1
|
Abstract
Tumour-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumour microenvironment (TME) that can account for up to 50% of solid tumours. TAMs heterogeneous are associated with different cancer types and stages, different stimulation of bioactive molecules and different TME, which are crucial drivers of tumour progression, metastasis and resistance to therapy. In this context, understanding the sources and regulatory mechanisms of TAM heterogeneity and searching for novel therapies targeting TAM subpopulations are essential for future studies. In this review, we discuss emerging evidence highlighting the redefinition of TAM heterogeneity from three different directions: origins, phenotypes and functions. We notably focus on the causes and consequences of TAM heterogeneity which have implications for the evolution of therapeutic strategies that targeted the subpopulations of TAMs.
Collapse
|
2
|
The role of semaphorins in small vessels of the eye and brain. Pharmacol Res 2020; 160:105044. [PMID: 32590102 DOI: 10.1016/j.phrs.2020.105044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
Small vessel diseases, such as ischemic retinopathy and cerebral small vessel disease (CSVD), are increasingly recognized in patients with diabetes, dementia and cerebrovascular disease. The mechanisms of small vessel diseases are poorly understood, but the latest studies suggest a role for semaphorins. Initially identified as axon guidance cues, semaphorins are mainly studied in neuronal morphogenesis, neural circuit assembly, and synapse assembly and refinement. In recent years, semaphorins have been found to play important roles in regulating vascular growth and development and in many pathophysiological processes, including atherosclerosis, angiogenesis after stroke and retinopathy. Growing evidence indicates that semaphorins affect the occurrence, perfusion and regression of both the macrovasculature and microvasculature by regulating the proliferation, apoptosis, migration, barrier function and inflammatory response of endothelial cells, vascular smooth muscle cells (VSMCs) and pericytes. In this review, we concentrate on the regulatory effects of semaphorins on the cell components of the vessel wall and their potential roles in microvascular diseases, especially in the retina and cerebral small vessel. Finally, we discuss potential molecular approaches in targeting semaphorins as therapies for microvascular disorders in the eye and brain.
Collapse
|
3
|
Liu J, Wada Y, Katsura M, Tozawa H, Erwin N, Kapron CM, Bao G, Liu J. Rho-Associated Coiled-Coil Kinase (ROCK) in Molecular Regulation of Angiogenesis. Am J Cancer Res 2018; 8:6053-6069. [PMID: 30613282 PMCID: PMC6299434 DOI: 10.7150/thno.30305] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Identified as a major downstream effector of the small GTPase RhoA, Rho-associated coiled-coil kinase (ROCK) is a versatile regulator of multiple cellular processes. Angiogenesis, the process of generating new capillaries from the pre-existing ones, is required for the development of various diseases such as cancer, diabetes and rheumatoid arthritis. Recently, ROCK has attracted attention for its crucial role in angiogenesis, making it a promising target for new therapeutic approaches. In this review, we summarize recent advances in understanding the role of ROCK signaling in regulating the permeability, migration, proliferation and tubulogenesis of endothelial cells (ECs), as well as its functions in non-ECs which constitute the pro-angiogenic microenvironment. The therapeutic potential of ROCK inhibitors in angiogenesis-related diseases is also discussed.
Collapse
|
4
|
Wang F, Liu B, Yu Z, Wang T, Song Y, Zhuang R, Wu Y, Su Y, Guo S. Effects of CD100 promote wound healing in diabetic mice. J Mol Histol 2018; 49:277-287. [PMID: 29637382 DOI: 10.1007/s10735-018-9767-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
Diabetes is a condition that causes delayed wound healing and results in chronic wounds. CD100 has been reported to promote and induce potent and obvious angiogenesis both in vivo and in vitro studies, the absence of which are a main cause of the diabetic chronic wound. In the present study, we investigated the effects of application of soluble CD100 on wound healing in diabetic mice. Four 5-mm full-thickness dermal wounds were made on each male db/db mouse. 12 mice from CD100 group were subcutaneously injected with 250 ng of CD100 (50 µl) per wound, in addition, 12 mice were injected with the same volume phosphate-balanced solution as the control. The animals were treated every other day until the wounds healed completely. Images were obtained to calculate the area ratio of the original area. HE and Masson's trichrome staining were used for histological examination. Collagen remodeling, angiogenesis and wound bed inflammation were evaluated by immunohistochemical staining and western blot. We demonstrated that CD100 had distinct functions during the wound healing process. Histological and western blotting analysis showed a more organized epithelium and dermis, more collagen fibers, higher angiogenesis and lower inflammation in the CD100 group than in the PBS group. These findings suggest that CD100 may accelerate wound healing in diabetic mice by promoting angiogenesis in the wound and by reducing the inflammatory response.
Collapse
Affiliation(s)
- Fang Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.,Department of Medical Cosmetology, The First Affiliated Hospital of Xian Medical University, No. 48 Fenggao West Road, Xi'an, 710000, Shaanxi, China
| | - Bei Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.,Department of Medical Technology, Xian Medical University, No. 1 Xinwang Road, Xi'an, 71000, Shaanxi, China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Tong Wang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yajuan Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Ran Zhuang
- Department of Transplantation Immunology Laboratory of Basic Medical College, The Fourth Military Medical University, No. 127 Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yonghong Wu
- Department of Medical Technology, Xian Medical University, No. 1 Xinwang Road, Xi'an, 71000, Shaanxi, China
| | - Yingjun Su
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Shuzhong Guo
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
5
|
Kazimirskii AN, Poryadin GV, Salmasi ZM, Semenova LY. Endogenous Regulators of the Immune System (sCD100, Malonic Dialdehyde, and Arginase). Bull Exp Biol Med 2018; 164:693-700. [PMID: 29577184 DOI: 10.1007/s10517-018-4061-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 11/27/2022]
Abstract
Tissue damage in various diseases, hypoxic conditions, and some pathologies are associated with production of endogenous factors such as the soluble form of the surface receptor CD100, malonic dialdehyde, and arginase and their release into circulation. These factors modulate functional state of lymphocytes in the immune system: potentiate activation of B lymphocytes, activate synthesis and secretion of IL-25 and IL-17 cytokines, and suppress proliferative activity of T lymphocytes, thus modulating immunological reactivity of the organism. Reactions of innate and adaptive immunity develop against the background of changed immunological reactivity, which should be taken into account in the development of pathogenetically substantiated therapy.
Collapse
Affiliation(s)
- A N Kazimirskii
- Department of Pathology and Clinical Pathology, N. I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Moscow, Russia.
| | - G V Poryadin
- Department of Pathology and Clinical Pathology, N. I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Moscow, Russia
| | - Zh M Salmasi
- Department of Pathology and Clinical Pathology, N. I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Moscow, Russia
| | - L Yu Semenova
- Department of Pathology and Clinical Pathology, N. I. Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
6
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The role of the semaphorins in cancer. Cell Adh Migr 2016; 10:652-674. [PMID: 27533782 PMCID: PMC5160032 DOI: 10.1080/19336918.2016.1197478] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
The semaphorins were initially characterized as axon guidance factors, but have subsequently been implicated also in the regulation of immune responses, angiogenesis, organ formation, and a variety of additional physiological and developmental functions. The semaphorin family contains more then 20 genes divided into 7 subfamilies, all of which contain the signature sema domain. The semaphorins transduce signals by binding to receptors belonging to the neuropilin or plexin families. Additional receptors which form complexes with these primary semaphorin receptors are also frequently involved in semaphorin signaling. Recent evidence suggests that semaphorins also fulfill important roles in the etiology of multiple forms of cancer. Some semaphorins have been found to function as bona-fide tumor suppressors and to inhibit tumor progression by various mechanisms while other semaphorins function as inducers and promoters of tumor progression.
Collapse
Affiliation(s)
- Gera Neufeld
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yelena Mumblat
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Tatyana Smolkin
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Shira Toledano
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inbal Nir-Zvi
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ofra Kessler
- Cancer Research and Vascular Biology Center, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The semaphorins and their receptors as modulators of tumor progression. Drug Resist Updat 2016; 29:1-12. [DOI: 10.1016/j.drup.2016.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/31/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022]
|
8
|
Zhang HL, Jiang ZS, Wang FW. Analysis of gene expression profiles associated with functional recovery after spinal cord injury caused by sema4D knockdown in oligodendrocytes. Cell Biochem Biophys 2015; 69:655-61. [PMID: 24549858 DOI: 10.1007/s12013-014-9848-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We previously showed that sema4D Knockdown in oligodendrocytes promotes functional recovery after spinal cord injury. In this paper, we examined gene expression profiles associated with functional recovery by PCR array. For general observation during first 4 weeks, we found that sema4D knockdown could reduce edema and stimulate SCEP. Further, PCR array analysis indicated sema4D knockdown in OPCs inhibited wound tissue angiogenesis and inflammation genes expression and upregulated axon regeneration genes expression at early phase. Our findings provided the molecular mechanism for its potential application.
Collapse
Affiliation(s)
- Hong-Lei Zhang
- Department of Spine Surgery, Liaocheng People's Hospital Affiliated to Taishan Medical University, Liaocheng, 252000, Shandong, People's Republic of China
| | | | | |
Collapse
|
9
|
Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci 2014; 71:4131-48. [PMID: 25038776 PMCID: PMC11113960 DOI: 10.1007/s00018-014-1678-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/23/2014] [Accepted: 07/07/2014] [Indexed: 01/13/2023]
Abstract
Cell migration plays a central role in a variety of physiological and pathological processes during our whole life. Cellular movement is a complex, tightly regulated multistep process. Although the principle mechanisms of migration follow a defined general motility cycle, the cell type and the context of moving influences the detailed mode of migration. Endothelial cells migrate during vasculogenesis and angiogenesis but also in a damaged vessel to restore vessel integrity. Depending on the situation they migrate individually, in chains or sheets and complex signaling, intercellular signals as well as environmental cues modulate the process. Here, the different modes of cell migration, the peculiarities of endothelial cell migration and specific guidance molecules controlling this process will be reviewed.
Collapse
Affiliation(s)
- U Ruth Michaelis
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany,
| |
Collapse
|
10
|
Rossy J, Ma Y, Gaus K. The organisation of the cell membrane: do proteins rule lipids? Curr Opin Chem Biol 2014; 20:54-9. [PMID: 24815858 DOI: 10.1016/j.cbpa.2014.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/17/2014] [Accepted: 04/17/2014] [Indexed: 11/16/2022]
Abstract
Cell membranes are a complex adaptive system: they are constantly re-organised in response to extra- and intracellular inputs and their local and global structure ultimately determines how, where and when these inputs are processed. This requires a tight coupling of signalling and membranes in localised and specialised compartments. While lipids are essential components of cell membranes, they mostly lack a direct link to the input signals. Here we review how proteins can deform locally membranes, modify and reorganise lipids to form membrane domains and regulate properties like membrane charges and diffusion. From this point-of-view, it appears that proteins play a central role in regulating membrane organisation.
Collapse
Affiliation(s)
- Jérémie Rossy
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| | - Yuanqing Ma
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Katharina Gaus
- Centre for Vascular Research and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
11
|
Liu B, Ma Y, Yi J, Xu Z, Zhang YS, Zhang C, Zhuang R, Yu H, Wang J, Yang A, Zhang Y, Jin B. Elevated plasma soluble Sema4D/CD100 levels are associated with disease severity in patients of hemorrhagic fever with renal syndrome. PLoS One 2013; 8:e73958. [PMID: 24040126 PMCID: PMC3769313 DOI: 10.1371/journal.pone.0073958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/24/2013] [Indexed: 12/15/2022] Open
Abstract
Background Hantaan virus (HTNV) could cause a severe lethal hemorrhagic fever with renal syndrome (HFRS) in humans. Despite a limited understanding of the pathogenesis of HFRS, the importance of host-related immune responses in the pathogenesis of HFRS has been widely recognized. CD100/Sema4D has been demonstrated to play an important role in physiological and pathological immune responses, but the functional role of CD100 in infectious diseases has only been inadequately reported. The aim of this study was to investigate the pathological significance of CD100 in patients after HTNV infection. Methodology/Principal Findings Blood samples were collected from 99 hospitalized patients in Tangdu Hospital and 27 health controls. The level of soluble CD100 (sCD100) in plasma were quantified by ELISA and the relationship between sCD100 and the disease course or severity were analyzed. The expressions of membrane CD100 on various subpopulations of peripheral blood mononuclear cell (PBMC) were analyzed by flow cytometry. The results showed that sCD100 level in acute phase of HFRS was significantly higher in patients than that in healthy controls (P<0.0001) and the sCD100 level declined in convalescent phase. Multivariate model analysis showed that platelet count, white blood cell count, serum creatinine level and blood urea nitrogen level were associated with sCD100 levels and contributed independently to the elevated sCD100 levels. The expression of membrane CD100 on PBMCs decreased in the acute phase of HFRS patients compared with that of the normal controls and recovered in the convalescent phase. Conclusions We reported the elevated level of plasma sCD100 in HFRS patients and the elevated level might be a result from the shedding of membrane CD100 on PBMC. The elevated level of sCD100 was associated with disease severity, suggesting that sCD100 might be a cause or a consequence of progression of HFRS. The underlying mechanisms should be explored further.
Collapse
Affiliation(s)
- Bei Liu
- Department of Immunology, The Fourth Military Medical University, Xi’an, China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xi’an, China
| | - Jing Yi
- Department of Blood Transfusion, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhuwei Xu
- Department of Immunology, The Fourth Military Medical University, Xi’an, China
| | - Yu Si Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an, China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xi’an, China
| | - Haitao Yu
- Department of Infectious Disease, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jiuping Wang
- Department of Infectious Disease, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Angang Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an, China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an, China
- * E-mail: (BJ); (YZ)
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi’an, China
- * E-mail: (BJ); (YZ)
| |
Collapse
|
12
|
Lu Q, Dong N, Wang Q, Yi W, Wang Y, Zhang S, Gu H, Zhao X, Tang X, Jin B, Wu Q, Brass LF, Zhu L. Increased levels of plasma soluble Sema4D in patients with heart failure. PLoS One 2013; 8:e64265. [PMID: 23741311 PMCID: PMC3669357 DOI: 10.1371/journal.pone.0064265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/10/2013] [Indexed: 11/20/2022] Open
Abstract
Semaphorin 4D (Sema4D/CD100) is a 150-kDa transmembrane glycoprotein expressed by platelets and T-cells. When these cells are activated, Sema4D is cleaved proteolytically, generating a biologically active 120-kDa fragment (soluble Sema4D) capable of targeting receptors on platelets, B-cells, endothelial cells and tumor cells. However, its plasma levels and significance in heart failure (HF) have not been reported. In this study, we established an ELISA and detected soluble Sema4D in human plasma. In healthy controls, plasma Sema4D levels were higher in men than women (5.15±3.30 ng/mL, n = 63, vs. 4.19±2.39 ng/mL, n = 63, P<0.05). In HF patients, plasma Sema4D levels were significantly higher than those in healthy controls (8.94±5.89 ng/mL, n = 157 vs. 4.67±2.99 ng/mL, n = 126, P<0.0001) with the highest levels being in HF patients with diabetes mellitus (DM) (10.45±5.76 ng/mL, n = 40). We also found that there was a higher percentage of Sema4D(high) CD3(+) (P<0.01), CD4(+) (P<0.001), and CD8(+) (P<0.01) T-cells in samples from HF patients, but no changes in Sema4D expression levels in B cells and platelets. Therefore, our investigation shows that plasma Sema4D levels are increased in HF patients, especially in those who also have diabetes. There was an accompanying increase in the Sema4D(high) population of T-cells, suggesting a potential role of these T-cells in heart failure.
Collapse
Affiliation(s)
- Qiongyu Lu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Qi Wang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Wenxiu Yi
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Yuxin Wang
- Department of Pathology, Jilin Hospital of Chinese Armed Police Force, Changchun, Jilin, China
| | - Shengjie Zhang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Haibo Gu
- Department of Cardiology of The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Xin Zhao
- Department of Cardiology of The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Xiaorong Tang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi’an, Shanxi, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
| | - Lawrence F. Brass
- Departments of Medicine and Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Li Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Identification of a calmodulin-binding domain in Sema4D that regulates its exodomain shedding in platelets. Blood 2013; 121:4221-30. [PMID: 23564909 DOI: 10.1182/blood-2012-11-470609] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Semaphorin 4D (Sema4D) is a transmembrane protein that supports contact-dependent amplification of platelet activation by collagen before being gradually cleaved by the metalloprotease ADAM17, as we have previously shown. Cleavage releases a soluble 120-kDa exodomain fragment for which receptors exist on platelets and endothelial cells. Here we have examined the mechanism that regulates Sema4D exodomain cleavage. The results show that the membrane-proximal cytoplasmic domain of Sema4D contains a binding site for calmodulin within the polybasic region Arg762-Lys779. Coprecipitation studies show that Sema4D and calmodulin are associated in resting platelets, forming a complex that dissociates upon platelet activation by the agonists that trigger Sema4D cleavage. Inhibiting calmodulin with W7 or introducing a membrane-permeable peptide corresponding to the calmodulin-binding site is sufficient to trigger the dissociation of Sema4D from calmodulin and initiate cleavage. Conversely, deletion of the calmodulin-binding site causes constitutive shedding of Sema4D. These results show that (1) Sema4D is a calmodulin-binding protein with a site of interaction in its membrane-proximal cytoplasmic domain, (2) platelet agonists cause dissociation of the calmodulin-Sema4D complex, and (3) dissociation of the complex is sufficient to trigger ADAM17-dependent cleavage of Sema4D, releasing a bioactive fragment.
Collapse
|
14
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
15
|
Abstract
Angiogenesis, the formation of new blood vessels from preexisting vasculature, is essential for many physiological processes, and aberrant angiogenesis contributes to some of the most prevalent human diseases, including cancer. Angiogenesis is controlled by delicate balance between pro- and anti-angiogenic signals. While pro-angiogenic signaling has been extensively investigated, how developmentally regulated, naturally occurring anti-angiogenic molecules prevent the excessive growth of vascular and lymphatic vessels is still poorly understood. In this review, we summarize the current knowledge on how semaphorins and their receptors, plexins and neuropilins, control normal and pathological angiogenesis, with an emphasis on semaphorin-regulated anti-angiogenic signaling circuitries in vascular and lymphatic endothelial cells. This emerging body of information may afford the opportunity to develop novel anti-angiogenic therapeutic strategies.
Collapse
|