1
|
Vanluchene A, Horsten T, Bonneure E, Stevens CV. Electrochemical Trifluoromethylation of Enamides under Microflow Conditions. Org Process Res Dev 2024; 28:4018-4023. [PMID: 39569050 PMCID: PMC11575483 DOI: 10.1021/acs.oprd.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024]
Abstract
The development of sustainable trifluoromethylations of enamides is of great interest to the pharmaceutical industry. Herein, we demonstrate a sustainable direct electrochemical trifluoromethylation method in a microflow cell, using Langlois reagent, without the need for a supporting electrolyte, oxidants, or any additive under mild conditions. This method can be applied to various substrates with a yield of up to 84%. Additionally, the batch process yielded significantly less (22%), highlighting the microflow cell's efficiency.
Collapse
Affiliation(s)
- Anna Vanluchene
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tomas Horsten
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Eli Bonneure
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Christian V Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Longhi E, Carminati L, Carlessi E, Belotti D, Taraboletti G. Thrombospondin-1 in drug activity and tumor response to therapies. Semin Cell Dev Biol 2024; 155:45-51. [PMID: 37414720 DOI: 10.1016/j.semcdb.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Thrombospondins (TSPs) have numerous different roles in cancer, regulating the behavior of cancer cells and non-neoplastic cells, and defining the responses of tumor cells to environmental changes, thorough their ability to orchestrate cellular and molecular interactions in the tumor microenvironment (TME). As a result of these activities, TSPs can also control drug delivery and activity, tumor response and resistance to therapies, with different outcomes depending on the nature of TSP-interacting cell types, receptors, and ligands, in a highly context-dependent manner. This review, focusing primarily on TSP-1, discusses the effects of TSPs on tumor response to chemotherapy, antiangiogenic, low-dose metronomic chemotherapy, immunotherapy, and radiotherapy, by analyzing TSP activity on different cell compartments - tumor cells, vascular endothelial cells and immune cells. We review evidence of the value of TSPs, specifically TSP-1 and TSP-2, as biomarkers of prognosis and tumor response to therapy. Finally, we examine possible approaches to develop TSP-based compounds as therapeutic tools to potentiate the efficacy of anticancer therapy.
Collapse
Affiliation(s)
- Elisa Longhi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy
| | - Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy
| | - Elena Carlessi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy
| | - Dorina Belotti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy.
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy.
| |
Collapse
|
3
|
Nikmaneshi MR, Jain RK, Munn LL. Computational simulations of tumor growth and treatment response: Benefits of high-frequency, low-dose drug regimens and concurrent vascular normalization. PLoS Comput Biol 2023; 19:e1011131. [PMID: 37289729 PMCID: PMC10249820 DOI: 10.1371/journal.pcbi.1011131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Implementation of effective cancer treatment strategies requires consideration of how the spatiotemporal heterogeneities within the tumor microenvironment (TME) influence tumor progression and treatment response. Here, we developed a multi-scale three-dimensional mathematical model of the TME to simulate tumor growth and angiogenesis and then employed the model to evaluate an array of single and combination therapy approaches. Treatments included maximum tolerated dose or metronomic (i.e., frequent low doses) scheduling of anti-cancer drugs combined with anti-angiogenic therapy. The results show that metronomic therapy normalizes the tumor vasculature to improve drug delivery, modulates cancer metabolism, decreases interstitial fluid pressure and decreases cancer cell invasion. Further, we find that combining an anti-cancer drug with anti-angiogenic treatment enhances tumor killing and reduces drug accumulation in normal tissues. We also show that combined anti-angiogenic and anti-cancer drugs can decrease cancer invasiveness and normalize the cancer metabolic microenvironment leading to reduced hypoxia and hypoglycemia. Our model simulations suggest that vessel normalization combined with metronomic cytotoxic therapy has beneficial effects by enhancing tumor killing and limiting normal tissue toxicity.
Collapse
Affiliation(s)
- Mohammad R. Nikmaneshi
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Rakesh K. Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lance L. Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Carcamo B, Francia G. Cyclic Metronomic Chemotherapy for Pediatric Tumors: Six Case Reports and a Review of the Literature. J Clin Med 2022; 11:jcm11102849. [PMID: 35628975 PMCID: PMC9144744 DOI: 10.3390/jcm11102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
We report a retrospective case series of six Hispanic children with tumors treated with metronomic chemotherapy. The six cases comprised one rhabdoid tumor of the kidney, one ependymoma, two medulloblastomas, one neuroblastoma, and a type II neurocytoma of the spine. Treatment included oral cyclophosphamide daily for 21 days alternating with oral etoposide daily for 21 days in a backbone of daily valproic acid and celecoxib. In one case, celecoxib was substituted with sulindac. Of the six patients, three showed complete responses, and all patients showed some response to metronomic therapy with only minor hematologic toxicity. One patient had hemorrhagic gastritis likely associated with NSAIDs while off prophylactic antacids. These data add to a growing body of evidence suggesting that continuous doses of valproic acid and celecoxib coupled with alternating metronomic chemotherapy of agents such as etoposide and cyclophosphamide can produce responses in pediatric tumors relapsing to conventional dose chemotherapy.
Collapse
Affiliation(s)
- Benjamin Carcamo
- Department of Pediatric Hematology Oncology, El Paso Children’s Hospital, El Paso, TX 79905, USA
- Department of Pediatrics, Texas Tech University Health Science Center, El Paso, TX 79430, USA
- Correspondence: (B.C.); (G.F.); Tel.: +1-915-479-8970 (B.C.); +1-915-747-8025 (G.F.); Fax: +1-915-242-8437 (B.C.); +1-915-747-5808 (G.F.)
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX 79968, USA
- Correspondence: (B.C.); (G.F.); Tel.: +1-915-479-8970 (B.C.); +1-915-747-8025 (G.F.); Fax: +1-915-242-8437 (B.C.); +1-915-747-5808 (G.F.)
| |
Collapse
|
5
|
Żurek M, Rzepakowska A, Kotuła I, Demkow U, Niemczyk K. Serum expression of Vascular Endothelial-Cadherin, CD44, Human High mobility group B1, Kallikrein 6 proteins in different stages of laryngeal intraepithelial lesions and early glottis cancer. PeerJ 2022; 10:e13104. [PMID: 35462765 PMCID: PMC9029362 DOI: 10.7717/peerj.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background The study was designed to evaluate the potential validity and utility of selected molecular markers in serum samples from patients with specific stages of laryngeal intraepithelial lesions that could serve as diagnostic tools in differentiation of benign and dysplastic lesions from invasive pathologies. Methods Prospective study included 80 consecutive patients with vocal fold lesions treated at the single otorhinolaryngology centre. All participants had surgical resection of the lesion. Blood samples were collected from each patient before the surgery. Final diagnosis was confirmed on histopathological examination and included 39 (48.75%) non-dysplastic lesions, eight (10%) low-grade dysplasia, six (7.5%) high-grade dysplasia and 27 (33.75%) invasive cancers. The ELISA procedures were performed according to the manufacturer's instruction. Individual serum concentration of selected proteins was reported in ng/ml: Vascular Endothelial-Cadherin Complex (VE-cad), CD44, Human High mobility group protein B1(HMGB1), Kallikrein 6. Results The highest mean levels of HMGB1, KLK6 and VE-cad were detected in sera of patients with low-grade dysplasia (81.14, 24.33, 14.17 respectively). Soluble CD44 was the most elevated in patients with non-dysplastic lesions (2.49). The HMGB1, KLK6 and VE-cad serum levels were increasing from non-dysplastic to low-grade dysplasia and followed by the decrease for high-grade dysplasia and invasive cancer, however the differences were not significant (p-values 0.897, 0.354, 0.1 respectively). Patients' serum had the highest CD44 concentration in non-dysplastic and low-grade dysplasia with the following decrease through high-grade dysplasia and invasive cancer. GERD symptomatic patients had higher levels of KLK6 and CD44 than other patients (p-value 0.06 and 0.084 respectively). There were no significant differences of biomarkers levels related to patients' gender (p-value from 0.243 to 1) or smoking status (p-value from 0.22 to 0.706). Conclusions VE-cad, HMGB1, CD44 and KLK6 did not prove to be reliable biomarkers implicating malignant potential within vocal fold hypertrophic intraepithelial lesions.
Collapse
Affiliation(s)
- Michał Żurek
- Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland,Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Anna Rzepakowska
- Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Kotuła
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Kazimierz Niemczyk
- Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|
7
|
Su NW, Chen YJ. Metronomic Therapy in Oral Squamous Cell Carcinoma. J Clin Med 2021; 10:jcm10132818. [PMID: 34206730 PMCID: PMC8269021 DOI: 10.3390/jcm10132818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Metronomic therapy is characterized by drug administration in a low-dose, repeated, and regular manner without prolonged drug-free interval. The two main anticancer mechanisms of metronomic therapy are antiangiogenesis and immunomodulation, which have been demonstrated in several delicate in vitro and in vivo experiments. In contrast to the traditional maximum tolerated dose (MTD) dosing of chemotherapy, metronomic therapy possesses comparative efficacy but greatlydecreases the incidence and severity of treatment side-effects. Clinical trials of metronomic anticancer treatment have revealed promising results in a variety cancer types and specific patient populations such as the elderly and pediatric malignancies. Oral cavity squamous cell carcinoma (OCSCC) is an important health issue in many areas around the world. Long-term survival is about 50% in locally advanced disease despite having high-intensity treatment combined surgery, radiotherapy, and chemotherapy. In this article, we review and summarize the essence of metronomic therapy and focus on its applications in OCSCC treatment.
Collapse
Affiliation(s)
- Nai-Wen Su
- Department of Internal Medicine, Division of Hematology and Medical Oncology, MacKay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei City 10449, Taiwan;
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei City 112021, Taiwan
| | - Yu-Jen Chen
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei City 112021, Taiwan
- Department of Radiation Oncology, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City 25160, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-2-2809-4661
| |
Collapse
|
8
|
Varayathu H, Sarathy V, Thomas BE, Mufti SS, Naik R. Combination Strategies to Augment Immune Check Point Inhibitors Efficacy - Implications for Translational Research. Front Oncol 2021; 11:559161. [PMID: 34123767 PMCID: PMC8193928 DOI: 10.3389/fonc.2021.559161] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint inhibitor therapy has revolutionized the field of cancer immunotherapy. Even though it has shown a durable response in some solid tumors, several patients do not respond to these agents, irrespective of predictive biomarker (PD-L1, MSI, TMB) status. Multiple preclinical, as well as early-phase clinical studies are ongoing for combining immune checkpoint inhibitors with anti-cancer and/or non-anti-cancer drugs for beneficial therapeutic interactions. In this review, we discuss the mechanistic basis behind the combination of immune checkpoint inhibitors with other drugs currently being studied in early phase clinical studies including conventional chemotherapy drugs, metronomic chemotherapy, thalidomide and its derivatives, epigenetic therapy, targeted therapy, inhibitors of DNA damage repair, other small molecule inhibitors, anti-tumor antibodies hormonal therapy, multiple checkpoint Inhibitors, microbiome therapeutics, oncolytic viruses, radiotherapy, drugs targeting myeloid-derived suppressor cells, drugs targeting Tregs, drugs targeting renin-angiotensin system, drugs targeting the autonomic nervous system, metformin, etc. We also highlight how translational research strategies can help better understand the true therapeutic potential of such combinations.
Collapse
Affiliation(s)
- Hrishi Varayathu
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Vinu Sarathy
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Beulah Elsa Thomas
- Department of Clinical Pharmacology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Suhail Sayeed Mufti
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Radheshyam Naik
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| |
Collapse
|
9
|
Cazzaniga ME, Cordani N, Capici S, Cogliati V, Riva F, Cerrito MG. Metronomic Chemotherapy. Cancers (Basel) 2021; 13:cancers13092236. [PMID: 34066606 PMCID: PMC8125766 DOI: 10.3390/cancers13092236] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The present article reviews the state of the art of metronomic chemotherapy use to treat the principal types of cancers, namely breast, non-small cell lung cancer and colorectal ones, and of the most recent progresses in understanding the underlying mechanisms of action. Areas of novelty, in terms of new regimens, new types of cancer suitable for Metronomic chemotherapy (mCHT) and the overview of current ongoing trials, along with a critical review of them, are also provided. Abstract Metronomic chemotherapy treatment (mCHT) refers to the chronic administration of low doses chemotherapy that can sustain prolonged, and active plasma levels of drugs, producing favorable tolerability and it is a new promising therapeutic approach in solid and in hematologic tumors. mCHT has not only a direct effect on tumor cells, but also an action on cell microenvironment, by inhibiting tumor angiogenesis, or promoting immune response and for these reasons can be considered a multi-target therapy itself. Here we review the state of the art of mCHT use in some classical tumour types, such as breast and no small cell lung cancer (NSCLC), see what is new regarding most recent data in different cancer types, such as glioblastoma (GBL) and acute myeloid leukemia (AML), and new drugs with potential metronomic administration. Finally, a look at the strategic use of mCHT in the context of health emergencies, or in low –and middle-income countries (LMICs), where access to adequate healthcare is often not easy, is mandatory, as we always need to bear in in mind that equity in care must be a compulsory part of our medical work and research.
Collapse
Affiliation(s)
- Marina Elena Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy;
- Phase 1 Research Centre, ASST-Monza (MB), 20900 Monza, Italy; (S.C.); (V.C.)
- Correspondence: (M.E.C.); (M.G.C.); Tel.: +39-0392-339-037 (M.E.C.)
| | - Nicoletta Cordani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy;
| | - Serena Capici
- Phase 1 Research Centre, ASST-Monza (MB), 20900 Monza, Italy; (S.C.); (V.C.)
| | - Viola Cogliati
- Phase 1 Research Centre, ASST-Monza (MB), 20900 Monza, Italy; (S.C.); (V.C.)
| | - Francesca Riva
- Unit of Clinic Oncology, ASST-Monza (MB), 20900 Monza, Italy;
| | - Maria Grazia Cerrito
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza (MB), Italy;
- Correspondence: (M.E.C.); (M.G.C.); Tel.: +39-0392-339-037 (M.E.C.)
| |
Collapse
|
10
|
Valenzuela P, Oaxaca D, Di Desidero T, Parra K, Rodriguez G, Manciu M, Allegrini G, Falcone A, Bocci G, Kirken RA, Francia G. Pharmacodynamic biomarkers in metronomic chemotherapy: multiplex cytokine measurements in gastrointestinal cancer patients. Clin Exp Med 2021; 21:149-159. [PMID: 33048259 PMCID: PMC8006211 DOI: 10.1007/s10238-020-00666-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022]
Abstract
Metronomic chemotherapy has shown promising antitumor activity in a number of malignancies. We previously reported a phase II clinical trial of metronomic UFT (a 5-fluorouracil prodrug; 100 mg/twice per day p.o.) and cyclophosphamide (CTX; 500 mg/m2 i.v. bolus on day 1 and then 50 mg/day p.o.) plus celecoxib (200 mg/twice a day p.o.) in 38 patients with advanced refractory gastrointestinal tumors. The mechanisms of action of metronomic chemotherapy include inhibition of angiogenesis, direct cytotoxic effects on cancer cells, and, at least for drugs such as CTX, activation of the immune system. To further evaluate the latter, we carried out an immune system multiplex 14-cytokine profiling of plasma samples that were available (for day 0, day 28, and day 56) from 31 of the 38 patients in the above-noted clinical trial. Our results show that pre-treatment plasma-level cutoffs of interferon gamma (> 12.84 pg/ml), sCD40L (< 2168 pg/ml), interferon alpha 2 (> 55.11 pg/ml), and IL-17a (< 15.1 pg/ml) were predictive markers for those patients with better progression-free survival (p < .05 for each cytokine). After 28 days of metronomic therapy, the plasma levels of sCD40L, IL-17a, and IL-6 (< 130 pg/ml) could serve as predictors of improved progression-free survival, as could levels interferon gamma and sCD40L after 56 days of therapy. We observed minimal changes in cytokine profiles, from baseline, as a consequence of the metronomic therapy, with the exception of an elevation of IL-6 and IL-8 levels 28 days (and 56 days) after treatment started (p < 0.05). Our results indicate that a selective cytokine elevation involves IL-6 and IL-8, following metronomic chemotherapy administration. In addition, interferon gamma and sCD40L may be potential biomarkers for gastrointestinal cancer patients that are likely to benefit from metronomic chemotherapy. Our study contributes to our understanding of the mechanisms of action of metronomic chemotherapy, and the cytokine profiling we describe may guide future selection of gastrointestinal cancer patients for UFT/CTX/celecoxib combination metronomic chemotherapy.
Collapse
Affiliation(s)
- Paloma Valenzuela
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Derrick Oaxaca
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Teresa Di Desidero
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Karla Parra
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Georgialina Rodriguez
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | | | - Giacomo Allegrini
- Division of Medical Oncology, Pontedera Hospital, Azienda USL of Pisa, Pontedera, Italy
| | | | - Guido Bocci
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Robert A Kirken
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX, USA.
| |
Collapse
|
11
|
Muñoz R, Hileeto D, Cruz-Muñoz W, Wood GA, Xu P, Man S, Viloria-Petit A, Kerbel RS. Suppressive impact of metronomic chemotherapy using UFT and/or cyclophosphamide on mediators of breast cancer dissemination and invasion. PLoS One 2019; 14:e0222580. [PMID: 31536574 PMCID: PMC6752870 DOI: 10.1371/journal.pone.0222580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
Metronomic chemotherapy using the 5-FU prodrug uracil-tegafur (UFT) and cyclophosphamide (CTX) was previously shown to only modestly delay primary tumor growth, but nevertheless markedly suppressed the development of micro-metastasis in an orthotopic breast cancer xenograft model, using the metastatic variant of the MDA-MB-231 cell line, 231/LM2-4. Furthermore, a remarkable prolongation of survival, with no toxicity, was observed in a model of postsurgical advanced metastatic disease. A question that has remained unanswered is the seemingly selective anti-metastatic mechanisms of action responsible for this treatment. We assessed the in vivo effect of metronomic UFT, CTX or their combination, on vascular density, collagen deposition and c-Met (cell mediators or modulators of tumor cell invasion or dissemination) via histochemistry/immunohistochemistry of primary tumor sections. We also assessed the effect of continuous exposure to low and non-toxic doses of active drug metabolites 5-fluorouracil (5-FU), 4-hydroperoxycyclophosphamide (4-HC) or their combination, on 231/LM2-4 cell invasiveness in vitro. In the in vivo studies, a significant reduction in vascular density and p-Met[Y1003] levels was associated with UFT+CTX treatment. All treatments reduced intratumoral collagen deposition. In the in vitro studies, a significant reduction of collagen IV invasion by all treatments was observed. The 3D structures formed by 231/LM2-4 on Matrigel showed a predominantly Mass phenotype under treated conditions and Stellate phenotype in untreated cultures. Taken together, the results suggest the low-dose metronomic chemotherapy regimens tested can suppress several mediators of tumor invasiveness highlighting a new perspective for the anti-metastatic efficacy of metronomic chemotherapy.
Collapse
Affiliation(s)
- Raquel Muñoz
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Denise Hileeto
- School of Optometry & Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - William Cruz-Muñoz
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Alicia Viloria-Petit
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert S. Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Marmorino F, Falcone A, Cremolini C. Bevacizumab as maintenance therapy in mCRC: Interpreting results of the MOMA trial. Oncotarget 2019; 10:2791-2792. [PMID: 31073370 PMCID: PMC6497461 DOI: 10.18632/oncotarget.26870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/07/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Federica Marmorino
- Chiara Cremolini: Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alfredo Falcone
- Chiara Cremolini: Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Chiara Cremolini: Unit of Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Simsek C, Esin E, Yalcin S. Metronomic Chemotherapy: A Systematic Review of the Literature and Clinical Experience. JOURNAL OF ONCOLOGY 2019; 2019:5483791. [PMID: 31015835 PMCID: PMC6446118 DOI: 10.1155/2019/5483791] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/24/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Metronomic chemotherapy, continuous and dose-dense administration of chemotherapeutic drugs with lowered doses, is being evaluated for substituting, augmenting, or appending conventional maximum tolerated dose regimens, with preclinical and clinical studies for the past few decades. To date, the principle mechanisms of its action include impeding tumoral angiogenesis and modulation of hosts' immune system, affecting directly tumor cells, their progenitors, and neighboring stromal cells. Its better toxicity profile, lower cost, and easier use are main advantages over conventional therapies. The evidence of metronomic chemotherapy for personalized medicine is growing, starting with unfit elderly patients and also for palliative treatment. The literature reviewed in this article mainly demonstrates that metronomic chemotherapy is advantageous for selected patients and for certain types of malignancies, which make it a promising therapeutic approach for filling in the gaps. More clinical studies are needed to establish a solidified role for metronomic chemotherapy with other treatment models in modern cancer management.
Collapse
Affiliation(s)
- Cem Simsek
- Department of Internal Medicine, Hacettepe University, Ankara, Turkey
| | - Ece Esin
- Department of Medical Oncology, A.Y. Ankara Training Hospital, Ankara, Turkey
| | - Suayib Yalcin
- Department of Medical Oncology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Cremolini C, Marmorino F, Bergamo F, Aprile G, Salvatore L, Masi G, Dell’Aquila E, Antoniotti C, Murgioni S, Allegrini G, Borelli B, Gemma D, Casagrande M, Granetto C, Delfanti S, Di Donato S, Schirripa M, Sensi E, Tonini G, Lonardi S, Fontanini G, Boni L, Falcone A. Phase II randomised study of maintenance treatment with bevacizumab or bevacizumab plus metronomic chemotherapy after first-line induction with FOLFOXIRI plus Bevacizumab for metastatic colorectal cancer patients: the MOMA trial. Eur J Cancer 2019; 109:175-182. [DOI: 10.1016/j.ejca.2018.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 01/09/2023]
|
15
|
Kim JY, Kim YM. Tumor endothelial cells as a potential target of metronomic chemotherapy. Arch Pharm Res 2019; 42:1-13. [PMID: 30604201 DOI: 10.1007/s12272-018-01102-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Drug resistance and toxic side effects are major therapeutic hurdles affecting cancer patients receiving conventional chemotherapy based on the maximum tolerated dose. Metronomic chemotherapy (MCT), a new therapeutic approach developed to avoid these problems generally, consists of the continuous administration of low-dose cytotoxic agents without extended intervals. This therapy targets the tumor microenvironment, rather than exerting a direct effect on tumor cells. As a result, the MCT regimen functionally impairs tumor endothelial cells and circulating endothelial progenitor cells, leading to tumor dormancy via anti-angiogenesis. Over the past 10 years, several studies have highlighted the impact of MCT on the tumor microenvironment and angiogenesis and demonstrated its potential as a switch from the pro-angiogenic to the anti-angiogenic state. However, the mechanisms of action are still obscure. Here, we systematically review the evidence regarding the anti-angiogenic potential of MCT as a crucial determinant of tumor dormancy and cancer treatment.
Collapse
Affiliation(s)
- Ji Yoon Kim
- Department of Anesthesiology and Pain Medicine, Hanyang University Hospital, Seoul, 04763, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry School of Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, 24341, South Korea.
| |
Collapse
|
16
|
Dalgleish AG, Stern PL. The failure of radical treatments to cure cancer: can less deliver more? Ther Adv Vaccines Immunother 2018; 6:69-76. [PMID: 30623172 PMCID: PMC6304701 DOI: 10.1177/2515135518815393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
All too often attempts to deliver improved cancer cure rates by increasing the dose of a particular treatment are not successful enough to justify the accompanying increase in toxicity and reduction in quality of life suffered by a significant number of patients. In part, this drive for using higher levels of treatment derives from the nature of the process for testing and incorporation of new protocols. Indeed, new treatment regimens must now consider the key role of immunity in cancer control, a component that has been largely ignored until very recently. The recognition that some drugs developed for cytotoxicity at higher doses can display alternative anticancer activities at lower doses including through modulation of immune responses is prompting a significant re-evaluation of treatment protocol development. Given that tumours are remarkably heterogeneous and with inherent genetic instability it is probably only the adaptive immune response with its flexibility and extensive repertoire that can rise to the challenge of effecting significant control and ultimately elimination of a patient's cancer. This article discusses some of the elements that have limited higher levels of treatment outcomes and where too much proved less effective. We explore observations that less can often be as effective, if not more effective especially with some chemotherapy regimens, and discuss how this can be exploited in combination with immunotherapies to deliver nontoxic improved tumour responses.
Collapse
Affiliation(s)
- Angus G Dalgleish
- Infection and Immunity Centre, St George's, University of London, Cranmer Terrace, London, UK
| | - Peter L Stern
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
17
|
Manciu M, Hosseini S, Di Desidero T, Allegrini G, Falcone A, Bocci G, Kirken RA, Francia G. Optimization of biomarkers-based classification scores as progression-free survival predictors: an intuitive graphical representation. Future Sci OA 2018; 4:FSO346. [PMID: 30450233 PMCID: PMC6234460 DOI: 10.4155/fsoa-2018-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/17/2018] [Indexed: 02/04/2023] Open
Abstract
Aim To construct classification scores based on a combination of cancer patient plasma biomarker levels, for predicting progression-free survival. Methods The approach is based on the optimization of the biomarker cut-off values, which maximize the statistical differences between the groups with values lower or larger than the cut-offs, respectively. An intuitive visualization of the quality of the classification score is also proposed. Results Even if there are only weak correlations between individual biomarker levels and progression-free survival, scores based on suitably chosen combination of three biomarkers have classification power comparable with the Response Evaluation Criteria in Solid Tumors criteria classification of response to treatments in solid tumors. Conclusion Our approach has the potential to improve the selection of the patients who will benefit from a given anticancer treatment.
Collapse
Affiliation(s)
- Marian Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Sorour Hosseini
- Department of Physics, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Teresa Di Desidero
- Division of Pharmacology, Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Allegrini
- Division of Medical Oncology, Pontedera Hospital, Azienda USL of Pisa, Pontedera, Italy
| | | | - Guido Bocci
- Division of Pharmacology, Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Robert A Kirken
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|
18
|
Filippi R, Lombardi P, Depetris I, Fenocchio E, Quarà V, Chilà G, Aglietta M, Leone F. Rationale for the use of metronomic chemotherapy in gastrointestinal cancer. Expert Opin Pharmacother 2018; 19:1451-1463. [PMID: 30161003 DOI: 10.1080/14656566.2018.1512585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Metronomic chemotherapy (mCT) is endowed with various properties, ranging from antiangiogenic to immunomodulation, and may revert tumor resistance to conventional drug administration. A variety of antineoplastic agents displayed activity when administered with metronomic schedules in preclinical models of gastrointestinal cancers. However, most of the field is still unexplored. AREAS COVERED Herein, the authors review the existing literature from PubMed, concerning the use of mCT in gastrointestinal oncology. EXPERT OPINION A mounting body of evidence is emerging in support of mCT as a treatment option for gastrointestinal tumors, but the frequent signs of clinical activity inconsistently translate into a benefit for survival. Research in this field should focus on providing high-quality evidence on the safety and efficacy of mCT, with more prospective, comparative trials; identifying the subgroups of patients for whom mCT would be the best approach; establishing standardized protocols based on mCT pharmacokinetics and pharmacodynamics; developing drug activity biomarkers. mCT is also potentially suitable for combinations with targeted antiangiogenic drugs and may be incorporated with conventional administration into dual regimens.
Collapse
Affiliation(s)
- Roberto Filippi
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Pasquale Lombardi
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Ilaria Depetris
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Elisabetta Fenocchio
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Virginia Quarà
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Giovanna Chilà
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Massimo Aglietta
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| | - Francesco Leone
- a Department of Oncology , University of Turin , Candiolo , Italy.,b Medical Oncology , Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy
| |
Collapse
|
19
|
Natale G, Bocci G. Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data. Cancer Lett 2018; 432:28-37. [PMID: 29885517 DOI: 10.1016/j.canlet.2018.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/11/2018] [Accepted: 06/03/2018] [Indexed: 02/08/2023]
Abstract
Tumor dormancy is the ability of cancer cells to survive in a non-proliferating state. This condition can depend on three main mechanisms: cell cycle arrest (quiescence or cell dormancy), immunosurveillance (immunologic dormancy), or lack of functional blood vessels (angiogenic dormancy). In particular, under angiogenic dormancy, cancer cell proliferation is counterbalanced by apoptosis owing to poor vascularization, impeding tumor mass expansion beyond a microscopic size, with an asymptomatic and non-metastatic state. Tumor vasculogenic or non-angiogenic switch is essential to promote escape from tumor dormancy, leading to tumor mass proliferation and metastasis. In avascular lesions angiogenesis process results blocked from the equilibrium between pro- and anti-angiogenic factors, such as vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1), respectively. The angiogenic switch mainly depends on the disruption of this balance, in favor of pro-angiogenic factors, and on the recruitment of circulating endothelial progenitors (CEPs) that promote the formation of new blood vessels. Metronomic chemotherapy, the regular intake of doses able to sustain low but active concentrations of chemotherapeutic drugs during protracted time periods, is an encouraging therapeutic approach that has shown to upregulate anti-angiogenic factors such as TSP-1 and decline pro-angiogenic factors such as VEGF, suppressing the proangiogenic cells such as CEPs. In this perspective, metronomic chemotherapy may be one of the available therapeutic approaches capable to modulate favorably the angiogenic tumor dormancy, but further research is essential to better define this particular characteristic.
Collapse
Affiliation(s)
- Gianfranco Natale
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, and Museo di Anatomia Umana ''Filippo Civinini'', Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
20
|
Di Desidero T, Orlandi P, Fioravanti A, Cremolini C, Loupakis F, Marmorino F, Antoniotti C, Masi G, Lonardi S, Bergamo F, Zagonel V, Falcone A, Bocci G. Pharmacokinetic analysis of metronomic capecitabine in refractory metastatic colorectal cancer patients. Invest New Drugs 2018; 36:709-714. [PMID: 29488048 DOI: 10.1007/s10637-018-0579-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/20/2018] [Indexed: 02/08/2023]
Abstract
The aim of the present study was to assess the pharmacokinetics (PK) of metronomic capecitabine and its metabolites in a population of refractory metastatic colorectal cancer (mCRC) patients. Thirty-four patients (M/F, 22/12) with a diagnosis of mCRC received capecitabine 800 mg p.o. twice a day and cyclophosphamide 50 mg/day p.o. Blood samples were collected at baseline, 15 min, 30 min, 1 h, 1.5 h, 2 h, 3 h and 5 h at day 1 after capecitabine administration. Plasma concentrations of capecitabine and its metabolites were measured by high performance liquid chromatography and the main PK parameters were calculated. Maximum plasma concentrations (Cmax) of capecitabine (11.51 ± 9.73 μg/ml) occurred at 0.5 h, whereas the Cmax of 5'-deoxy-5-fluorocytidine (5'-DFCR; 2.45 ± 2.93 μg/ml), 5'-deoxy-5-fluorouridine (5'-DFUR; 6.43 ± 8.2 μg/ml), and 5-fluorouracil (5-FU; 0.24 ± 0.16 μg/ml) were found at 1 h, 1.5 h and 1 h, respectively. Capecitabine, 5'-DFCR, 5'-DFUR and 5-FU AUCs at day 1 were 21.30 ± 10.78, 5.2 ± 4.6, 19.59 ± 3.83 and 0.66 ± 0.77 hxμg/ml, respectively. In conclusion, low doses of capecitabine were rapidly absorbed and extensively metabolized, achieving measurable plasma concentrations in a heavily pretreated population of patients.
Collapse
Affiliation(s)
- Teresa Di Desidero
- Divisione di Farmacologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Paola Orlandi
- Divisione di Farmacologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Anna Fioravanti
- Divisione di Farmacologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Chiara Cremolini
- U.O. Oncologia Medica 2 Universitaria, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy.,Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Fotios Loupakis
- U.O. Oncologia Medica 2 Universitaria, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy.,Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy.,Unità di Oncologia Medica 1, Dipartimento di Oncologia Clinica e Sperimentale, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Federica Marmorino
- U.O. Oncologia Medica 2 Universitaria, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy.,Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Carlotta Antoniotti
- U.O. Oncologia Medica 2 Universitaria, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy.,Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Gianluca Masi
- U.O. Oncologia Medica 2 Universitaria, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy.,Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Sara Lonardi
- Unità di Oncologia Medica 1, Dipartimento di Oncologia Clinica e Sperimentale, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Francesca Bergamo
- Unità di Oncologia Medica 1, Dipartimento di Oncologia Clinica e Sperimentale, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Vittorina Zagonel
- Unità di Oncologia Medica 1, Dipartimento di Oncologia Clinica e Sperimentale, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Alfredo Falcone
- U.O. Oncologia Medica 2 Universitaria, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy.,Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Divisione di Farmacologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy. .,University of Pisa, Via Roma, 55, I-56126, Pisa, Italy.
| |
Collapse
|
21
|
Chen YJ, Tsai TH, Wang LY, Hsieh CH. Local Radiotherapy Affects Drug Pharmacokinetics-Exploration of a Neglected but Significant Uncertainty of Cancer Therapy. Technol Cancer Res Treat 2017; 16:705-716. [PMID: 29332468 PMCID: PMC5762083 DOI: 10.1177/1533034617737011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose: Concurrent chemoradiation therapy is the mainstay of treatment for many types of malignancies. However, concurrent chemoradiation therapy is associated with a greater number of systemic adverse effects than radiotherapy or chemotherapy alone. Summary: Pharmacokinetics is the study of a drug and/or its metabolite kinetics in the body, including absorption, distribution, metabolism, and elimination. The incidences of adverse effects are markedly higher in patients who receive concurrent chemoradiation therapy than in those who receive either radiotherapy or chemotherapy alone. This phenomenon implies that irradiation affects the pharmacokinetics of cytotoxic agents, namely the radiotherapy–pharmacokinetic phenomenon. Experimental animal studies have shown that local irradiation affects the systemic pharmacokinetics of 5-fluorouracil and cisplatin at both low dose (simulating generous dose distributed to normal tissues) and daily practice dose (mimicking therapeutic dose to target volumes). These effects are significant in the circulation of blood and lymphatic system as well as in the hepatobiliary excretion. Furthermore, recent studies have demonstrated that matrix metalloproteinase-8 plays an important role in the radiotherapy–pharmacokinetic phenomenon. Conclusion: In the present review, we provide a general overview of the radiotherapy–pharmacokinetic phenomenon and discuss the possible mechanisms governing the phenomenon.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chemical Engineering, National United University, Miaoli, Taiwan
| | - Li-Ying Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Hsi Hsieh
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
22
|
Successful Outcome of Low-Dose S-1 Used to Treat Buccal Squamous Cell Carcinoma. Case Rep Oncol Med 2017; 2017:4537631. [PMID: 28804664 PMCID: PMC5540467 DOI: 10.1155/2017/4537631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/30/2017] [Indexed: 11/24/2022] Open
Abstract
This case report describes an 86-year-old woman with dormant right buccal squamous cell carcinoma who was able to maintain a reasonable quality of life after being treated with oral low-dose S-1 (80 mg/day). The treatment regimen started in April 2014 and consisted of two weeks of S-1 followed by a one-week interval. The patient remains on this regimen while maintaining her quality of life and she has been under follow-up as an outpatient for 36 months. The outcomes for this patient indicated that low-dose S-1 is a valid anticancer therapy that may help maintain quality of life for some patients with incurable or dormant cancers.
Collapse
|
23
|
Harada K, Ferdous T, Ueyama Y. Therapeutic strategies with oral fluoropyrimidine anticancer agent, S-1 against oral cancer. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:61-77. [PMID: 28725297 PMCID: PMC5501734 DOI: 10.1016/j.jdsr.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/21/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Oral cancer has been recognized as a tumor with low sensitivity to anticancer agents. However, introduction of S-1, an oral cancer agent is improving treatment outcome for patients with oral cancer. In addition, S-1, as a main drug for oral cancer treatment in Japan can be easily available for outpatients. In fact, S-1 exerts high therapeutic effects with acceptable side effects. Moreover, combined chemotherapy with S-1 shows higher efficacy than S-1 alone, and combined chemo-radiotherapy with S-1 exerts remarkable therapeutic effects. Furthermore, we should consider the combined therapy of S-1 and molecular targeting agents right now as these combinations were reportedly useful for oral cancer treatment. Here, we describe our findings related to S-1 that were obtained experimentally and clinically, and favorable therapeutic strategies with S-1 against oral cancer with bibliographic considerations.
Collapse
Affiliation(s)
- Koji Harada
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1, Minamikogushi, Ube 755-8505, Japan
| | | | | |
Collapse
|
24
|
Woo IS, Jung YH. Metronomic chemotherapy in metastatic colorectal cancer. Cancer Lett 2017; 400:319-324. [PMID: 28274890 DOI: 10.1016/j.canlet.2017.02.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
Overall survival and quality of life of patients with metastatic colorectal cancer (mCRC) have improved due to the development of standard systemic treatment. However, many patients are still suffering from the eventual progression of cancer, treatment-related toxicities, and the economic burden of new drugs. Salvage or maintenance therapy, which consistently controls or stabilizes tumor progression without debilitating quality of life, is required. Recently, metronomic capecitabine maintenance therapy after disease control using conventional chemotherapy with maximal tolerated doses has demonstrated beneficial results in a phase III trial. Metronomic chemotherapy has been known to control tumors through antiangiogenesis and immunomodulation as well as a direct effect on tumor-initiating cells. It has the characteristics of being minimally toxic, inexpensive, and durable for maintaining disease stabilization. Therefore, patients with mCRC, who tend to be elderly and frail and have been previously treated, might be suitable for metronomic therapeutic strategies. Furthermore, antiangiogenic therapy has been an important component in treating mCRC, but the schedules and doses of metronomic chemotherapy have not yet been established. Here we review translational and clinical research on metronomic chemotherapy in colorectal cancer (CRC).
Collapse
Affiliation(s)
- In Sook Woo
- Division of Medical Oncology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul, 07345, Republic of Korea.
| | - Yun Hwa Jung
- Division of Medical Oncology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul, 07345, Republic of Korea
| |
Collapse
|
25
|
Resistance to metronomic chemotherapy and ways to overcome it. Cancer Lett 2017; 400:311-318. [PMID: 28259819 DOI: 10.1016/j.canlet.2017.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 12/24/2022]
Abstract
Therapeutic resistance is amongst the major determinants of cancer mortality. Contrary to initial expectations, antivascular therapies are equally prone to inherent or acquired resistance as other cancer treatment modalities. However, studies into resistance to vascular endothelial growth factor pathway inhibitors revealed distinct mechanisms of resistance compared to conventional cytotoxic therapy. While some of these novel mechanisms of resistance also appear to be functional regarding metronomic chemotherapy, herein we summarize available evidence for mechanisms of resistance specifically described in the context of metronomic chemotherapy. Numerous preclinically identified molecular targets and pathways represent promising avenues to overcome resistance and enhance the benefits achieved with metronomic chemotherapy eventually. However, there are considerable challenges to clinically translate the preclinical findings.
Collapse
|
26
|
Romiti A, Falcone R, Roberto M, Marchetti P. Tackling pancreatic cancer with metronomic chemotherapy. Cancer Lett 2017; 394:88-95. [PMID: 28232048 DOI: 10.1016/j.canlet.2017.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 12/20/2022]
Abstract
Pancreatic tumours, the majority of which arise from the exocrine pancreas, have recently shown an increasing incidence in western countries. Over the past few years more and more new selective molecules directed against specific cellular targets have become available for cancer therapy, leading to significant improvements. However, despite such advances in therapy, prognosis of pancreatic cancer remains disappointing. Metronomic chemotherapy (MCT), which consists in the administration of continuous, low-dose anticancer drugs, has demonstrated the ability to suppress tumour growth. Thus, it may provide an additional therapeutic opportunity for counteracting the progression of the tumour. Here we discuss evidence arising from preclinical and clinical studies regarding the use of MCT in pancreatic cancer. Good results have generally been achieved in preclinical studies, particularly when MCT was combined with standard dose chemotherapy or antinflammatory, antiangiogenic and immunostimolatory agents. The few available clinical experiences, which mainly refer to retrospective data, have reported good tolerability though mild activity of metronomic schedules. Further studies are therefore awaited to confirm both preclinical findings and the preliminary clinical data.
Collapse
Affiliation(s)
- Adriana Romiti
- Sapienza University, Sant'Andrea Hospital, Medical Oncology Unit, Via di Grottarossa 1035-1039, 00189, Rome, Italy.
| | - Rosa Falcone
- Sapienza University, Sant'Andrea Hospital, Medical Oncology Unit, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Michela Roberto
- Sapienza University, Sant'Andrea Hospital, Medical Oncology Unit, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Paolo Marchetti
- Sapienza University, Sant'Andrea Hospital, Medical Oncology Unit, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| |
Collapse
|
27
|
Munzone E, Colleoni M. Metronomics in the neoadjuvant and adjuvant treatment of breast cancer. Cancer Lett 2017; 400:259-266. [PMID: 28093280 DOI: 10.1016/j.canlet.2016.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 12/23/2022]
Abstract
The concept of metronomic chemotherapy (MC) has evolved from a descriptive preclinical phenomenon encompassing inhibition of angiogenesis to a clinically validated treatment concept involving multiple potential mechanisms of action. Clinicians are progressively more incline to consider MC as a component of mainstream medical oncology practice in advanced breast cancer. However, more recently MC has been tested even in the adjuvant/neoadjuvant setting, taking the opportunity to obtain tumor specimens and blood samples, in order to identify tumor-specific or patient-specific biomarkers for personalizing treatments. In addition, the antiangiogenic and pro-immune nature of metronomic chemotherapy made triple negative breast cancer (TNBC) a good candidate for exploring low-dose maintenance treatment in the adjuvant setting or in combination with immunomodulatory drugs. The potential development of MC in breast cancer pass through the research to identify biomarkers and individual tumor characteristics that can better address the use of this treatment strategy in the future. Finally, the subjective attitude of patients represents one of the major factors that influence the choice and acceptance of a therapeutic program. Personal preference and considerations about quality of life should guide the treatment choice eventually prioritizing the use of MC. Nevertheless, more robust data from randomized phase III trials are needed in the future, in order to make clinicians more confident in using metronomic strategies.
Collapse
Affiliation(s)
- Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology, Milan, Italy
| | - Marco Colleoni
- Division of Medical Senology, European Institute of Oncology, Milan, Italy.
| |
Collapse
|
28
|
Current achievements and future perspectives of metronomic chemotherapy. Invest New Drugs 2016; 35:359-374. [DOI: 10.1007/s10637-016-0408-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022]
|
29
|
Pantziarka P, Hutchinson L, André N, Benzekry S, Bertolini F, Bhattacharjee A, Chiplunkar S, Duda DG, Gota V, Gupta S, Joshi A, Kannan S, Kerbel R, Kieran M, Palazzo A, Parikh A, Pasquier E, Patil V, Prabhash K, Shaked Y, Sholler GS, Sterba J, Waxman DJ, Banavali S. Next generation metronomic chemotherapy-report from the Fifth Biennial International Metronomic and Anti-angiogenic Therapy Meeting, 6-8 May 2016, Mumbai. Ecancermedicalscience 2016; 10:689. [PMID: 27994645 PMCID: PMC5130328 DOI: 10.3332/ecancer.2016.689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/31/2022] Open
Abstract
The 5th Biennial Metronomic and Anti-angiogenic Therapy Meeting was held on 6th – 8th May in the Indian city of Mumbai. The meeting brought together a wide range of clinicians and researchers interested in metronomic chemotherapy, anti-angiogenics, drug repurposing and combinations thereof. Clinical experiences, including many from India, were reported and discussed in three symposia covering breast cancer, head and neck cancers and paediatrics. On the pre-clinical side research into putative mechanisms of action, and the interactions between low dose metronomic chemotherapy and angiogenesis and immune responses, were discussed in a number of presentations. Drug repurposing was discussed both in terms of clinical results, particularly with respect to angiosarcoma and high-risk neuroblastoma, and in pre-clinical settings, particularly the potential for peri-operative interventions. However, it was clear that there remain a number of key areas of challenge, particularly in terms of definitions, perceptions in the wider oncological community, mechanisms of action and predictive biomarkers. While the potential for metronomics and drug repurposing in low and middle income countries remains a key theme, it is clear that there is also considerable potential for clinically relevant improvements in patient outcomes even in high income economies.
Collapse
Affiliation(s)
- Pan Pantziarka
- Anticancer Fund, Brussels, 1853 Strombeek-Bever, Belgium; The George Pantziarka TP53 Trust, London, UK
| | | | - Nicolas André
- Service d'hématologie et Oncologie Pédiatrique, Centre Hospitalo-Universitaire Timone Enfants, AP-HM, Aix-Marseille Université, INSERM, CRO2 UMR_S 911, Marseille, France; Metronomics Global Health Initiative, Marseille, France
| | - Sébastien Benzekry
- Inria team MONC and Institut de Mathématiques de Bordeaux, Talence, France
| | | | | | | | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Vikram Gota
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Sudeep Gupta
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | - Sadhana Kannan
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Robert Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Mark Kieran
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Antonella Palazzo
- Division of Medical Senology, European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | | | - Eddy Pasquier
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Aix-Marseille University, Marseille, France; Metronomics Global Health Initiative, Marseille, France
| | | | | | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Cernopolni 9, 613 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital and RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - David J Waxman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Shripad Banavali
- Tata Memorial Hospital, Mumbai, India; Metronomics Global Health Initiative, Marseille, France
| |
Collapse
|
30
|
Clinical, pharmacodynamic and pharmacokinetic results of a prospective phase II study on oral metronomic vinorelbine and dexamethasone in castration-resistant prostate cancer patients. Invest New Drugs 2016; 34:760-770. [DOI: 10.1007/s10637-016-0385-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 02/04/2023]
|
31
|
Gao JH, Wen SL, Feng S, Yang WJ, Lu YY, Tong H, Liu R, Tang SH, Huang ZY, Tang YM, Yang JH, Xie HQ, Tang CW. Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats. Angiogenesis 2016; 19:501-11. [PMID: 27380212 PMCID: PMC5026725 DOI: 10.1007/s10456-016-9522-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/29/2016] [Indexed: 02/05/2023]
Abstract
Abnormal angiogenesis is critical for portal hypertension in cirrhosis. Except for etiological treatment, no efficient medication or regime has been explored to treat the early stage of cirrhosis when angiogenesis is initiated or overwhelming. In this study, we explored an anti-angiogenesis effort through non-cytotoxic drugs octreotide and celecoxib to treat early stage of cirrhotic portal hypertension in an animal model. Peritoneal injection of thioacetamide (TAA) was employed to induce liver cirrhosis in rats. A combination treatment of celecoxib and octreotide was found to relieve liver fibrosis, portal venous pressure, micro-hepatic arterioportal fistulas, intrahepatic and splanchnic angiogenesis. Celecoxib and octreotide exerted their anti-angiogenesis effect via an axis of cyclooxygenase-2/prostaglandin E2/EP-2/somatostatin receptor-2, which consequently down-regulated phosphorylation of extracellular signal-regulated kinase (p-ERK)–hypoxia-inducible factor-1α (HIF-1α)–vascular endothelial growth factor (VEGF) integrated signaling pathways. In conclusions, combination of celecoxib and octreotide synergistically ameliorated liver fibrosis and portal hypertension of the cirrhotic rats induced by TAA via the inhibition of intrahepatic and extrahepatic angiogenesis. The potential mechanisms behind the regimen may due to the inactivation of p-ERK–HIF-1α–VEGF signaling pathway.
Collapse
Affiliation(s)
- Jin-Hang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shi-Lei Wen
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, People's Republic of China
| | - Shi Feng
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, People's Republic of China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yao-Yao Lu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Rui Liu
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shi-Hang Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ying-Mei Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jin-Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Cheng-Wei Tang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China. .,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
32
|
Bocci G, Kerbel RS. Pharmacokinetics of metronomic chemotherapy: a neglected but crucial aspect. Nat Rev Clin Oncol 2016; 13:659-673. [DOI: 10.1038/nrclinonc.2016.64] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
A metronomic schedule as salvage chemotherapy for upper gastrointestinal tract cancer. Anticancer Drugs 2016; 27:106-11. [DOI: 10.1097/cad.0000000000000308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Metastatic breast cancer patients treated with low-dose metronomic chemotherapy with cyclophosphamide and celecoxib: clinical outcomes and biomarkers of response. Cancer Chemother Pharmacol 2015; 77:365-74. [PMID: 26721701 DOI: 10.1007/s00280-015-2947-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/11/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Preclinical results showing therapeutic effect and low toxicity of metronomic chemotherapy with cyclophosphamide (Cy) + celecoxib (Cel) for mammary tumors encouraged its translation to the clinic for treating advanced breast cancer patients (ABCP). PATIENTS AND METHODS A single-arm, mono-institutional, non-randomized, phase II, two-step clinical trial (approved by Bioethics Committee and Argentine Regulatory Authority) was designed. Patients received Cy (50 mg po.d) + Cel (200 mg p.o.bid). Patient eligibility criteria included: ABCP who progressed to anthracyclines, taxanes and capecitabine, ≤4 chemotherapy schemes, with good performance status. Several pro- and anti-angiogenic molecules and cells were determined as biomarkers. Informed consent was signed by all patients. Primary endpoint was clinical benefit (CB). RESULTS Twenty patients were enrolled. Main clinical outcomes were prolonged disease stabilization and partial remission in 10/20 and 1/20 patients, respectively. CB was 55 %, and time to progression (TTP) was 21.1 weeks. Median TTP in patients who achieved CB was 35.6 weeks, and mean overall survival was 44.20 weeks. There were no grade 3/4 toxicities associated with treatment. Circulating endothelial cells (CECs) increased at the time of progression in patients who showed CB (P = 0.014). Baseline CECs and circulating endothelial progenitor cells showed marginal associations with TTP. Serum VEGF decreased (P = 0.050), sVEGFR-2 increased (P = 0.005) and VEGF/sVEGFR-2 ratio decreased during treatment (P = 0.041); baseline VEGF and VEGF/sVEGFR-2 were associated with TTP (P = 0.035 and P = 0.030, respectively), while sVEGFR-2 did not. CONCLUSIONS Treatment was effective, showing low toxicity profile and excellent tolerability. The combination had anti-angiogenic effect. Increased levels of CEC could be useful for detecting progression. Baseline VEGF and VEGF/sVEGFR-2 values could be useful as early predictors of response. TRIAL REGISTRATION ANMAT#4596/09.
Collapse
|
35
|
Cazzaniga ME, Camerini A, Addeo R, Nolè F, Munzone E, Collovà E, Del Conte A, Mencoboni M, Papaldo P, Pasini F, Saracchini S, Bocci G. Metronomic oral vinorelbine in advanced breast cancer and non-small-cell lung cancer: current status and future development. Future Oncol 2015; 12:373-87. [PMID: 26584409 DOI: 10.2217/fon.15.306] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metronomic chemotherapy (mCT), a frequent administration of low-dose chemotherapy, allows prolonged treatment duration and minimizes the toxicity of standard-dose chemotherapy. mCT has multiple actions against cancer cells including inhibition of angiogenesis and modulation of the immune system. A number of studies lend support to the clinical efficacy of mCT in advanced breast cancer and non-small-cell lung cancer. However, further evidence is necessary to describe the optimal use of mCT and to identify suitable patients. Oral vinorelbine has emerged as a promising metronomic treatment in patients with metastatic breast cancer and non-small-cell lung cancer and is the only orally available microtubule-targeting agent. This paper reviews current evidence on metronomic oral vinorelbine, discusses its management and defines a suitable patient profile on the basis of a workshop of Italian experts.
Collapse
Affiliation(s)
- Marina E Cazzaniga
- Department of Oncology, AO San Gerardo, via Pergolesi 33, 20052 Monza (MB), Italy
| | - Andrea Camerini
- Department of Medical Oncology, Versilia Hospital & Istituto Toscano Tumori, 55041 Lido di Camaiore (LU), Italy
| | - Raffaele Addeo
- Oncology Unit, San Giovanni di Dio Hospital, 80027 Frattamaggiore (NA), Italy
| | - Franco Nolè
- Division of Urogenital & Head & Neck Cancer, European Institute of Oncology, 20141 Milan, Italy
| | - Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology, 20141 Milan, Italy
| | - Elena Collovà
- Oncology Unit, AO Ospedale Civile di Legnano, Legnano, 20025 Legnano (MI), Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Azienda per l'Assistenza Sanitaria No. 5 - Friuli Occidentale, Presidio Ospedaliero di Pordenone, 33170 Pordenone, Italy
| | - Manlio Mencoboni
- Oncology Unit, Villa Scassi Hospital, ASL3-Genovese, 16149 Genoa, Italy
| | - Paola Papaldo
- Department of Medical Oncology, Istituto Nazionale Tumori Regina Elena, 00144 Rome, Italy
| | - Felice Pasini
- Department of Medical Oncology, Rovigo Hospital, ULSS18, 45100 Rovigo, Italy
| | - Silvana Saracchini
- Department of Medical Oncology, Azienda per l'Assistenza Sanitaria No. 5 - Friuli Occidentale, Presidio Ospedaliero di Pordenone, 33170 Pordenone, Italy
| | - Guido Bocci
- Department of Clinical & Experimental Medicine, Division of Pharmacology, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
36
|
Onesti CE, Romiti A, Roberto M, Falcone R, Marchetti P. Recent advances for the treatment of pancreatic and biliary tract cancer after first-line treatment failure. Expert Rev Anticancer Ther 2015; 15:1183-98. [PMID: 26325474 DOI: 10.1586/14737140.2015.1081816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we evaluate clinical trials on chemotherapy for patients with pancreatic or biliary tract cancer after first-line treatment failure. Clinical trials on conventional and innovative medical treatments for progressive pancreatic and biliary cancer were analyzed. Metronomic chemotherapy, which consists of the administration of continuative low-dose of anticancer drugs, was also considered. A significant extension of overall survival was achieved with second-line, regimens in patients with gemcitabine-refractory pancreatic cancer. Moreover, many Phase II studies, including chemotherapy and target molecules and immunotherapy, have reported promising results, in both pancreatic and biliary cancer. However, data in these patients' setting are very heterogeneous, and only few randomized studies are available.
Collapse
Affiliation(s)
| | | | - Michela Roberto
- a Clinical and Molecular Medicine Department, Sapienza University, Rome, Italy
| | - Rosa Falcone
- a Clinical and Molecular Medicine Department, Sapienza University, Rome, Italy
| | - Paolo Marchetti
- a Clinical and Molecular Medicine Department, Sapienza University, Rome, Italy
| |
Collapse
|
37
|
Cramarossa G, Lee EK, Sivanathan L, Georgsdottir S, Lien K, Santos KD, Chan K, Emmenegger U. A systematic literature analysis of correlative studies in low-dose metronomic chemotherapy trials. Biomark Med 2015; 8:893-911. [PMID: 25224945 DOI: 10.2217/bmm.14.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Low-dose metronomic (LDM) chemotherapy is a beneficial and very well-tolerated form of chemotherapy utilization characterized by the frequent and uninterrupted administration of low doses of conventional chemotherapeutic agents over prolonged periods of time. While patients resistant to standard maximum tolerated dose (MTD) chemotherapy may still benefit from LDM chemotherapy, there is a lack of predictive markers of response to LDM chemotherapy. We searched the MEDLINE, EMBASE, CENTRAL and PubMed databases for correlative studies conducted as part of LDM chemotherapy trials in order to identify the most promising biomarker candidates. Given the antiangiogenic properties of LDM chemotherapy, angiogenesis-related biomarkers were most commonly studied. However, significant correlations between angiogenesis-related biomarkers and study end points were rare and variable, even so far as biomarkers correlating positively with an end point in some studies and negatively with the same end point in other studies. Pursuing biomarkers outside the angiogenesis field may be more promising.
Collapse
Affiliation(s)
- Gemma Cramarossa
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Blaise S, Polena H, Vilgrain I. Soluble vascular endothelial-cadherin and auto-antibodies to human vascular endothelial-cadherin in human diseases: Two new biomarkers of endothelial dysfunction. Vasc Med 2015; 20:557-65. [DOI: 10.1177/1358863x15591201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vascular endothelial-cadherin is the most important transmembrane component of endothelial adherens junctions, exclusively expressed by endothelial cells in all types of vessels. Targeting either the extracellular domain or the cytoplasmic tail deleteriously affects the junctional strength and leads to vascular permeability. Recently, cytokine-induced phosphorylation of the vascular endothelial-cadherin cytoplasmic domain was reported to trigger cleavage of its extracellular domain, producing the soluble form of the protein – soluble vascular endothelial-cadherin. Hence, the presence of soluble vascular endothelial-cadherin or auto-antibodies to human vascular endothelial-cadherin in human serum could signalize the presence of vascular abnormalities. This systematic review covers many human studies reporting increased levels of soluble vascular endothelial-cadherin, as well as auto-antibodies to human vascular endothelial-cadherin, which could be promising biomarkers of endothelial dysfunction in a large panel of diseases.
Collapse
Affiliation(s)
- Sophie Blaise
- Department of Vascular Medicine, Grenoble University Hospital, Grenoble, France
- Institut National de la Santé et de la Recherche Médicale U1036, Grenoble, France
- Commissariat à l’Energie Atomique, Institute of Life Science Research and Technologies, Biology of Cancer and Infection, Grenoble, France
- Université Grenoble Alpes, Unité Mixte de Recherche S1036, Grenoble, France
| | - Helena Polena
- Institut National de la Santé et de la Recherche Médicale U1036, Grenoble, France
- Commissariat à l’Energie Atomique, Institute of Life Science Research and Technologies, Biology of Cancer and Infection, Grenoble, France
- Université Grenoble Alpes, Unité Mixte de Recherche S1036, Grenoble, France
| | - Isabelle Vilgrain
- Institut National de la Santé et de la Recherche Médicale U1036, Grenoble, France
- Commissariat à l’Energie Atomique, Institute of Life Science Research and Technologies, Biology of Cancer and Infection, Grenoble, France
- Université Grenoble Alpes, Unité Mixte de Recherche S1036, Grenoble, France
| |
Collapse
|
39
|
Romiti A, Onesti CE, Roberto M, Barucca V, Tomao S, D’Antonio C, Durante V, Milano A, Falcone R, Di Rocco R, Righini R, Marchetti P. Continuous, low-dose capecitabine for patients with recurrent colorectal cancer. Med Oncol 2015; 32:54. [DOI: 10.1007/s12032-015-0496-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/23/2015] [Indexed: 11/29/2022]
|
40
|
Kareva I, Waxman DJ, Lakka Klement G. Metronomic chemotherapy: an attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance. Cancer Lett 2014; 358:100-106. [PMID: 25541061 DOI: 10.1016/j.canlet.2014.12.039] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022]
Abstract
The administration of chemotherapy at reduced doses given at regular, frequent time intervals, termed 'metronomic' chemotherapy, presents an alternative to standard maximal tolerated dose (MTD) chemotherapy. The primary target of metronomic chemotherapy was originally identified as endothelial cells supporting the tumor vasculature, and not the tumor cells themselves, consistent with the emerging concept of cancer as a systemic disease involving both tumor cells and their microenvironment. While anti-angiogenesis is an important mechanism of action of metronomic chemotherapy, other mechanisms, including activation of anti-tumor immunity and a decrease in acquired therapeutic resistance, have also been identified. Here we present evidence supporting a mechanistic explanation for the improved activity of cancer chemotherapy when administered on a metronomic, rather than an MTD schedule and discuss the implications of these findings for further translation into the clinic.
Collapse
Affiliation(s)
- Irina Kareva
- Newman Lakka Institute, Floating Hospital for Children at Tufts Medical Center, Boston, MA 02111; Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287
| | - David J Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University Boston, MA 02215
| | - Giannoula Lakka Klement
- Newman Lakka Institute, Floating Hospital for Children at Tufts Medical Center, Boston, MA 02111.
| |
Collapse
|
41
|
Bouche G, André N, Banavali S, Berthold F, Berruti A, Bocci G, Brandi G, Cavallaro U, Cinieri S, Colleoni M, Curigliano G, Di Desidero T, Eniu A, Fazio N, Kerbel R, Hutchinson L, Ledzewicz U, Munzone E, Pasquier E, Graciela Scharovsky O, Shaked Y, Stěrba J, Villalba M, Bertolini F. Lessons from the Fourth Metronomic and Anti-angiogenic Therapy Meeting, 24-25 June 2014, Milan. Ecancermedicalscience 2014; 8:463. [PMID: 25228919 PMCID: PMC4162678 DOI: 10.3332/ecancer.2014.463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 01/10/2023] Open
Abstract
The Fourth Metronomic and Anti-angiogenic Therapy Meeting was held in Milan 24–25 June 2014. The meeting was a true translational meeting where researchers and clinicians shared their results, experiences, and insights in order to continue gathering useful evidence on metronomic approaches. Several speakers emphasised that exact mechanisms of action, best timing, and optimal dosage are still not well understood and that the field would learn a lot from ancillary studies performed during the clinical trials of metronomic chemotherapies. From the pre-clinical side, new research findings indicate additional possible mechanisms of actions of metronomic schedule on the immune and blood vessel compartments of the tumour micro-environment. New clinical results of metronomic chemotherapy were presented in particular in paediatric cancers [especially neuroblastoma and central nervous system (CNS) tumours], in angiosarcoma (together with beta-blockers), in hepatocellular carcinoma, in prostate cancer, and in breast cancer. The use of repurposed drugs such as metformin, celecoxib, or valproic acid in the metronomic regimen was reported and highlighted the potential of other candidate drugs to be repurposed. The clinical experiences from low- and middle-income countries with affordable regimens gave very encouraging results which will allow more patients to be effectively treated in economies where new drugs are not accessible. Looking at the impact of metronomic approaches that have been shown to be effective, it was admitted that those approaches were rarely used in clinical practice, in part because of the absence of commercial interest for companies. However, performing well-designed clinical trials of metronomic and repurposing approaches demonstrating substantial improvement, especially in populations with the greatest unmet needs, may be an easier solution than addressing the financial issue. Metronomics should always be seen as a chance to come up with new innovative affordable approaches and not as a cheap rescue strategy.
Collapse
Affiliation(s)
| | - Nicolas André
- Metronomics Global Health Initiative; Aix Marseille Université, Inserm, CRO2 UMR_S 911; & Paediatric Haematology and Oncology Department, Children's Hospital of La Timone, Marseille 13005, France
| | | | - Frank Berthold
- Department of Paediatric Oncology, University of Cologne D50924, Germany
| | - Alfredo Berruti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Azienda Ospedaliera Spedali Civili, Brescia 25123, Italy
| | - Guido Bocci
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, via Roma 55, Pisa 56126, Italy
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine University Hospital S. Orsola-Malpighi Bologna, 40138, Italy
| | - Ugo Cavallaro
- Molecular Medicine Programme, European Institute of Oncology, Milan 20141, Italy
| | | | - Marco Colleoni
- Division of Medical Senology, European Institute of Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Giuseppe Curigliano
- Division of Experimental Therapeutics, European Institute of Oncology, Milan 20141, Italy
| | - Teresa Di Desidero
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, via Roma 55, Pisa 56126, Italy
| | - Alexandru Eniu
- Cancer Institute 'I. Chiricuta', Cluj-Napoca 400015, Romania
| | - Nicola Fazio
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Unit, European Institute of Oncology, Milan 20141, Italy
| | - Robert Kerbel
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto M4N 3M5, Canada
| | | | - Urszula Ledzewicz
- Department of Mathematics and Statistics, Southern Illinois University, Edwardsville, IL 62026, USA
| | - Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology, Milan 20141, Italy
| | - Eddy Pasquier
- Tumour Biology and Targeting Programme, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, Australia; Metronomics Global Health Initiative, Marseille 13005, France; & Centre for Research in Oncobiology and Oncopharmacology, INSERM UMR911, Marseille 13005, France
| | - O Graciela Scharovsky
- Jefa Sección Oncología Experimental, Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, 2000, Argentina
| | - Yuval Shaked
- Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Jaroslav Stěrba
- Department of Pediatric Oncology, Masaryk University School of Medicine and University Hospital, Brno, Cernopolni 9 Brno 613 00, Czech Republic
| | - Martin Villalba
- INSERM U1040, Université de Montpellier 1, UFR Médecine, Montpellier 34295, France & Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier 34295, France
| | - Francesco Bertolini
- Laboratory of Haematology-Oncology, European Institute of Oncology, Milan 20141, Italy
| |
Collapse
|
42
|
Bandyopadhyay A, Das M, Kundu SK. Metastatic primary duodenal adeno-carcinoma responding to metronomic oral cyclophosphamide chemotherapy. Indian J Palliat Care 2014; 20:239-42. [PMID: 25191014 PMCID: PMC4154174 DOI: 10.4103/0973-1075.138402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Primary adenocarcinoma of duodenum is a very rare tumour with a prevalence of only 0.3 to 1% of among all the tumours of gastrointestinal tracts. Localised tumours, if resected have good prognosis but those with metastates entails a poor prognosis, where generally palliation may be the only feasible option. Low dose continous cytotoxic treatment or metronomic chemotherapy prevents neoangiogenesis and chemoresistance thereby, provides excellent symptom relief and palliation in many advanced heavily pretreated solid malignancies. It offers as an affordable, less toxic therapy with moderate to good efficacy. Here we report a case of a 52 year female who, presented with history of maleana, pallor and pedal edema for last 2 months. Her performance status was poor (KPS 40) and she had enlarged left supraclavicular lymph node, palpable liver and vague mass in paraumbilical region. Upper GI endoscopy revealed large ulceroproliferative growth in the D2 segment and HPE showed moderately differentiated adenocarcinoma. CT scan revealed paratracheal and retroperitoneal lymphadenopathy and bone scan revealed vertebral metastasis. Patient received oral cyclophosphamide and hematinic and vitamin support, along with radiation to spine. There was near complete clinical response, and progression free period of about 32 weeks. Thus, single agent cyclophosphamide in the present case provided near total clinical response and prolonged period of freedom from disease progression with excellent palliation of symptoms. Hence in patient of advanced and metastatic small bowel cancer, with poor performance status metronomic therapy with single agent cyclophosphamide may provide viable option both for treatment and palliation.
Collapse
Affiliation(s)
- Anis Bandyopadhyay
- Department of Radiotherapy, Medical College and Hospital, Kolkata, West Bengal, India
| | - Mou Das
- Department of Pathology, Institute of Post Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Subhra Kanti Kundu
- Department of Radiotherapy, Medical College and Hospital, Kolkata, West Bengal, India
| |
Collapse
|
43
|
André N, Carré M, Pasquier E. Metronomics: towards personalized chemotherapy? Nat Rev Clin Oncol 2014; 11:413-31. [PMID: 24913374 DOI: 10.1038/nrclinonc.2014.89] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Since its inception in 2000, metronomic chemotherapy has undergone major advances as an antiangiogenic therapy. The discovery of the pro-immune properties of chemotherapy and its direct effects on cancer cells has established the intrinsic multitargeted nature of this therapeutic approach. The past 10 years have seen a marked rise in clinical trials of metronomic chemotherapy, and it is increasingly combined in the clinic with conventional treatments, such as maximum-tolerated dose chemotherapy and radiotherapy, as well as with novel therapeutic strategies, such as drug repositioning, targeted agents and immunotherapy. We review the latest advances in understanding the complex mechanisms of action of metronomic chemotherapy, and the recently identified factors associated with disease resistance. We comprehensively discuss the latest clinical data obtained from studies performed in both adult and paediatric populations, and highlight ongoing clinical trials. In this Review, we foresee the future developments of metronomic chemotherapy and specifically its potential role in the era of personalized medicine.
Collapse
Affiliation(s)
- Nicolas André
- Service d'Hématologie & Oncologie Pédiatrique, AP-HM, 264 rue Saint Pierre, 13385 Marseille, France
| | - Manon Carré
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Eddy Pasquier
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, PO Box 81, Randwick NSW 2031, Australia
| |
Collapse
|
44
|
Han X, Li H, Su L, Zhu W, Xu W, Li K, Zhao Q, Yang H, Liu H. Effect of celecoxib plus standard chemotherapy on serum levels of vascular endothelial growth factor and cyclooxygenase-2 in patients with gastric cancer. Biomed Rep 2013; 2:183-187. [PMID: 24649093 DOI: 10.3892/br.2013.209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/28/2013] [Indexed: 12/16/2022] Open
Abstract
Elevated serum levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) are associated with poor prognosis in patients with gastric cancer. Little is known regarding the clinical benefits of combining celecoxib, a selective inhibitor of COX-2, with standard chemotherapy regimens for the treatment of gastric cancer patients. In this study, we investigated the effect of the combinatorial use of celecoxib with standard chemotherapy on the serum levels of VEGF and COX-2 in patients with gastric cancer. In our study, 80 patients with gastric cancer who underwent laparoscopic radical surgery were randomized into two groups, the combination [celecoxib plus standard oxaliplatin, leucovorin and 5-fluorouracil (FOLFOX4) chemotherapy, n=40] and the FOLFOX4 alone (n=40) groups. In the combination group, celecoxib was orally administered to the patients (400 mg, twice daily). The serum levels of VEGF and COX-2 were measured by ELISA prior to and following surgery. We detected no significant difference in the serum levels of VEGF and COX-2 between the combination and FOLFOX4 alone groups prior to chemotherapy (P>0.05). However, after 6 cycles of chemotherapy, there was a greater decrease in the serum levels of VEGF and COX-2 in the combination group compared to those in the FOLFOX4 group (P<0.01). In addition, the serum levels of VEGF and COX-2 were closely correlated in patients with gastric adenocarcinoma prior to treatment. Our data indicated that, when combined with standard chemotherapy, celecoxib may reduce the serum levels of VEGF and COX-2, suggesting that COX-2 inhibitors may be of therapeutic value through the inhibition of tumor angiogenesis and the prevention of recurrence or metastasis. Thus, celecoxib may be a useful adjuvant agent to standard chemotherapy in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Xiaopeng Han
- Department of General Surgery, General Hospital of Lanzhou Military Region, Lanzhou, Gansu 730050, P.R. China
| | - Hongtao Li
- Department of General Surgery, General Hospital of Lanzhou Military Region, Lanzhou, Gansu 730050, P.R. China
| | - Lin Su
- Department of General Surgery, General Hospital of Lanzhou Military Region, Lanzhou, Gansu 730050, P.R. China
| | - Wankun Zhu
- Department of General Surgery, General Hospital of Lanzhou Military Region, Lanzhou, Gansu 730050, P.R. China
| | - Wei Xu
- Department of General Surgery, General Hospital of Lanzhou Military Region, Lanzhou, Gansu 730050, P.R. China
| | - Kun Li
- Department of General Surgery, General Hospital of Lanzhou Military Region, Lanzhou, Gansu 730050, P.R. China
| | - Qingchuan Zhao
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hua Yang
- Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Hongbin Liu
- Department of General Surgery, General Hospital of Lanzhou Military Region, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
45
|
Metronomic chemotherapy: possible clinical application in advanced hepatocellular carcinoma. Transl Oncol 2013; 6:511-9. [PMID: 24151531 DOI: 10.1593/tlo.13481] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a hypervascular highly angiogenic tumor usually associated with liver cirrhosis. Vascular endothelial growth factor plays a critical role in vascular development in HCC. In contrast to the treatment of early-stage HCC, the treatment options for advanced HCC are limited and prognosis is often poor, which contributes to this tumor type being the third leading cause of cancer-related deaths worldwide. Metronomic chemotherapy, which was originally designed to inhibit angiogenesis, involves low-dose chemotherapeutic agents administered in a frequent regular schedule with no prolonged breaks and minimizes severe toxicities. We reviewed the potential effects and impact of metronomic chemotherapy in preclinical studies with HCC models and in patients with advanced HCC, especially when combined with a molecular targeted agent. Metronomic chemotherapy involves multiple mechanisms that include antiangiogenesis and antivasculogenesis, immune stimulation by reducing regulatory T cells and inducing dendritic cell maturation, and possibly some direct tumor cell targeting effects, including the cancer stem cell subpopulation. The total number of preclinical studies with HCC models shows impressive results using metronomic chemotherapy-based protocols, especially in conjunction with molecular targeted agents. Four clinical trials and two case reports evaluating metronomic chemotherapy for HCC indicate it to be a safe and potentially useful treatment for HCC. Several preclinical and clinical HCC studies suggest that metronomic chemotherapy may become an alternative type of chemotherapy for advanced unresectable HCC and postsurgical adjuvant treatment of HCC.
Collapse
|
46
|
VEGF-A polymorphisms predict progression-free survival among advanced castration-resistant prostate cancer patients treated with metronomic cyclophosphamide. Br J Cancer 2013; 109:957-64. [PMID: 23860526 PMCID: PMC3749570 DOI: 10.1038/bjc.2013.398] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 01/26/2023] Open
Abstract
Background: No data are available on the pharmacogenetics of metronomic chemotherapy in prostate cancer. The aim of this study was to evaluate the association between VEGF-A sequence variants and prostate-specific antigen (PSA) progression, progression-free survival (PFS) and overall survival (OS), in advanced castration-resistant prostate cancer patients treated with metronomic cyclophosphamide (CTX), celecoxib and dexamethasone. Methods: Forty-three patients were enrolled, and genomic DNA was extracted. VEGF-A gene SNPs (−2578A/C, −634C/G, +936C/T) were analysed using TaqMan PCR assays. Hardy–Weinberg equilibrium was tested for each SNP, and genetic effects were evaluated by Fisher's exact test. PFS and OS were analysed with GraphPad Prism software, using the product limit method of Kaplan and Meier, and comparing survival curves using both the log-rank test and the Gehan–Wilcoxon test. We used Bonferroni correction to account for multiple testing, and a two-tailed P-value of <0.017 was considered statistically significant. Results: Overall, 20 patients (46%) experienced a reduction in PSA levels from baseline and, among them, 14 (32%) showed a confirmed PSA ≥50% decrease. In non-responders, the −2578CC genotype was more frequent (18.60% vs 2.33% in responders; P=0.0212) whereas the −634CC genotype frequency was 22.73% vs 0% in responders (P=0.0485). With regard to PFS, patients harbouring the −634CC genotype had a median PFS of 2.2 months whereas patients with the genotype −634CG/GG had a median PFS of 6.25 months (P=0.0042). Conclusion: The −634CC genotype is significantly associated with a shorter PFS in patients treated with a metronomic CTX schedule.
Collapse
|
47
|
Vives M, Ginestà MM, Gracova K, Graupera M, Casanovas O, Capellà G, Serrano T, Laquente B, Viñals F. Metronomic chemotherapy following the maximum tolerated dose is an effective anti-tumour therapy affecting angiogenesis, tumour dissemination and cancer stem cells. Int J Cancer 2013; 133:2464-72. [PMID: 23649709 DOI: 10.1002/ijc.28259] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 04/25/2013] [Indexed: 12/30/2022]
Abstract
In this article, the effectiveness of a multi-targeted chemo-switch (C-S) schedule that combines metronomic chemotherapy (MET) after treatment with the maximum tolerated dose (MTD) is reported. This schedule was tested with gemcitabine in two distinct human pancreatic adenocarcinoma orthotopic models and with cyclophosphamide in an orthotopic ovarian cancer model. In both models, the C-S schedule had the most favourable effect, achieving at least 80% tumour growth inhibition without increased toxicity. Moreover, in the pancreatic cancer model, although peritoneal metastases were observed in control and MTD groups, no dissemination was observed in the MET and C-S groups. C-S treatment caused a decrease in angiogenesis, and its effect on tumour growth was similar to that produced by the MTD followed by anti-angiogenic DC101 treatment. C-S treatment combined an increase in thrombospondin-1 expression with a decrease in the number of CD133+ cancer cells and triple-positive CD133+/CD44+/CD24+ cancer stem cells (CSCs). These findings confirm that the C-S schedule is a challenging clinical strategy with demonstrable inhibitory effects on tumour dissemination, angiogenesis and CSCs.
Collapse
Affiliation(s)
- Marta Vives
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, Hospital Duran i Reynals, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ferdous T, Harada K, Kin T, Harada T, Ueyama Y. Efficacy of schedule-dependent metronomic S-1 chemotherapy in human oral squamous cell carcinoma cells. Int J Oncol 2013; 43:271-9. [PMID: 23695365 DOI: 10.3892/ijo.2013.1950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/19/2013] [Indexed: 11/05/2022] Open
Abstract
Metronomic chemotherapy is based on administration of anticancer agents at low-doses at close regular intervals with no prolonged breaks, and aims to inhibit vascular endothelial cells as well as tumor cells. Recently, it was suggested that metronomic chemotherapy exerts anti-angiogenic effects by inducing thrombospondin-1 (TSP-1) and early growth response-1 (EGR-1), and antitumor effects by suppressing cancer stem cells. S-1 is a novel orally administered anticancer drug that is a combination of tegafur, 5-chloro-2, 4-dihydroxypyridine and oteracil potassium for maintaining efficacious concentrations of 5-FU and reducing the serious gastrointestinal toxicity associated with 5-FU. In the present study, we tried to determine the suitable administration method of S-1 against oral squamous cell carcinoma as a metronomic chemotherapy. We performed in vivo experiments in which tumor-bearing nude mice were used to examine the antitumor activity of S-1 (6.9 mg/kg). HSC2 tumors were treated with three different regimens, given as 4-week treatment and 2-week rest (4W-2W, 1 cycle); 2-week treatment and 1-week rest (2W-1W, 2 cycles); or alternate days treatment (1D-1D, 6 weeks). A fourth group served as control. Antitumor effects and body weight changes were compared in each group. Expression of TSP-1, EGR-1, CD31 and CD44 in HSC2 tumors was examined by immunohistochemistry. The treated groups showed higher tumor growth inhibition compared to the control group, and the relative tumor growth inhibition was not different between the treated groups. Briefly, each relative tumor growth inhibition was 32.4% (4W-2W), 39.6% (2W-1W) and 37.0% (1D-1D). During treatment periods, body weights were lower in the mice with 4W-2W or 2W-1W than 1D-1D or control. Moreover, reduction of microvessel density and CD44 expression, and induction of TSP-1 and EGR-1 expression was markedly seen in 1D-1D-treated tumors compared to 4W-2W-, 2W-1W-treated tumors or untreated control tumors by immunohistochemistry. These findings suggest that the 1D-1D regimen is more useful than the 4W-2W or 2W-1W regimen as a metronomic chemotherapy.
Collapse
Affiliation(s)
- Tarannum Ferdous
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | | | | | | | | |
Collapse
|
49
|
Romiti A, Cox MC, Sarcina I, Di Rocco R, D'Antonio C, Barucca V, Marchetti P. Metronomic chemotherapy for cancer treatment: a decade of clinical studies. Cancer Chemother Pharmacol 2013; 72:13-33. [PMID: 23475105 DOI: 10.1007/s00280-013-2125-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE Over the past few years, more and more new selective molecules directed against specific cellular targets have become available for cancer therapy, leading to impressive improvements. In this evolving scenario, a new way of delivering older cytotoxic drugs has also been developing. Many studies demonstrated that several cytotoxic drugs have antiangiogenic properties if administered frequently and at lower doses compared with standard schedules containing maximal tolerated doses (MTD). Such a new strategy, named metronomic chemotherapy, focuses on a different target: the slowly proliferating tumour endothelial cells. About 10 years ago, metronomic chemotherapy was firstly enunciated and hereafter many clinical experiences were published related to almost any cancer disease. This review analyses available studies dealing with metronomic chemotherapy and its combination with several targeted agents in solid tumours. METHODS A computerized literature search of MEDLINE was performed using the following search terms: metronomic OR "continuous low dose" AND chemotherapy AND cancer OR solid tumours. RESULTS Satisfactory results have been achieved in diverse tumour types, such as breast and prostate cancer or paediatric sarcomas. Moreover, many studies have reported that metronomic chemotherapy determined minimal toxicity compared to MTD chemotherapy. Overall, published series on metronomic schedules are very heterogeneous often reporting on retrospective data, while only very few studies were randomized trials. These limitations still prevent to draw definitive conclusions in diverse tumour types. CONCLUSIONS Large well-designed studies are eagerly awaited for confirming the promises of metronomic schedules and their combinations with targeted molecules.
Collapse
Affiliation(s)
- Adriana Romiti
- Department of Oncology, Faculty of Medicine and Psychology, Sapienza University, Sant' Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
The pharmacological bases of the antiangiogenic activity of paclitaxel. Angiogenesis 2013; 16:481-92. [PMID: 23389639 PMCID: PMC3682088 DOI: 10.1007/s10456-013-9334-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 01/15/2013] [Indexed: 11/03/2022]
Abstract
In the mid 1990s, researchers began to investigate the antiangiogenic activity of paclitaxel as a possible additional mechanism contributing to its antineoplastic activity in vivo. In the last decade, a number of studies showed that paclitaxel has antiangiogenic activity that could be ascribed to the inhibition of either tubule formation or cell migration, and to an antiproliferative effect towards activated endothelial cells. Furthermore, paclitaxel was shown to downregulate VEGF and Ang-1 expression in tumor cells, and to increase the secretion of TSP-1 in the tumor microenvironment. Moreover, the new pharmaceutical formulations of paclitaxel (such as liposome-encapsulated paclitaxel, ABI-007, and paclitaxel entrapped in emulsifying wax nanoparticles) enhanced the in vivo antiangiogenic activity of the drug. Thus, the preclinical data of paclitaxel may be exploited to implement a novel and rational therapeutic strategy to control tumor progression in patients.
Collapse
|