2, NCX1 and TRPV1) was determined with immunohistochemical staining and imaging analysis. Histopathological analysis revealed obvious reparative dentin formation at day 14 in the cavity-prepared + LIPUS group compared with the other groups. Expression levels of Cav1.2, NCX1 and TRPV1 increased significantly by 22%, 53% and 23%, respectively, at day 1 and increased significantly by 23%, 27% and 22%, respectively, at day 3 in the cavity-prepared + LIPUS group (p <0.05) compared with the cavity-prepared group. LIPUS has a positive effect on the expression of calcium transport-related proteins during early-stage dentin injury and facilitates tertiary dentin formation; the mechanism for this likely relates to the inflammatory reaction and a mechanical effect.
Collapse
Affiliation(s)
- Jing Zuo
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jiaxiu Zhen
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fei Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yueheng Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhi Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
35
|
Kaur H, Siraki AG, Uludağ H, Dederich DN, Flood P, El-Bialy T. Role of Reactive Oxygen Species during Low-Intensity Pulsed Ultrasound Application in MC-3 T3 E1 Pre-osteoblast Cell Culture. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2699-2712. [PMID: 28807447 DOI: 10.1016/j.ultrasmedbio.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/02/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
We evaluated the activation of mitogen-activated protein kinase (MAPK) activation through reactive oxygen species (ROS) by application of low-intensity ultrasound (LIPUS) to MC-3 T3 E1 pre-osteoblasts. The cells were subjected to one LIPUS application for either 10 or 20 min, and the control group was exposed to a sham transducer. For ROS inhibition, 10 μM diphenylene iodonium (DPI) was added to the cells an hour before LIPUS application. Samples were collected 1, 3, 6, 12 and 24 h after LIPUS application, and cells were evaluated for ROS generation, cell viability, gene expression and MAPK activation by immunoblot analyses. LIPUS caused a significant increase in ROS and cell viability in the non-DPI-treated group. Expression of RUNX2, OCN and OPN mRNA was higher in the LIPUS-treated groups at 1 h in both the DPI-treated and non-DPI-treated groups; RUNX2 and OCN mRNA levels increased at 6 h. ERK1/2 activation was increased in the LIPUS-treated groups. These results indicate that LIPUS activates MAPK by ROS generation in MC-3 T3 E1 pre-osteoblasts.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Dentistry, University of Alberta, Edmonton, Alberta Canada.
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hasan Uludağ
- Department of Biomedical Engineering, Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas N Dederich
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick Flood
- Department of Dentistry, Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Tarek El-Bialy
- Department of Dentistry, Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Zhou XY, Wu SY, Zhang ZC, Wang F, Yang YL, Li M, Wei XZ. Low-intensity pulsed ultrasound promotes endothelial cell-mediated osteogenesis in a conditioned medium coculture system with osteoblasts. Medicine (Baltimore) 2017; 96:e8397. [PMID: 29069035 PMCID: PMC5671868 DOI: 10.1097/md.0000000000008397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Angiogenesis plays an important role during bone regeneration. Low-intensity pulsed ultrasound (LIPUS) has been proven to accelerate the process of bone fracture healing. However, the mechanism of the effect of LIPUS on bone regeneration is still unclear. In the present study, we used human umbilical vein endothelial cell (HUVEC) and human osteosarcoma cell (MG-63) to investigate the effect of LIPUS stimulation in an endothelial cell-osteoblast coculture system. At the same time, we used transwell and in vitro angiogenesis assay to observe how LIPUS affects endothelial cells. The results demonstrated that LIPUS could significantly increase the migratory ability and promote tube formation in angiogenesis of HUVECs. Furthermore, LIPUS could significantly elevate the expression of osteogenesis-related genes on osteoblasts such as Runt-related transcription factor 2, alkaline phosphatase, Osteorix, and Cyclin-D1, indicating the pro-osteogenesis effect of LIPUS in our coculture system. In conclusion, endothelial cell is involved in LIPUS-accelerated bone regeneration, the positive effect of LIPUS may be transferred via endothelial cells surrounding fracture healing site.
Collapse
Affiliation(s)
- Xiao-Yi Zhou
- Department of Orthopedic Surgery, Changhai Hospital
| | - Sui-Yi Wu
- Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | | | - Fei Wang
- Department of Orthopedic Surgery, Changhai Hospital
| | - Yi-Lin Yang
- Department of Orthopedic Surgery, Changhai Hospital
| | - Ming Li
- Department of Orthopedic Surgery, Changhai Hospital
| | | |
Collapse
|
37
|
Ravichandran A, Liu Y, Teoh SH. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 2017; 12:e7-e22. [PMID: 28374578 DOI: 10.1002/term.2270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
In tissue engineering and regenerative medicine, studies that utilize 3D scaffolds for generating voluminous tissues are mostly confined in the realm of in vitro research and preclinical animal model testing. Bioreactors offer an excellent platform to grow and develop 3D tissues by providing conditions that mimic their native microenvironment. Aligning the bioreactor development process with a focus on patient care will aid in the faster translation of the bioreactor technology to clinics. In this review, we discuss the various factors involved in the design of clinically relevant bioreactors in relation to their respective applications. We explore the functional relevance of tissue grafts generated by bioreactors that have been designed to provide physiologically relevant mechanical cues on the growing tissue. The review discusses the recent trends in non-invasive sensing of the bioreactor culture conditions. It provides an insight to the current technological advancements that enable in situ, non-invasive, qualitative and quantitative evaluation of the tissue grafts grown in a bioreactor system. We summarize the emerging trends in commercial bioreactor design followed by a short discussion on the aspects that hamper the 'push' of bioreactor systems into the commercial market as well as 'pull' factors for stakeholders to embrace and adopt widespread utility of bioreactors in the clinical setting. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuchun Liu
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, 5 Second Hospital Ave Singapore, 168938, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
38
|
Wang F, Li Y, Yang Z, Lu K, Zuo J, Zhou Z. Effect of Low-Intensity Pulsed Ultrasound on a Rat Model of Dentin-Dental Pulp Injury and Repair. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:163-175. [PMID: 27814934 DOI: 10.1016/j.ultrasmedbio.2016.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
This study investigated histopathologic changes in dental pulp after treatment with low-intensity pulsed ultrasound (LIPUS). Fifty rats were randomly divided into an experimental group (n = 25) and a blank control group (n = 25). In the experimental group, a cavity was prepared in the bilateral maxillary first molars. The upper right first molars were stimulated with LIPUS (30 mW/cm2, 1.5 MHz) for 20 min/d. The cavities prepared in the left teeth were used as experimental controls (i.e., no LIPUS). Five rats in each group were sacrificed at days 1, 3, 5, 7 and 14. Inflammatory response was visible at different time points after cavity preparation, peaking at day 3, after which it gradually weakened. More reparative dentin was found on the LIPUS treatment side. transforming growth factor-β1 expression increased after treatment, peaking at day 5 and returning to normal at day 14 on both sides, but was stronger with LIPUS treatment. SMAD2 and SMAD3 expressions in the dental pulp gradually increased after cavity preparation, especially in the experimental group. LIPUS promoted the repair of dentin-pulp complex injury, to a certain extent and should be investigated further as a potential therapy.
Collapse
Affiliation(s)
- Fei Wang
- The College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China; and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Yueheng Li
- The College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China; and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Zhengyan Yang
- The College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China; and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Keke Lu
- The College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China; and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Jing Zuo
- The College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China; and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China
| | - Zhi Zhou
- The College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory for Oral Diseases and Biomedical Science, Chongqing, China; and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People's Republic of China.
| |
Collapse
|
39
|
Shindo T, Ito K, Ogata T, Hatanaka K, Kurosawa R, Eguchi K, Kagaya Y, Hanawa K, Aizawa K, Shiroto T, Kasukabe S, Miyata S, Taki H, Hasegawa H, Kanai H, Shimokawa H. Low-Intensity Pulsed Ultrasound Enhances Angiogenesis and Ameliorates Left Ventricular Dysfunction in a Mouse Model of Acute Myocardial Infarction. Arterioscler Thromb Vasc Biol 2016; 36:1220-9. [DOI: 10.1161/atvbaha.115.306477] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/03/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Tomohiko Shindo
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Kenta Ito
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Tsuyoshi Ogata
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Kazuaki Hatanaka
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Ryo Kurosawa
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Kumiko Eguchi
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Yuta Kagaya
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Kenichiro Hanawa
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Kentaro Aizawa
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Takashi Shiroto
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Sachie Kasukabe
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Hirofumi Taki
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Hideyuki Hasegawa
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Hiroshi Kanai
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Graduate School of Medicine (T. Shindo, K.T., T.O., K. Hatanaka, R.K., K.E., Y.K., K. Hanawa, K.A., T. Shiroto, S.K., S.M., H.S.) and Department of Electronic Engineering, Graduate School of Engineering and Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering (H.T., H.H., H.K.), Tohoku University, Sendai, Japan
| |
Collapse
|
40
|
Xin Z, Lin G, Lei H, Lue TF, Guo Y. Clinical applications of low-intensity pulsed ultrasound and its potential role in urology. Transl Androl Urol 2016; 5:255-66. [PMID: 27141455 PMCID: PMC4837316 DOI: 10.21037/tau.2016.02.04] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound that delivered at a much lower intensity (<3 W/cm2) than traditional ultrasound energy and output in the mode of pulse wave, and it is typically used for therapeutic purpose in rehabilitation medicine. LIPUS has minimal thermal effects due to its low intensity and pulsed output mode, and its non-thermal effects which is normally claimed to induce therapeutic changes in tissues attract most researchers’ attentions. LIPUS have been demonstrated to have a rage of biological effects on tissues, including promoting bone-fracture healing, accelerating soft-tissue regeneration, inhibiting inflammatory responses and so on. Recent studies showed that biological effects of LIPUS in healing morbid body tissues may be mainly associated with the upregulation of cell proliferation through activation of integrin receptors and Rho/ROCK/Src/ERK signaling pathway, and with promoting multilineage differentiation of mesenchyme stem/progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. Hopefully, LIPUS may become an effective clinical procedure for the treatment of urological diseases, such as chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), erectile dysfunction (ED), and stress urinary incontinence (SUI) in the field of urology. It still needs an intense effort for basic-science and clinical investigators to explore the biomedical applications of ultrasound.
Collapse
Affiliation(s)
- Zhongcheng Xin
- 1 Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China ; 2 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | - Guiting Lin
- 1 Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China ; 2 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | - Hongen Lei
- 1 Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China ; 2 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | - Tom F Lue
- 1 Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China ; 2 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | - Yinglu Guo
- 1 Andrology Center, Peking University First Hospital, Peking University, Beijing 100034, China ; 2 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| |
Collapse
|
41
|
Sato M, Kuroda S, Mansjur KQ, Khaliunaa G, Nagata K, Horiuchi S, Inubushi T, Yamamura Y, Azuma M, Tanaka E. Low-intensity pulsed ultrasound rescues insufficient salivary secretion in autoimmune sialadenitis. Arthritis Res Ther 2015; 17:278. [PMID: 26445930 PMCID: PMC4596462 DOI: 10.1186/s13075-015-0798-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/24/2015] [Indexed: 11/17/2022] Open
Abstract
Introduction Low-intensity pulsed ultrasound (LIPUS) has been known to promote bone healing by nonthermal effects. In recent studies, LIPUS has been shown to reduce inflammation in injured soft tissues. Xerostomia is one of the most common symptoms in Sjögren syndrome (SS). It is caused by a decrease in the quantity or quality of saliva. The successful treatment of xerostomia is still difficult to achieve and often unsatisfactory. The aim of this study is to clarify the therapeutic effects of LIPUS on xerostomia in SS. Methods Human salivary gland acinar (NS-SV-AC) and ductal (NS-SV-DC) cells were cultured with or without tumor necrosis factor-α (TNF-α; 10 ng/ml) before LIPUS or sham exposure. The pulsed ultrasound signal was transmitted at a frequency of 1.5 MHz or 3 MHz with a spatial average intensity of 30 mW/cm2 and a pulse rate of 20 %. Cell number, net fluid secretion rate, and expression of aquaporin 5 (AQP5) and TNF-α were subsequently analyzed. Inhibitory effects of LIPUS on the nuclear factor κB (NF-κB) pathway were determined by Western blot analysis. The effectiveness of LIPUS in recovering salivary secretion was also examined in a MRL/MpJ/lpr/lpr (MRL/lpr) mouse model of SS with autoimmune sialadenitis. Results TNF-α stimulation of NS-SV-AC and NS-SV-DC cells resulted in a significant decrease in cell number and net fluid secretion rate (p < 0.01), whereas LIPUS treatment abolished them (p < 0.05). The expression changes of AQP5 and TNF-α were also inhibited in LIPUS treatment by blocking the NF-κB pathway. Furthermore, we found that mRNA expression of A20, a negative feedback regulator, was significantly increased by LIPUS treatment after TNF-α or interleukin 1β stimulation (NS-SV-AC, p < 0.01; NS-SV-DC, p < 0.05). In vivo LIPUS exposure to MRL/lpr mice exhibited a significant increase in both salivary flow and AQP5 expression by reducing inflammation in salivary glands (p < 0.01). Conclusions These results suggest that LIPUS upregulates expression of AQP5 and inhibits TNF-α production. Thus, LIPUS may restore secretion by inflamed salivary glands. It may synergistically activate negative feedback of NF-κB signaling in response to inflammatory stimulation. Collectively, LIPUS might be a new strategic therapy for xerostomia in autoimmune sialadenitis with SS. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0798-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minami Sato
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Shingo Kuroda
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Karima Qurnia Mansjur
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Ganzorig Khaliunaa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Kumiko Nagata
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Shinya Horiuchi
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Toshihiro Inubushi
- Genetic Disease Program, Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| | - Yoshiko Yamamura
- Department of Oral Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Masayuki Azuma
- Department of Oral Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan. .,Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
42
|
Patel US, Ghorayeb SR, Yamashita Y, Atanda F, Walmsley AD, Scheven BA. Ultrasound field characterization and bioeffects in multiwell culture plates. J Ther Ultrasound 2015; 3:8. [PMID: 26146556 PMCID: PMC4490766 DOI: 10.1186/s40349-015-0028-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/05/2015] [Indexed: 12/04/2022] Open
Abstract
Background Ultrasound with frequencies in the kilohertz range has been demonstrated to promote biological effects and has been suggested as a non-invasive tool for tissue healing and repair. However, many challenges exist to characterize and develop kilohertz ultrasound for therapy. In particular there is a limited evidence-based guidance and standard procedure in the literature concerning the methodology of exposing biological cells to ultrasound in vitro. Methods This study characterized a 45-kHz low-frequency ultrasound at three different preset intensity levels (10, 25, and 75 mW/cm2) and compared this with the thermal and biological effects seen in a 6-well culture setup using murine odontoblast-like cells (MDPC-23). Ultrasound was produced from a commercially available ultrasound-therapy system, and measurements were recorded using a needle hydrophone in a water tank. The transducer was displaced horizontally and vertically from the hydrophone to plot the lateral spread of ultrasound energy. Calculations were performed using Fourier transform and average intensity plotted against distance from the transducer. During ultrasound treatment, cell cultures were directly exposed to ultrasound by submerging the ultrasound transducer into the culture media. Four groups of cell culture samples were treated with ultrasound. Three with ultrasound at an intensity level of 10, 25, and 75 mW/cm2, respectively, and the final group underwent a sham treatment with no ultrasound. Cell proliferation and viability were analyzed from each group 8 days after three ultrasound treatments, each separated by 48 h. Results The ultrasonic output demonstrated considerable lateral spread of the ultrasound field from the exposed well toward the adjacent culture wells in the multiwell culture plate; this correlated well with the dose-dependent increase in the number of cultured cells where significant biological effects were also seen in adjacent untreated wells. Significant thermal variations were not detected in adjacent untreated wells. Conclusions This study highlights the pitfalls of using multiwell plates when investigating the biological effect of kilohertz low-frequency ultrasound on adherent cell cultures.
Collapse
Affiliation(s)
- Upen S Patel
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| | - Sleiman R Ghorayeb
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA ; Immunology and Inflammation-FIMR, North Shore Hospital, Manhasset, NY USA
| | - Yuki Yamashita
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA
| | - Folorunsho Atanda
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, NY USA
| | - A Damien Walmsley
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| | - Ben A Scheven
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, St Chad's Queensway, Birmingham, B4 6NN UK
| |
Collapse
|