1
|
Arriagada C, Lin E, Schonning M, Astrof S. Mesodermal fibronectin controls cell shape, polarity, and mechanotransduction in the second heart field during cardiac outflow tract development. Dev Cell 2025; 60:62-84.e7. [PMID: 39413783 PMCID: PMC11706711 DOI: 10.1016/j.devcel.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Failure in the elongation of the cardiac outflow tract (OFT) results in congenital heart disease due to the misalignment of the great arteries with the left and right ventricles. The OFT lengthens via the accretion of progenitors from the second heart field (SHF). SHF cells are exquisitely regionalized and organized into an epithelial-like layer, forming the dorsal pericardial wall (DPW). Tissue tension, cell polarity, and proliferation within the DPW are important for the addition of SHF-derived cells to the heart and OFT elongation. However, the genes controlling these processes are not completely characterized. Using conditional mutagenesis in the mouse, we show that fibronectin (FN1) synthesized by the mesoderm coordinates multiple cellular behaviors in the anterior DPW. FN1 is enriched in the anterior DPW and plays a role in OFT elongation by maintaining a balance between pro- and anti-adhesive cell-extracellular matrix (ECM) interactions and controlling DPW cell shape, polarity, cohesion, proliferation, and mechanotransduction.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Evan Lin
- Princeton Day School, Princeton, NJ, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
2
|
Benwell CJ, Johnson RT, Taylor JAGE, Lambert J, Robinson SD. A proteomics approach to isolating neuropilin-dependent α5 integrin trafficking pathways: neuropilin 1 and 2 co-traffic α5 integrin through endosomal p120RasGAP to promote polarised fibronectin fibrillogenesis in endothelial cells. Commun Biol 2024; 7:629. [PMID: 38789481 PMCID: PMC11126613 DOI: 10.1038/s42003-024-06320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Integrin trafficking to and from membrane adhesions is a crucial mechanism that dictates many aspects of a cell's behaviour, including motility, polarisation, and invasion. In endothelial cells (ECs), the intracellular traffic of α5 integrin is regulated by both neuropilin 1 (NRP1) and neuropilin 2 (NRP2), yet the redundancies in function between these co-receptors remain unclear. Moreover, the endocytic complexes that participate in NRP-directed traffic remain poorly annotated. Here we identify an important role for the GTPase-activating protein p120RasGAP in ECs, promoting the recycling of α5 integrin from early endosomes. Mechanistically, p120RasGAP enables transit of endocytosed α5 integrin-NRP1-NRP2 complexes to Rab11+ recycling endosomes, promoting cell polarisation and fibronectin (FN) fibrillogenesis. Silencing of both NRP receptors, or p120RasGAP, resulted in the accumulation of α5 integrin in early endosomes, a loss of α5 integrin from surface adhesions, and attenuated EC polarisation. Endothelial-specific deletion of both NRP1 and NRP2 in the postnatal retina recapitulated our in vitro findings, severely impairing FN fibrillogenesis and polarised sprouting. Our data assign an essential role for p120RasGAP during integrin traffic in ECs and support a hypothesis that NRP receptors co-traffic internalised cargoes. Importantly, we utilise comparative proteomics analyses to isolate a comprehensive map of NRP1-dependent and NRP2-dependent α5 integrin interactions in ECs.
Collapse
Affiliation(s)
- Christopher J Benwell
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Robert T Johnson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - James A G E Taylor
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jordi Lambert
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen D Robinson
- Food Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
3
|
Arribas V, Onetti Y, Ramiro-Pareta M, Villacampa P, Beck H, Alberola M, Esteve-Codina A, Merkel A, Sperandio M, Martínez-Estrada OM, Schmid B, Montanez E. Endothelial TDP-43 controls sprouting angiogenesis and vascular barrier integrity, and its deletion triggers neuroinflammation. JCI Insight 2024; 9:e177819. [PMID: 38300714 PMCID: PMC11143933 DOI: 10.1172/jci.insight.177819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA-binding protein that regulates gene expression, and its malfunction in neurons has been causally associated with multiple neurodegenerative disorders. Although progress has been made in understanding the functions of TDP-43 in neurons, little is known about its roles in endothelial cells (ECs), angiogenesis, and vascular function. Using inducible EC-specific TDP-43-KO mice, we showed that TDP-43 is required for sprouting angiogenesis, vascular barrier integrity, and blood vessel stability. Postnatal EC-specific deletion of TDP-43 led to retinal hypovascularization due to defects in vessel sprouting associated with reduced EC proliferation and migration. In mature blood vessels, loss of TDP-43 disrupted the blood-brain barrier and triggered vascular degeneration. These vascular defects were associated with an inflammatory response in the CNS with activation of microglia and astrocytes. Mechanistically, deletion of TDP-43 disrupted the fibronectin matrix around sprouting vessels and reduced β-catenin signaling in ECs. Together, our results indicate that TDP-43 is essential for the formation of a stable and mature vasculature.
Collapse
Affiliation(s)
- Víctor Arribas
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Yara Onetti
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Marina Ramiro-Pareta
- Celltec-UB, Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, and
- Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Mariona Alberola
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angelika Merkel
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ofelia M. Martínez-Estrada
- Celltec-UB, Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, and
- Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| |
Collapse
|
4
|
Wan Q, Liu H, Xu Y, Zhang Q, Tao L. Upregulated miR-194-5p suppresses retinal microvascular endothelial cell dysfunction and mitigates the symptoms of hypertensive retinopathy in mice by targeting SOX17 and VEGF signaling. Cell Cycle 2023; 22:331-346. [PMID: 36200131 PMCID: PMC9851258 DOI: 10.1080/15384101.2022.2119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 04/05/2022] [Accepted: 08/11/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hypertensive retinopathy (HR) is a retinal disease that may lead to vision loss and blindness. Sex-determining region Y (SRY)-box (SOX) family transcription factors have been reported to be involved in HR development. In this study, the role and upstream mechanism of SRY-box transcription factor 17 (SOX17) in HR pathogenesis were investigated. METHODS SOX17 and miR-194-5p levels in Angiotensin II (Ang II)-stimulated human retinal microvascular endothelial cells (HRMECs) and retinas of mice were detected by RT-qPCR. SOX17 protein level as well as levels of tight junction proteins and vascular endothelial growth factor (VEGF) signaling-associated proteins were quantified by western blotting. Tube formation assays were performed to evaluate angiogenesis in HRMECs. The structure of mouse retinal tissues was observed by H&E staining. The interaction between miR-194-5p and SOX17 was confirmed by a luciferase reporter assay. RESULTS SOX17 was upregulated in HRMECs treated with Ang II. SOX17 knockdown inhibited angiogenesis in Ang II-stimulated HRMECs and increased tight junction protein levels. Mechanically, SOX17 was targeted by miR-194-5p. Moreover, miR-194-5p upregulation restrained angiogenesis and increased tight junction protein levels in Ang II-treated HRMECs, and the effect was reversed by SOX17 overexpression. MiR-194-5p elevation inactivated VEGF signaling via targeting SOX17. miR-194-5p alleviated pathological symptoms of HR in Ang II-treated mice, and its expression was negatively correlated with SOX17 expression in the retinas of model mice. CONCLUSIONS MiR-194-5p upregulation suppressed Ang II-stimulated HRMEC dysfunction and mitigates the symptoms of HR in mice by regulating the SOX17/VEGF signaling.
Collapse
Affiliation(s)
- Qianqian Wan
- Department of Ophthalmology, The Second Hospital of Anhui Medical University institution, Hefei, Anhui, China
| | - Heting Liu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University institution, Hefei, Anhui, China
| | - Yuxin Xu
- Department of Ophthalmology, The Second Hospital of Anhui Medical University institution, Hefei, Anhui, China
| | - Qing Zhang
- Department of Ophthalmology, The Second Hospital of Anhui Medical University institution, Hefei, Anhui, China
| | - Liming Tao
- Department of Ophthalmology, The Second Hospital of Anhui Medical University institution, Hefei, Anhui, China
| |
Collapse
|
5
|
Abstract
Vascular transplantation is an effective and common treatment for cardiovascular disease (CVD). However, the low biocompatibility of implants is a major problem that hinders its clinical application. Surface modification of implants with extracellular matrix (ECM) coatings is an effective approach to improve the biocompatibility of cardiovascular materials. The complete ECM seems to have better biocompatibility, which may give cardiovascular biomaterials a more functional surface. The use of one or several ECM proteins to construct a surface allows customization of coating composition and structure, possibly resulting in some unique functions. ECM is a complex three-dimensional structure composed of a variety of functional biological macromolecules, and changes in the composition will directly affect the function of the coating. Therefore, understanding the chemical composition of the ECM and its interaction with cells is beneficial to provide new approaches for coating surface modification. This article reviews novel ECM coatings, including coatings composed of intact ECM and biomimetic coatings tailored from several ECM proteins, and introduces new advances in coating fabrication. These ECM coatings are effective in improving the biocompatibility of vascular grafts.
Collapse
|
6
|
Belvedere R, Novizio N, Morello S, Petrella A. The combination of mesoglycan and VEGF promotes skin wound repair by enhancing the activation of endothelial cells and fibroblasts and their cross-talk. Sci Rep 2022; 12:11041. [PMID: 35773320 PMCID: PMC9247059 DOI: 10.1038/s41598-022-15227-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022] Open
Abstract
Skin wound healing requires accurate therapeutic topical managements to accelerate tissue regeneration. Here, for the first time, we found that the association mesoglycan/VEGF has a strong pro-healing activity. In detail, this combination induces angiogenesis in human endothelial cells promoting in turn fibroblasts recruitment. These ones acquire a notable ability to invade the matrigel coating and to secrete an active form of metalloproteinase 2 in presence of endothelial cells treated with mesoglycan/VEGF. Next, by creating intrascapular lesions on the back of C57Bl6 mice, we observed that the topical treatments with the mesoglycan/VEGF promotes the closure of wounds more than the single substances beside the control represented by a saline solution. As revealed by eosin/hematoxylin staining of mice skin biopsies, treatment with the combination mesoglycan/VEGF allows the formation of a well-structured matrix with a significant number of new vessels. Immunofluorescence analyses have revealed the presence of endothelial cells at the closed region of wounds, as evaluated by CD31, VE-cadherin and fibronectin staining and of activated fibroblasts assessed by vimentin, col1A and FAP1α. These results encourage defining the association mesoglycan/VEGF to activate endothelial and fibroblast cell components in skin wound healing promoting the creation of new vessels and the deposition of granulation tissue.
Collapse
Affiliation(s)
- Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy.
| | - Nunzia Novizio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy.
| |
Collapse
|
7
|
Contribution of Endothelial Laminin-Binding Integrins to Cellular Processes Associated with Angiogenesis. Cells 2022; 11:cells11050816. [PMID: 35269439 PMCID: PMC8909174 DOI: 10.3390/cells11050816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Endothelial cells engage extracellular matrix and basement membrane components through integrin-mediated adhesion to promote angiogenesis. Angiogenesis involves the sprouting of endothelial cells from pre-existing vessels, their migration into surrounding tissue, the upregulation of angiogenesis-associated genes, and the formation of new endothelial tubes. To determine whether the endothelial laminin-binding integrins, α6β4, and α3β1 contribute to these processes, we employed RNAi technology in organotypic angiogenesis assays, as well in migration assays, in vitro. The endothelial depletion of either α6β4 or α3β1 inhibited endothelial sprouting, indicating that these integrins have non-redundant roles in this process. Interestingly, these phenotypes were accompanied by overlapping and distinct changes in the expression of angiogenesis-associated genes. Lastly, depletion of α6β4, but not α3β1, inhibited migration. Taken together, these results suggest that laminin-binding integrins regulate processes associated with angiogenesis by distinct and overlapping mechanisms.
Collapse
|
8
|
Walji N, Kheiri S, Young EWK. Angiogenic Sprouting Dynamics Mediated by Endothelial-Fibroblast Interactions in Microfluidic Systems. Adv Biol (Weinh) 2021; 5:e2101080. [PMID: 34655165 DOI: 10.1002/adbi.202101080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/18/2021] [Indexed: 11/09/2022]
Abstract
Angiogenesis, the development of new blood vessels from existing vasculature, is a key process in normal development and pathophysiology. In vitro models are necessary for investigating mechanisms of angiogenesis and developing antiangiogenic therapies. Microfluidic cell culture models of angiogenesis are favored for their ability to recapitulate 3D tissue structures and control spatiotemporal aspects of the microenvironments. To capture the angiogenesis process, microfluidic models often include endothelial cells and a fibroblast component. However, the influence of fibroblast organization on resulting angiogenic behavior remains unclear. Here a comparative study of angiogenic sprouting on a microfluidic chip induced by fibroblasts in 2D monolayer, 3D dispersed, and 3D spheroid culture formats, is conducted. Vessel morphology and sprout distribution for each configuration are measured, and these observations are correlated with measurements of secreted factors and numerical simulations of diffusion gradients. The results demonstrate that angiogenic sprouting varies in response to fibroblast organization with correlating variations in secretory profile and secreted factor gradients across the microfluidic device. This study is anticipated to shed light on how sprouting dynamics are mediated by fibroblast configuration such that the microfluidic cell culture design process includes the selection of a fibroblast component where the effects are known and leveraged.
Collapse
Affiliation(s)
- Noosheen Walji
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.,Institute of Biomedical Engineering, University of Toronto, 160 College St., Toronto, M5S 3E1, Canada
| | - Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada
| | - Edmond W K Young
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.,Institute of Biomedical Engineering, University of Toronto, 160 College St., Toronto, M5S 3E1, Canada
| |
Collapse
|
9
|
Hensel JA, Heineman BD, Kimble AL, Jellison ER, Reese B, Murphy PA. Identification of splice regulators of fibronectin-EIIIA and EIIIB by direct measurement of exon usage in a flow-cytometry based CRISPR screen. Sci Rep 2021; 11:19835. [PMID: 34615942 PMCID: PMC8494765 DOI: 10.1038/s41598-021-99079-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
The extracellular matrix protein fibronectin (FN) is alternatively spliced in a variety of inflammatory conditions, resulting in increased inclusion of alternative exons EIIIA and EIIIB. Inclusion of these exons affects fibril formation, fibrosis, and inflammation. To define upstream regulators of alternative splicing in FN, we have developed an in vitro flow-cytometry based assay, using RNA-binding probes to determine alternative exon inclusion level in aortic endothelial cells. This approach allows us to detect exon inclusion in the primary transcripts themselves, rather than in surrogate splicing reporters. We validated this assay in cells with and without FN-EIIIA and -EIIIB expression. In a small-scale CRISPR KO screen of candidate regulatory splice factors, we successfully detected known regulators of EIIIA and EIIIB splicing, and detected several novel regulators. Finally, we show the potential in this approach to broadly interrogate upstream signaling pathways in aortic endothelial cells with a genome-wide CRISPR-KO screen, implicating the TNFalpha and RIG-I-like signaling pathways and genes involved in the regulation of fibrotic responses. Thus, we provide a novel means to screen the regulation of splicing of endogenous transcripts, and predict novel pathways in the regulation of FN-EIIIA inclusion.
Collapse
Affiliation(s)
| | | | - Amy L Kimble
- Center for Vascular Biology, UCONN Health, Farmington, CT, USA
| | | | - Bo Reese
- Institute for Systems Genomics - Center for Genome Innovation, UCONN, Storrs, CT, USA
| | - Patrick A Murphy
- Center for Vascular Biology, UCONN Health, Farmington, CT, USA. .,Center for Vascular Biology & Calhoun Cardiology Center, University of Connecticut Medical School, 263 Farmington Avenue, Farmingon, CT, 06030, USA.
| |
Collapse
|
10
|
Mechanical Aspects of Angiogenesis. Cancers (Basel) 2021; 13:cancers13194987. [PMID: 34638470 PMCID: PMC8508205 DOI: 10.3390/cancers13194987] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The formation of new blood vessels from already existing ones is a process of high clinical relevance, since it is of great importance for both physiological and pathological processes. In regard to tumors, the process is crucial, since it ensures the supply with nutrients and the growth of the tumor. The influence of mechanical factors on this biological process is an emerging field. Until now, the shear force of the blood flow has been considered the main mechanical parameter during angiogenesis. This review article provides an overview of further mechanical cues, with particular focus on the surrounding extracellular matrix impacting the cell behavior and, thus, regulating angiogenesis. This underlines the enormous importance of the mechanical properties of the extracellular matrix on cell biological processes and shows how changing the mechanics of the extracellular matrix could be used as a possible therapeutic approach in cancer therapy. Abstract Angiogenesis is of high clinical relevance as it plays a crucial role in physiological (e.g., tissue regeneration) and pathological processes (e.g., tumor growth). Besides chemical signals, such as VEGF, the relationship between cells and the extracellular matrix (ECM) can influence endothelial cell behavior during angiogenesis. Previously, in terms of the connection between angiogenesis and mechanical factors, researchers have focused on shear forces due to blood flow. However, it is becoming increasingly important to include the direct influence of the ECM on biological processes, such as angiogenesis. In this context, we focus on the stiffness of the surrounding ECM and the adhesion of cells to the ECM. Furthermore, we highlight the mechanical cues during the main stages of angiogenesis: cell migration, tip and stalk cells, and vessel stabilization. It becomes clear that the different stages of angiogenesis require various chemical and mechanical cues to be modulated by/modulate the stiffness of the ECM. Thus, changes of the ECM during tumor growth represent additional potential dysregulations of angiogenesis in addition to erroneous biochemical signals. This awareness could be the basis of therapeutic approaches to counteract specific processes in tumor angiogenesis.
Collapse
|
11
|
Henderson AR, Ilan IS, Lee E. A bioengineered lymphatic vessel model for studying lymphatic endothelial cell-cell junction and barrier function. Microcirculation 2021; 28:e12730. [PMID: 34569678 DOI: 10.1111/micc.12730] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Lymphatic vessels (LVs) maintain fluid homeostasis by draining interstitial fluid. A failure in lymphatic drainage triggers lymphatic diseases such as lymphedema. Since lymphatic drainage is regulated by lymphatic barrier function, developing experimental models that assess lymphatic barrier function is critical for better understanding of lymphatic physiology and disease. METHODS We built a lymphatic vessel-on-chip (LV-on-chip) by fabricating a microfluidic device that includes a hollow microchannel embedded in three-dimensional (3D) hydrogel. Employing luminal flow in the microchannel, human lymphatic endothelial cells (LECs) seeded in the microchannel formed an engineered LV exhibiting 3D conduit structure. RESULTS Lymphatic endothelial cells formed relatively permeable junctions in 3D collagen 1. However, adding fibronectin to the collagen 1 apparently tightened LEC junctions. We tested lymphatic barrier function by introducing dextran into LV lumens. While LECs in collagen 1 showed permeable barriers, LECs in fibronectin/collagen 1 showed reduced permeability, which was reversed by integrin α5 inhibition. Mechanistically, LECs expressed inactivated integrin α5 in collagen 1. However, integrin α5 is activated in fibronectin and enhances barrier function. Integrin α5 activation itself also tightened LEC junctions in the absence of fibronectin. CONCLUSIONS Lymphatic vessel-on-chip reveals integrin α5 as a regulator of lymphatic barrier function and provides a platform for studying lymphatic barrier function in various conditions.
Collapse
Affiliation(s)
- Aria R Henderson
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Isabelle S Ilan
- College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Zhang Y, Zhang Y, Kameishi S, Barutello G, Zheng Y, Tobin NP, Nicosia J, Hennig K, Chiu DKC, Balland M, Barker TH, Cavallo F, Holmgren L. The Amot/integrin protein complex transmits mechanical forces required for vascular expansion. Cell Rep 2021; 36:109616. [PMID: 34433061 DOI: 10.1016/j.celrep.2021.109616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Vascular development is a complex multistep process involving the coordination of cellular functions such as migration, proliferation, and differentiation. How mechanical forces generated by cells and transmission of these physical forces control vascular development is poorly understood. Using an endothelial-specific genetic model in mice, we show that deletion of the scaffold protein Angiomotin (Amot) inhibits migration and expansion of the physiological and pathological vascular network. We further show that Amot is required for tip cell migration and the extension of cellular filopodia. Exploiting in vivo and in vitro molecular approaches, we show that Amot binds Talin and is essential for relaying forces between fibronectin and the cytoskeleton. Finally, we provide evidence that Amot is an important component of the endothelial integrin adhesome and propose that Amot integrates spatial cues from the extracellular matrix to form a functional vascular network.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Yumeng Zhang
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Sumako Kameishi
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Yujuan Zheng
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - John Nicosia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katharina Hennig
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - David Kung-Chun Chiu
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier (Grenoble 1), Saint Martin d'Hères Cedex, 38402, France
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin 10126, Italy
| | - Lars Holmgren
- Department of Oncology-Pathology, Bioclinicum, Karolinska Institutet, Stockholm 17164, Sweden.
| |
Collapse
|
13
|
3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes Manuf 2021; 4:344-378. [PMID: 33425460 PMCID: PMC7779248 DOI: 10.1007/s42242-020-00109-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/24/2020] [Indexed: 01/31/2023]
Abstract
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine. Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels. Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues. The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering. Recent advances in 3D printing have facilitated fabrication of vascular scaffolds, contributing to broad prospects for tissue vascularization. This review presents state of the art on modeling methods, print materials and preparation processes for fabrication of vascular scaffolds, and discusses the advantages and application fields of each method. Specially, significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized. Print materials and preparation processes are discussed in detail. And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting, electrospinning, and Lego-like construction. And related studies are exemplified. Transformation of vascular scaffolds to clinical application is discussed. Also, four trends of 3D printing of tissue engineering vascular scaffolds are presented, including machine learning, near-infrared photopolymerization, 4D printing, and combination of self-assembly and 3D printing-based methods.
Collapse
|
14
|
Wirth F, Lubosch A, Hamelmann S, Nakchbandi IA. Fibronectin and Its Receptors in Hematopoiesis. Cells 2020; 9:cells9122717. [PMID: 33353083 PMCID: PMC7765895 DOI: 10.3390/cells9122717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Fibronectin is a ubiquitous extracellular matrix protein that is produced by many cell types in the bone marrow and distributed throughout it. Cells of the stem cell niche produce the various isoforms of this protein. Fibronectin not only provides the cells a scaffold to bind to, but it also modulates their behavior by binding to receptors on the adjacent hematopoietic stem cells and stromal cells. These receptors, which include integrins such as α4β1, α9β1, α4β7, α5β1, αvβ3, Toll-like receptor-4 (TLR-4), and CD44, are found on the hematopoietic stem cell. Because the knockout of fibronectin is lethal during embryonal development and because fibronectin is produced by almost all cell types in mammals, the study of its role in hematopoiesis is difficult. Nevertheless, strong and direct evidence exists for its stimulation of myelopoiesis and thrombopoiesis using in vivo models. Other reviewed effects can be deduced from the study of fibronectin receptors, which showed their activation modifies the behavior of hematopoietic stem cells. Erythropoiesis was only stimulated under hemolytic stress, and mostly late stages of lymphocytic differentiation were modulated. Because fibronectin is ubiquitously expressed, these interactions in health and disease need to be taken into account whenever any molecule is evaluated in hematopoiesis.
Collapse
Affiliation(s)
- Franziska Wirth
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Alexander Lubosch
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Stefan Hamelmann
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Inaam A. Nakchbandi
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-622-156-8744
| |
Collapse
|
15
|
FN-EDA mediates angiogenesis of hepatic fibrosis via integrin-VEGFR2 in a CD63 synergetic manner. Cell Death Discov 2020; 6:140. [PMID: 33293521 PMCID: PMC7722740 DOI: 10.1038/s41420-020-00378-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 01/13/2023] Open
Abstract
Pathological angiogenesis is an important component of hepatic fibrosis along with fibrous deposition, but its role is not well understood. Here, we demonstrated that fibronectin containing extra domain A(FN-EDA), a fibronectin splice variant highly expressed in hepatic fibrosis, mediated angiogenesis in disease progression. FN-EDA was positively correlated with pathological angiogenesis in hepatic fibrosis, and a reduction in FN-EDA expression was associated with diminished intrahepatic angiogenesis and fibrosis. FN-EDA mostly colocalized with hepatic stellate cells (HSCs) and interference or blockage of FN-EDA attenuated migration and tube formation in co-cultured endothelial cells. Mechanistic studies indicated that FN-EDA was secreted to promote phosphorylation of VEGFR2 with the assistance of integrin and CD63. Targeting FN-EDA-integrin combination postponed the progression of hepatic angiogenesis and fibrosis in vivo. These results indicated that FN-EDA plays an emerging role in angiogenesis in hepatic fibrosis and could be a potential therapeutic intervention for the disease.
Collapse
|
16
|
Tang X, Wang JJ, Wang J, Abboud HE, Chen Y, Zhang SX. Endothelium-specific deletion of Nox4 delays retinal vascular development and mitigates pathological angiogenesis. Angiogenesis 2020; 24:363-377. [PMID: 33201372 DOI: 10.1007/s10456-020-09757-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
NADPH oxidase 4 (Nox4) is a major isoform of NADPH oxidases playing an important role in many biological processes. Previously we have shown that Nox4 is highly expressed in retinal blood vessels and is upregulated in oxygen-induced retinopathy (OIR). However, the exact role of endothelial Nox4 in retinal angiogenesis remains elusive. Herein, using endothelial cell (EC)-specific Nox4 knockout (Nox4EC-KO) mice, we investigated the impact of endothelial Nox4 deletion on retinal vascular development and pathological angiogenesis during OIR. Our results show that deletion of Nox4 in ECs led to retarded retinal vasculature development with fewer, blunted-end tip cells and sparser, dysmorphic filopodia at vascular front, and reduced density of vascular network in superficial, deep, and intermediate layers in postnatal day 7 (P7), P12, and P17 retinas, respectively. In OIR, loss of endothelial Nox4 had no effect on hyperoxia-induced retinal vaso-obliteration at P9 but significantly reduced aberrant retinal neovascularization at P17 and decreased the deep layer capillary density at P25. Ex vivo study confirmed that lack of Nox4 in ECs impaired vascular sprouting. Mechanistically, loss of Nox4 significantly reduced expression of VEGF, p-VEGFR2, integrin αV, angiopoietin-2, and p-ERK1/2, attenuating EC migration and proliferation. Taken together, our results indicate that endothelial Nox4 is important for retinal vascular development and contributes to pathological angiogenesis, likely through regulation of VEGF/VEGFR2 and angiopoietin-2/integrin αV/ERK pathways. In addition, our study suggests that endothelial Nox4 appears to be essential for intraretinal revascularization after hypoxia. These findings call for caution on targeting endothelial Nox4 in ischemic/hypoxic retinal diseases.
Collapse
Affiliation(s)
- Xixiang Tang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.,SUNY Eye Institute, State University of New York, New York, NY, USA.,Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China.,VIP Medical Service Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Joshua J Wang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.,SUNY Eye Institute, State University of New York, New York, NY, USA
| | - Jinli Wang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.,SUNY Eye Institute, State University of New York, New York, NY, USA
| | - Hanna E Abboud
- Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center, San Antonio, TX, USA
| | - Yanming Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA. .,SUNY Eye Institute, State University of New York, New York, NY, USA. .,Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
17
|
Guo F, Cui J. CAR-T in solid tumors: Blazing a new trail through the brambles. Life Sci 2020; 260:118300. [DOI: 10.1016/j.lfs.2020.118300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
|
18
|
Santamaría R, González-Álvarez M, Delgado R, Esteban S, Arroyo AG. Remodeling of the Microvasculature: May the Blood Flow Be With You. Front Physiol 2020; 11:586852. [PMID: 33178049 PMCID: PMC7593767 DOI: 10.3389/fphys.2020.586852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
The vasculature ensures optimal delivery of nutrients and oxygen throughout the body, and to achieve this function it must continually adapt to varying tissue demands. Newly formed vascular plexuses during development are immature and require dynamic remodeling to generate well-patterned functional networks. This is achieved by remodeling of the capillaries preserving those which are functional and eliminating other ones. A balanced and dynamically regulated capillary remodeling will therefore ensure optimal distribution of blood and nutrients to the tissues. This is particularly important in pathological contexts in which deficient or excessive vascular remodeling may worsen tissue perfusion and hamper tissue repair. Blood flow is a major determinant of microvascular reshaping since capillaries are pruned when relatively less perfused and they split when exposed to high flow in order to shape the microvascular network for optimal tissue perfusion and oxygenation. The molecular machinery underlying blood flow sensing by endothelial cells is being deciphered, but much less is known about how this translates into endothelial cell responses as alignment, polarization and directed migration to drive capillary remodeling, particularly in vivo. Part of this knowledge is theoretical from computational models since blood flow hemodynamics are not easily recapitulated by in vitro or ex vivo approaches. Moreover, these events are difficult to visualize in vivo due to their infrequency and briefness. Studies had been limited to postnatal mouse retina and vascular beds in zebrafish but new tools as advanced microscopy and image analysis are strengthening our understanding of capillary remodeling. In this review we introduce the concept of remodeling of the microvasculature and its relevance in physiology and pathology. We summarize the current knowledge on the mechanisms contributing to capillary regression and to capillary splitting highlighting the key role of blood flow to orchestrate these processes. Finally, we comment the potential and possibilities that microfluidics offers to this field. Since capillary remodeling mechanisms are often reactivated in prevalent pathologies as cancer and cardiovascular disease, all this knowledge could be eventually used to improve the functionality of capillary networks in diseased tissues and promote their repair.
Collapse
Affiliation(s)
- Ricardo Santamaría
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María González-Álvarez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Raquel Delgado
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Esteban
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alicia G. Arroyo
- Department of Vascular Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
19
|
Han D, Yang J, Zhang E, Liu Y, Boriboun C, Qiao A, Yu Y, Sun J, Xu S, Yang L, Yan W, Luo B, Lu D, Zhang C, Jie C, Mobley J, Zhang J, Qin G. Analysis of mesenchymal stem cell proteomes in situ in the ischemic heart. Am J Cancer Res 2020; 10:11324-11338. [PMID: 33042285 PMCID: PMC7532665 DOI: 10.7150/thno.47893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
Rationale: Cell therapy for myocardial infarction is promising but largely unsuccessful in part due to a lack of mechanistic understanding. Techniques enabling identification of stem cell-specific proteomes in situ in the injured heart may shed light on how the administered cells respond to the injured microenvironment and exert reparative effects. Objective: To identify the proteomes of the transplanted mesenchymal stem cells (MSCs) in the infarcted myocardium, we sought to target a mutant methionyl-tRNA synthetase (MetRSL274G) in MSCs, which charges azidonorleucine (ANL), a methionine analogue and non-canonical amino acid, to tRNA and subsequently to nascent proteins, permitting isolation of ANL-labeled MSC proteomes from ischemic hearts by ANL-alkyne based click reaction. Methods and Results: Murine MSCs were transduced with lentivirus MetRSL274G and supplemented with ANL; the ANL-tagged nascent proteins were visualized by bio-orthogonal non-canonical amino-acid tagging, spanning all molecular weights and by fluorescent non-canonical amino-acid tagging, displaying strong fluorescent signal. Then, the MetRSL274G-transduced MSCs were administered to the infarcted or Sham heart in mice receiving ANL treatment. The MSC proteomes were isolated from the left ventricular protein lysates by click reaction at days 1, 3, and 7 after cell administration, identified by LC/MS. Among all identified proteins (in Sham and MI hearts, three time-points each), 648 were shared by all 6 groups, accounting for 82±5% of total proteins in each group, and enriched under mitochondrion, extracellular exosomes, oxidation-reduction process and poly(A) RNA binding. Notably, 26, 110 and 65 proteins were significantly up-regulated and 11, 28 and 19 proteins were down-regulated in the infarcted vs. Sham heart at the three time-points, respectively; these proteins are pronounced in the GO terms of extracellular matrix organization, response to stress and regulation of apoptotic process and in the KEGG pathways of complements and coagulation cascades, apoptosis, and regulators of actin cytoskeleton. Conclusions: MetRSL274G expression allows successful identification of MSC-specific nascent proteins in the infarcted hearts, which reflect the functional states, adaptive response, and reparative effects of MSCs that may be leveraged to improve cardiac repair.
Collapse
|
20
|
Liu Y, Liang S, Yang F, Sun Y, Niu L, Ren Y, Wang H, He Y, Du J, Yang J, Lin J. Biological characteristics of endometriotic mesenchymal stem cells isolated from ectopic lesions of patients with endometriosis. Stem Cell Res Ther 2020; 11:346. [PMID: 32771033 PMCID: PMC7414689 DOI: 10.1186/s13287-020-01856-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Research into the pathogenesis of endometriosis (EMs) would substantially promote its effective treatment and early diagnosis. However, the aetiology of EMs is poorly understood and controversial despite the progress in EMs research in the last several decades. Currently, accumulating evidence has shed light on the importance of endometrial stem cells (EnSCs) residing in the basal layer of endometrium in the establishment and progression of endometriotic lesions. Therefore, we aimed to identify the differences between EnSCs isolated from the ectopic lesions of EMs patients (EnSC-EM-EC) and EnSCs isolated from eutopic endometrium of control group (EnSC-Control). We further performed preliminary exploration of the potential signalling pathways involved in the above abnormalities. METHODS EnSC-EM-EC (n = 12) and EnSC-Control (n = 13) were successfully isolated. Then, the proliferative capacity, migratory capacity and angiogenic potential of EnSCs were evaluated by conventional MTT assay, flow cytometry, wound healing assay, transwell assay, tube formation assay and chick embryo chorioallantoic membrane assay respectively. The expression of 11 angiogenesis-associated biological factors and 11 cytokines secreted by EnSCs and 17 adhesion molecules expressed on EnSCs were determined by protein array assays respectively. Differentially expressed genes (DEGs) between EnSC-EM-EC and EnSC-Control were analysed by RNA-sequence. RESULTS EnSC-EM-EC exhibited unique biological characteristics, including prolonged mitosis, enhanced migratory capacity and enhanced angiogenic potential. Greater amounts of angiogenic factors (especially VEGF and PDGF) were secreted by EnSC-EM-EC than by EnSC-Control; however, the distinct profiles of cytokines secreted by EnSC-EM-EC and adhesion molecules expressed by EnSC-EM-EC require further investigation. A total of 523 DEGs between EnSC-EM-EC and EnSC-Control were identified and analysed using the KEGG and Gene Ontology databases. CONCLUSIONS Our results not only improve the understanding of EMs but also contribute to the development of EnSC-EM-EC as a tool for EMs drug discovery. These cells could be of great help in exploiting promising therapeutic targets and new biomarkers for EMs treatment and prognosis.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Shengying Liang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Fen Yang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lidan Niu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yakun Ren
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China
| | - Hongmei Wang
- The First Affiliated Hospital of Xinxiang Medical University, NO 88, JianKang Road, Weihui, Xinxiang City, 453100, Henan Province, China
| | - Yanan He
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jiang Du
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun Yang
- The First Affiliated Hospital of Xinxiang Medical University, NO 88, JianKang Road, Weihui, Xinxiang City, 453100, Henan Province, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China. .,Henan Key Laboratory of Medical Tissue Regeneration, NO 601, East of JinSui Road, Xinxiang City, 453003, Henan Province, China.
| |
Collapse
|
21
|
Xu H, Pumiglia K, LaFlamme SE. Laminin-511 and α6 integrins regulate the expression of CXCR4 to promote endothelial morphogenesis. J Cell Sci 2020; 133:jcs246595. [PMID: 32409567 DOI: 10.1242/jcs.246595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
During angiogenesis, endothelial cells engage components of the extracellular matrix through integrin-mediated adhesion. Endothelial expression of laminin-411 and laminin-511 is known to promote vessel stability. However, little is known about the contribution of these laminins to endothelial morphogenesis. We used two organotypic cell culture angiogenesis assays, in conjunction with RNAi approaches, to demonstrate that depletion of either the α4 chain of laminin-411 (LAMA4) or the α5 chain of laminin-511 (LAMA5) from endothelial cells inhibits sprouting and tube formation. Depletion of α6 (ITGA6) integrins resulted in similar phenotypes. Gene expression analysis indicated that loss of either laminin-511 or α6 integrins inhibited the expression of CXCR4, a gene previously associated with angiogenic endothelial cells. Pharmacological or RNAi-dependent inhibition of CXCR4 suppressed endothelial sprouting and morphogenesis. Importantly, expression of recombinant CXCR4 rescued endothelial morphogenesis when α6 integrin expression was inhibited. Additionally, the depletion of α6 integrins from established tubes resulted in the loss of tube integrity and laminin-511. Taken together, our results indicate that α6 integrins and laminin-511 can promote endothelial morphogenesis by regulating the expression of CXCR4 and suggest that the α6-dependent deposition of laminin-511 protects the integrity of established endothelial tubes.
Collapse
Affiliation(s)
- Hao Xu
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| | - Susan E LaFlamme
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| |
Collapse
|
22
|
Schwefel K, Spiegler S, Kirchmaier BC, Dellweg PKE, Much CD, Pané-Farré J, Strom TM, Riedel K, Felbor U, Rath M. Fibronectin rescues aberrant phenotype of endothelial cells lacking either CCM1, CCM2 or CCM3. FASEB J 2020; 34:9018-9033. [PMID: 32515053 DOI: 10.1096/fj.201902888r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Loss-of-function variants in CCM1/KRIT1, CCM2, and CCM3/PDCD10 are associated with autosomal dominant cerebral cavernous malformations (CCMs). CRISPR/Cas9-mediated CCM3 inactivation in human endothelial cells (ECs) has been shown to induce profound defects in cell-cell interaction as well as actin cytoskeleton organization. We here show that CCM3 inactivation impairs fibronectin expression and consequently leads to reduced fibers in the extracellular matrix. Despite the complexity and high molecular weight of fibronectin fibrils, our in vitro model allowed us to reveal that fibronectin supplementation restored aberrant spheroid formation as well as altered EC morphology, and suppressed actin stress fiber formation. Yet, fibronectin replacement neither enhanced the stability of tube-like structures nor inhibited the survival advantage of CCM3-/- ECs. Importantly, CRISPR/Cas9-mediated introduction of biallelic loss-of-function variants into either CCM1 or CCM2 demonstrated that the impaired production of a functional fibronectin matrix is a common feature of CCM1-, CCM2-, and CCM3-deficient ECs.
Collapse
Affiliation(s)
- Konrad Schwefel
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Bettina C Kirchmaier
- Institute of Cell Biology and Neuroscience, University of Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Frankfurt am Main, Germany
| | - Patricia K E Dellweg
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christiane D Much
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katharina Riedel
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Efthymiou G, Saint A, Ruff M, Rekad Z, Ciais D, Van Obberghen-Schilling E. Shaping Up the Tumor Microenvironment With Cellular Fibronectin. Front Oncol 2020; 10:641. [PMID: 32426283 PMCID: PMC7203475 DOI: 10.3389/fonc.2020.00641] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Normal tissue homeostasis and architecture restrain tumor growth. Thus, for a tumor to develop and spread, malignant cells must overcome growth-repressive inputs from surrounding tissue and escape immune surveillance mechanisms that curb cancer progression. This is achieved by promoting the conversion of a physiological microenvironment to a pro-tumoral state and it requires a constant dialog between malignant cells and ostensibly normal cells of adjacent tissue. Pro-tumoral reprogramming of the stroma is accompanied by an upregulation of certain extracellular matrix (ECM) proteins and their cognate receptors. Fibronectin (FN) is one such component of the tumor matrisome. This large multidomain glycoprotein dimer expressed over a wide range of human cancers is assembled by cell-driven forces into a fibrillar array that provides an obligate scaffold for the deposition of other matrix proteins and binding sites for functionalization by soluble factors in the tumor microenvironment. Encoded by a single gene, FN regulates the proliferation, motile behavior and fate of multiple cell types, largely through mechanisms that involve integrin-mediated signaling. These processes are coordinated by distinct isoforms of FN, collectively known as cellular FN (as opposed to circulating plasma FN) that arise through alternative splicing of the FN1 gene. Cellular FN isoforms differ in their solubility, receptor binding ability and spatiotemporal expression, and functions that have yet to be fully defined. FN induction at tumor sites constitutes an important step in the acquisition of biological capabilities required for several cancer hallmarks such as sustaining proliferative signaling, promoting angiogenesis, facilitating invasion and metastasis, modulating growth suppressor activity and regulating anti-tumoral immunity. In this review, we will first provide an overview of ECM reprogramming through tumor-stroma crosstalk, then focus on the role of cellular FN in tumor progression with respect to these hallmarks. Last, we will discuss the impact of dysregulated ECM on clinical efficacy of classical (radio-/chemo-) therapies and emerging treatments that target immune checkpoints and explore how our expanding knowledge of the tumor ECM and the central role of FN can be leveraged for therapeutic benefit.
Collapse
Affiliation(s)
| | - Angélique Saint
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.,Centre Antoine Lacassagne, Nice, France
| | - Michaël Ruff
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | - Zeinab Rekad
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | | | | |
Collapse
|
24
|
Conformationally active integrin endocytosis and traffic: why, where, when and how? Biochem Soc Trans 2020; 48:83-93. [PMID: 32065228 PMCID: PMC7054750 DOI: 10.1042/bst20190309] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
Abstract
Spatiotemporal control of integrin-mediated cell adhesion to the extracellular matrix (ECM) is critical for physiological and pathological events in multicellular organisms, such as embryonic development, angiogenesis, platelet aggregation, leukocytes extravasation, and cancer cell metastatic dissemination. Regulation of integrin adhesive function and signaling relies on the modulation of both conformation and traffic. Indeed, integrins exist in a dynamic equilibrium between a bent/closed (inactive) and an extended/open (active) conformation, respectively endowed with low and high affinity for ECM ligands. Increasing evidence proves that, differently to what hypothesized in the past, detachment from the ECM and conformational inactivation are not mandatory for integrin to get endocytosed and trafficked. Specific transmembrane and cytosolic proteins involved in the control of ECM proteolytic fragment-bound active integrin internalization and recycling exist. In the complex masterplan that governs cell behavior, active integrin traffic is key to the turnover of ECM polymers and adhesion sites, the polarized secretion of endogenous ECM proteins and modifying enzymes, the propagation of motility and survival endosomal signals, and the control of cell metabolism.
Collapse
|
25
|
Extracellular matrix: the gatekeeper of tumor angiogenesis. Biochem Soc Trans 2020; 47:1543-1555. [PMID: 31652436 DOI: 10.1042/bst20190653] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.
Collapse
|
26
|
A simplified aortic ring assay: A useful ex vivo method to assess biochemical and functional parameters of angiogenesis. Matrix Biol Plus 2020; 6-7:100025. [PMID: 33543023 PMCID: PMC7852198 DOI: 10.1016/j.mbplus.2020.100025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/27/2022] Open
Abstract
We present a simplified method for conducting aortic ring assays which yields robust sprouting and high reproducibility targeted towards matrix biologists studying angiogenesis and extracellular matrix signaling. Main adjustments from previously established protocols include embedding aortic rings between two layers of 3D type I collagen matrix and supplementing with vascular endothelial media. We also introduce a concise and effective staining protocol for obtaining high-resolution images of intracellular and extracellular matrix proteins along with a more accurate protocol to quantify angiogenesis. Importantly, we present a novel method to perform biochemical analyses of vessel sprouting without contamination from the aortic ring itself. Overall, our refined method enables detection of low abundance and phosphorylated proteins and provides a straightforward ex vivo angiogenic assay that can be easily reproduced by those in the matrix biology field. We report a simplified ex vivo aortic ring assay with enhanced sprouting. We use a two-layered 3D collagen matrix to encapsulate aortic rings. We obtain high-resolution images of intracellular and extracellular matrix proteins. We achieve reproducible biochemical and immunological analyses of aortic rings.
Collapse
Key Words
- Aortic rings
- Collagen
- DAPI, 4′,6-diamidine-2′-phenylindole dihydrochloride
- ECM, extracellular matrix
- Endothelial cell markers
- Extracellular matrix
- HA, hyaluronan
- HABP, HA-binding protein
- Hyaluronan binding protein
- IB4, Griffonia simplicifolia isolectin B4
- PBS, phosphate buffered saline
- PERK, protein kinase R-like endoplasmic reticulum kinase
- PFA, paraformaldehyde
- RIPA buffer, radioimmunoprecipitation assay buffer
- Sprouts
Collapse
|
27
|
Filla MS, Faralli JA, Desikan H, Peotter JL, Wannow AC, Peters DM. Activation of αvβ3 Integrin Alters Fibronectin Fibril Formation in Human Trabecular Meshwork Cells in a ROCK-Independent Manner. Invest Ophthalmol Vis Sci 2020; 60:3897-3913. [PMID: 31529121 PMCID: PMC6750892 DOI: 10.1167/iovs.19-27171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose Fibronectin fibrillogenesis is an integrin-mediated process that may contribute to the pathogenesis of primary open-angle glaucoma (POAG). Here, we examined the effects of αvβ3 integrins on fibrillogenesis in immortalized TM-1 cells and human trabecular meshwork (HTM) cells. Methods TM-1 cells overexpressing wild-type β3 (WTβ3) or constitutively active β3 (CAβ3) integrin subunits were generated. Control cells were transduced with an empty vector (EV). Deoxycholic acid (DOC) extraction of monolayers, immunofluorescence microscopy, and On-cell western analyses were used to determine levels of fibronectin fibrillogenesis and fibronectin fibril composition (EDA+ and EDB+ fibronectins) and conformation. αvβ3 and α5β1 Integrin levels were determined using fluorescence-activated cell sorting (FACS). Cilengitide and an adenovirus vector expressing WTβ3 or CAβ3 integrin subunits were used to examine the role of αvβ3 integrin in HTM cells. The role of the canonical α5β1 integrin–mediated pathway in fibrillogenesis was determined using the fibronectin-binding peptide FUD, the β1 integrin function-blocking antibody 13, and the Rho kinase (ROCK) inhibitor Y27632. Results Activation of αvβ3 integrin enhanced the assembly of fibronectin into DOC-insoluble fibrils in both TM-1 and HTM cells. The formation of fibronectin fibrils was dependent on α5β1 integrin and could be inhibited by FUD. However, fibrillogenesis was unaffected by Y27632. Fibrils assembled by CAβ3 cells also contained high levels of EDA+ and EDB+ fibronectin and fibronectin that was stretched. Conclusions αvβ3 Integrin signaling altered the deposition and structure of fibronectin fibrils using a β1 integrin/ROCK-independent mechanism. Thus, αvβ3 integrins could play a significant role in altering the function of fibronectin matrices in POAG.
Collapse
Affiliation(s)
- Mark S Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jennifer A Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Harini Desikan
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jennifer L Peotter
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Abigail C Wannow
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Donna M Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
28
|
Stoetzer M, Alevizakos V, Rahlf B, Gellrich NC, Kampmann A, von See C. The Impact of Different Augmentative Methods on the Expression of Inflammatory Factors. J ORAL IMPLANTOL 2019; 45:356-361. [PMID: 31536443 DOI: 10.1563/aaid-joi-d-19-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many animal studies show that an intact periosteum plays an important role in osseous regeneration. The potential effect of an in vivo periosteal barrier membrane on the expression of specific proteins has not been examined sufficiently. The aim of the present study is to investigate the influence of the flap preparation method and collagen membrane on the emission of inflammatory factors. This study examines 20 patients with dental implants who had previously undergone an augmentation. A soft tissue sample was taken during augmentation and 3 months later from the same location. Samples were always taken from the margins of a previously prepared mucoperiosteal flap. The flap was raised with a conventional periosteal elevator in the control group and with a piezoelectric device in the test group. In both groups, we covered half of the augmented bone with a native collagen membrane (NCM; Geistlich Bio-Gide). This allowed us to examine the same incision area with and without a membrane. An immunohistochemical analysis was performed for collagen IV, fibronectin, and inflammatory factors such as cluster of differentiation 31 (CD31), cyclooxygenase-2 (COX-2), and interleukin 6 (IL-6). There was a clear difference in the expression of specific proteins after the piezoelectric device and the periosteal elevator were used. The expression of fibronectin, IL-6, and COX-2 was higher after preparation with the periosteal elevator than after piezoelectric periosteum dissection. The expression of collagen IV was higher after the piezoelectric procedure. No difference was observed for CD31. The membrane had no effect on the expression of collagen IV, fibronectin, IL-6, and COX-2. The type of periosteal preparation influences the expression of specific proteins. With regard to the factors examined here, NCM did not appear to influence the wound healing cascade.
Collapse
Affiliation(s)
| | - Vasilios Alevizakos
- Danube Private University, Center for Digital Technologies in Dentistry and CAD/CAM, Krems an der Donau, Austria
| | | | | | | | - Constantin von See
- Danube Private University, Center for Digital Technologies in Dentistry and CAD/CAM, Krems an der Donau, Austria
| |
Collapse
|
29
|
Li X, Wu M, An D, Yuan H, Li Z, Song Y, Liu Z. Suppression of Tafazzin promotes thyroid cancer apoptosis via activating the JNK signaling pathway and enhancing INF2-mediated mitochondrial fission. J Cell Physiol 2019; 234:16238-16251. [PMID: 30741413 DOI: 10.1002/jcp.28287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 01/24/2023]
Abstract
Tafazzin has been found to be associated with tumor progression. Mitochondrial homeostasis regulates cancer cell viability and metastasis. However, the roles of Tafazzin and mitochondrial homeostasis in thyroid cancer have not been explored. The aim of our study is to investigate the influences of Tafazzin on thyroid cancer apoptosis with a focus on mitochondrial fission. Our results indicated that Tafazzin deletion induced death in thyroid cancer via apoptosis. Biological analysis demonstrated that mitochondrial stress, including mitochondrial bioenergetics disorder, mitochondrial oxidative stress, and mitochondrial apoptosis, was activated by Tafazzin deletion. Furthermore, we found that Tafazzin affected mitochondrial stress by triggering inverted formin 2 (INF2)-related mitochondrial fission. The loss of INF2 sustained mitochondrial function and promoted cancer cell survival. Molecular investigation illustrated that Tafazzin regulated INF2 expression via the JNK signaling pathway; moreover, the blockade of JNK prevented Tafazzin-mediated INF2 expression and improved cancer cell survival. Taken together, our results highlight the key role of Tafazzin as a master regulator of thyroid cancer viability via the modulation of INF2-related mitochondrial fission and the JNK signaling pathway. These findings defined Tafazzin deletion and INF2-related mitochondrial fission as tumor suppressors that act by promoting cancer apoptosis via the JNK signaling pathway, with potential implications for new approaches to thyroid cancer therapy.
Collapse
Affiliation(s)
- Xiaobin Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People' Republic of China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People' Republic of China
| | - Dawei An
- Department of Public Relations, Xinjiang Production and Construction Corps Hospital, Urumqi, People' Republic of China
| | - Hongwei Yuan
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People' Republic of China
| | - Zengze Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People' Republic of China
| | - Yimin Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People' Republic of China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People' Republic of China
| |
Collapse
|
30
|
Al-Yafeai Z, Yurdagul A, Peretik JM, Alfaidi M, Murphy PA, Orr AW. Endothelial FN (Fibronectin) Deposition by α5β1 Integrins Drives Atherogenic Inflammation. Arterioscler Thromb Vasc Biol 2019; 38:2601-2614. [PMID: 30354234 DOI: 10.1161/atvbaha.118.311705] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Alterations in extracellular matrix quantity and composition contribute to atherosclerosis, with remodeling of the subendothelial basement membrane to an FN (fibronectin)-rich matrix preceding lesion development. Endothelial cell interactions with FN prime inflammatory responses to a variety of atherogenic stimuli; however, the mechanisms regulating early atherogenic FN accumulation remain unknown. We previously demonstrated that oxLDL (oxidized low-density lipoprotein) promotes endothelial proinflammatory gene expression by activating the integrin α5β1, a classic mediator of FN fibrillogenesis. Approach and Results- We now show that oxLDL drives robust endothelial FN deposition and inhibiting α5β1 (blocking antibodies, α5 knockout cells) completely inhibits oxLDL-induced FN deposition. Consistent with this, inducible endothelial-specific α5 integrin deletion in ApoE knockout mice significantly reduces atherosclerotic plaque formation, associated with reduced early atherogenic inflammation. Unlike TGFβ (transforming growth factor β)-induced FN deposition, oxLDL does not induce FN expression (mRNA, protein) or the endothelial-to-mesenchymal transition phenotype. In addition, we show that cell-derived and plasma-derived FN differentially affect endothelial function, with only cell-derived FN capable of supporting oxLDL-induced VCAM-1 (vascular cell adhesion molecule 1) expression, despite plasma FN deposition by oxLDL. The inclusion of alternative exon EIIIA (EDA) of FN (EIIIA) and alternative exon EIIIB (EDB) of FN (EIIIB) domains in cell-derived FN mediates this effect, as EIIIA/EIIIB knockout endothelial cells show diminished oxLDL-induced inflammation. Furthermore, our data suggest that EIIIA/EIIIB-positive cellular FN is required for maximal α5β1 recruitment to focal adhesions and FN fibrillogenesis. Conclusions- Taken together, our data demonstrate that endothelial α5 integrins drive oxLDL-induced FN deposition and early atherogenic inflammation. Additionally, we show that α5β1-dependent endothelial FN deposition mediates oxLDL-dependent endothelial inflammation and FN fibrillogenesis.
Collapse
Affiliation(s)
- Zaki Al-Yafeai
- From the Department of Cellular and Molecular Physiology (Z.A.-Y., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Arif Yurdagul
- Department of Cell Biology and Anatomy (A.Y., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Jonette M Peretik
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| | - Patrick A Murphy
- Center for Vascular Biology, UConn Health, Farmington, CT (P.A.M.)
| | - A Wayne Orr
- From the Department of Cellular and Molecular Physiology (Z.A.-Y., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Department of Cell Biology and Anatomy (A.Y., A.W.O.), LSU Health Sciences Center, Shreveport, LA.,Department of Pathology and Translational Pathobiology (J.M.P., M.A., A.W.O.), LSU Health Sciences Center, Shreveport, LA
| |
Collapse
|
31
|
Geng C, Wei J, Wu C. Mammalian STE20-like Kinase 1 Knockdown Attenuates TNFα-Mediated Neurodegenerative Disease by Repressing the JNK Pathway and Mitochondrial Stress. Neurochem Res 2019; 44:1653-1664. [PMID: 30949935 DOI: 10.1007/s11064-019-02791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
Neuroinflammation has been acknowledged as a primary factor contributing to the pathogenesis of neurodegenerative disease. However, the molecular mechanism underlying inflammation stress-mediated neuronal dysfunction is not fully understood. The aim of our study was to explore the influence of mammalian STE20-like kinase 1 (Mst1) in neuroinflammation using TNFα and CATH.a cells in vitro. The results of our study demonstrated that the expression of Mst1 was dose-dependently increased after TNFα treatment. Interestingly, knockdown of Mst1 using siRNA transfection significantly repressed TNFα-induced neuronal death. We also found that TNFα treatment was associated with mitochondrial stress, including mitochondrial ROS overloading, mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential reduction, and mitochondrial pro-apoptotic factor release. Interestingly, loss of Mst1 attenuated TNFα-triggered mitochondrial stress and sustained mitochondrial function in CATH.a cells. We found that Mst1 modulated mitochondrial homeostasis and cell viability via the JNK pathway in a TNFα-induced inflammatory environment. Inhibition of the JNK pathway abolished TNFα-mediated CATH.a cell death and mitochondrial malfunction, similar to the results obtained via silencing of Mst1. Taken together, our results indicate that inflammation-mediated neuronal dysfunction is implicated in Mst1 upregulation, which promotes mitochondrial stress and neuronal death by activating the JNK pathway. Accordingly, our study identifies the Mst1-JNK-mitochondria axis as a novel signaling pathway involved in neuroinflammation.
Collapse
Affiliation(s)
- Chizi Geng
- Neurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Jianchao Wei
- Neurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chengsi Wu
- Neurology Department, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Song J, Zhao W, Lu C, Shao X. LATS2 overexpression attenuates the therapeutic resistance of liver cancer HepG2 cells to sorafenib-mediated death via inhibiting the AMPK-Mfn2 signaling pathway. Cancer Cell Int 2019; 19:60. [PMID: 30923462 PMCID: PMC6423758 DOI: 10.1186/s12935-019-0778-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/08/2019] [Indexed: 12/21/2022] Open
Abstract
Background Effective therapy for hepatocellular carcinoma (HCC) is currently an imperative issue, and sorafenib is a first-line drug for the treatment of HCC. However, the clinical benefit of sorafenib is often impaired by drug resistance. Accordingly, the present study was conducted to investigate the molecular mechanisms involving sorafenib resistance, with a focus on large tumor suppressor 2 (LATS2) and mitophagy. Methods HepG2 liver cancer cells were treated with sorafenib and infected with adenovirus-loaded LATS2 (Ad-LATS2). Cell death, proliferation and migration were measured via western blotting analysis, immunofluorescence and qPCR. Mitochondrial function and mitophagy were determined via western blotting and immunofluorescence. Results Our data indicated that LATS2 expression was repressed by sorafenib treatment, and overexpression of LATS2 could further enhance sorafenib-mediated apoptosis in HepG2 liver cancer cells. At the molecular level, mitochondrial stress was triggered by sorafenib treatment, as evidenced by decreased mitochondrial membrane potential, increased mitochondrial ROS production, more cyc-c release into the nucleus, and elevated mitochondrial pro-apoptotic proteins. However, in response to mitochondrial damage, mitophagy was activated by sorafenib treatment, whereas LATS2 overexpression effectively inhibited mitophagy activity and thus augmented sorafenib-mediated mitochondrial stress. Subsequently, we also demonstrated that the AMPK–MFN2 signaling pathway was involved in mitophagy regulation after exposure to sorafenib treatment and/or LATS2 overexpression. Inhibition of the AMPK pathway interrupted mitophagy and thus enhanced the antitumor property of sorafenib, similar to the results obtained via overexpression of LATS2. Conclusions Altogether, our findings revealed the importance of the LATS2/AMPK/MFN2/mitophagy axis in understanding sorafenib resistance mechanisms, with a potential application to increase the sensitivity response of sorafenib in the treatment of liver cancer.
Collapse
Affiliation(s)
- Jie Song
- 1Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Wei Zhao
- 2Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Chang Lu
- 3Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, 130000 China
| | - Xue Shao
- 1Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, 130000 China
| |
Collapse
|
33
|
Melatonin enhances TNF-α-mediated cervical cancer HeLa cells death via suppressing CaMKII/Parkin/mitophagy axis. Cancer Cell Int 2019; 19:58. [PMID: 30923460 PMCID: PMC6419493 DOI: 10.1186/s12935-019-0777-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Background Tumor necrosis factor-α (TNF-α) immunotherapy controls the progression of human cervical cancer. Here, we explored the detailed molecular mechanisms played by melatonin in human cervical cancer (HeLa cells) death in the presence of TNF-α injury, with a particular attention to the mitochondrial homeostasis. Methods HeLa cells were incubated with TNFα and then cell death was determined via MTT assay, TUNEL staining, caspase ELISA assay and western blotting. Mitochondrial function was detected via analyzing mitochondrial membrane potential using JC-1 staining, mitochondrial oxidative stress using flow cytometry and mitochondrial apoptosis using western blotting. Results Our data exhibited that treatment with HeLa cells using melatonin in the presence of TNF-α further triggered cancer cell cellular death. Molecular investigation demonstrated that melatonin enhanced the caspase-9 mitochondrion death, repressed mitochondrial potential, increased ROS production, augmented mPTP opening rate and elevated cyt-c expression in the nucleus. Moreover, melatonin application further suppressed mitochondrial ATP generation via reducing the expression of mitochondrial respiratory complex. Mechanistically, melatonin augmented the response of HeLa cells to TNF-α-mediated cancer death via repressing mitophagy. TNF-α treatment activated mitophagy via elevating Parkin expression and excessive mitophagy blocked mitochondrial apoptosis, ultimately alleviating the lethal action of TNF-α on HeLa cell. However, melatonin supplementation could prevent TNF-α-mediated mitophagy activation via inhibiting Parkin in a CaMKII-dependent manner. Interestingly, reactivation of CaMKII abolished the melatonin-mediated mitophagy arrest and HeLa cell death. Conclusions Overall, our data highlight that melatonin enhances TNF-α-induced human cervical cancer HeLa cells mitochondrial apoptosis via inactivating the CaMKII/Parkin/mitophagy axis.
Collapse
|
34
|
Yap-Hippo promotes A549 lung cancer cell death via modulating MIEF1-related mitochondrial stress and activating JNK pathway. Biomed Pharmacother 2019; 113:108754. [PMID: 30875659 DOI: 10.1016/j.biopha.2019.108754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/31/2022] Open
Abstract
Although the role of Yes-associated protein (Yap) has been described in the progression of lung cancer, the downstream effector of the Yap-Hippo pathway has not been identified. Accordingly, the aim of our study is to explore whether Yap modulates the activity of lung cancer by controlling mitochondrial elongation factor 1 (MIEF1)-related mitochondrial stress in a manner dependent on the JNK pathway. Cell viability was determined via MTT, LDH release and immunofluorescence assays. ATP production, the mitochondrial membrane potential, and caspase-9 activity were investigated to assess mitochondrial function. siRNA transfection and pathway blockers were used to observe the roles of MIEF1 and JNK in Yap-modulated cell viability in lung cancer cells in vitro. Yap deletion reduced cell viability in A549 and H358 lung cancer cells. At the molecular level, Yap deletion promoted mitochondrial dysfunction, as evidenced by the decreased mitochondrial potential, increased mitochondrial oxidative stress, augmented mitochondrial pro-apoptotic factor leakage and elevated caspase-9 activity. In addition, we found that Yap modulated mitochondrial stress via MIEF1 and that loss of MIEF1 abolished the regulatory actions of Yap on mitochondrial stress and cell viability. Besides, we provided evidence to support the necessary role of JNK in Yap-mediated MIEF1 upregulation. Inhibition of JNK abolished the promotive effect of Yap deletion on MIEF1 activation. Taken together, our results identified the JNK-MIEF1 pathway and mitochondrial stress as downstream effectors of Yap in lung cancer. This finding suggests a novel approach for the treatment of lung cancer in clinical practice.
Collapse
|
35
|
Zhou J, Shi M, Li M, Cheng L, Yang J, Huang X. Sirtuin 3 inhibition induces mitochondrial stress in tongue cancer by targeting mitochondrial fission and the JNK-Fis1 biological axis. Cell Stress Chaperones 2019; 24:369-383. [PMID: 30656603 PMCID: PMC6439076 DOI: 10.1007/s12192-019-00970-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 12/30/2022] Open
Abstract
Sirtuin 3 (Sirt3)-modified mitochondrial fission participates in the progression of several types of cancers. However, its role in tongue cancer requires investigation. The aim of our study is to determine whether Sirt3 knockdown regulates the viability of tongue cancer cells via modulating mitochondrial fission. Two types of tongue cancer cells were used in the present study, and siRNA was transfected into the cells to suppress Sirt3 expression. Mitochondrial function and cell apoptosis were determined via immunofluorescence, Western blotting, ELISA, and qPCR assays. A pathway blocker was applied to verify the role of the JNK-Fis1 signaling pathway in regulation of mitochondrial fission. The present study showed that loss of Sirt3 promoted tongue cancer cell death in a manner dependent on mitochondrial apoptosis. Mitochondrial oxidative stress, energy metabolism disorder, mitochondrial cyt-c liberation, and mitochondrial apoptosis activation were observed after Sirt3 silencing. Furthermore, we demonstrated that Sirt3 knockdown activated mitochondrial stress via triggering Fis1-related mitochondrial fission and that inhibition of Fis1-related mitochondrial fission abrogated the pro-apoptotic effect of Sirt3 knockdown on tongue cancer cells. To this end, we found that Sirt3 modulated Fis1 expression via the c-Jun N-terminal kinases (JNK) signaling pathway and that blockade of the JNK pathway attenuated mitochondrial stress and repressed apoptosis in Sirt3 knockdown cells. Altogether, our results identified a tumor-suppressive role for Sirt3 deficiency in tongue cancer via activation of the JNK-Fis1 axis and subsequent initiation of fatal mitochondrial fission. Given these findings, strategies to repress Sirt3 activity and enhance the JNK-Fis1-mitochondrial fission cascade have clinical benefits for patients with tongue cancer.
Collapse
Affiliation(s)
- Jichi Zhou
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Menghan Shi
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Man Li
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Long Cheng
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Jinsuo Yang
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China
| | - Xin Huang
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Tiantanxili 4, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
36
|
Soubies E, Radwanska A, Grall D, Blanc-Féraud L, Van Obberghen-Schilling E, Schaub S. Nanometric axial resolution of fibronectin assembly units achieved with an efficient reconstruction approach for multi-angle-TIRF microscopy. Sci Rep 2019; 9:1926. [PMID: 30760745 PMCID: PMC6374485 DOI: 10.1038/s41598-018-36119-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
High resolution imaging of molecules at the cell-substrate interface is required for understanding key biological processes. Here we propose a complete pipeline for multi-angle total internal reflection fluorescence microscopy (MA-TIRF) going from instrument design and calibration procedures to numerical reconstruction. Our custom setup is endowed with a homogeneous field illumination and precise excitation beam angle. Given a set of MA-TIRF acquisitions, we deploy an efficient joint deconvolution/reconstruction algorithm based on a variational formulation of the inverse problem. This algorithm offers the possibility of using various regularizations and can run on graphics processing unit (GPU) for rapid reconstruction. Moreover, it can be easily used with other MA-TIRF devices and we provide it as an open-source software. This ensemble has enabled us to visualize and measure with unprecedented nanometric resolution, the depth of molecular components of the fibronectin assembly machinery at the basal surface of endothelial cells.
Collapse
Affiliation(s)
- Emmanuel Soubies
- Université Côte d'Azur, CNRS, Inria, I3S, France. .,Biomedical Imaging Group, EPFL, Lausanne, Switzerland.
| | | | | | | | | | - Sébastien Schaub
- Université Côte d'Azur, CNRS, Inria, I3S, France. .,Université Côte d'Azur, CNRS, Inserm, iBV, France.
| |
Collapse
|
37
|
Wei B, Wang M, Hao W, He X. Mst1 facilitates hyperglycemia-induced retinal pigmented epithelial cell apoptosis by evoking mitochondrial stress and activating the Smad2 signaling pathway. Cell Stress Chaperones 2019; 24:259-272. [PMID: 30632063 PMCID: PMC6363619 DOI: 10.1007/s12192-018-00963-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023] Open
Abstract
Hyperglycemia induces retinal pigmented epithelial cell apoptosis and mitochondrial stress via poorly understood mechanisms. The goal of our current study is to explore whether mammalian sterile 20-like kinase 1 (Mst1) is involved in the pathogenesis of hyperglycemia-mediated retinal pigmented epithelial cell apoptosis by triggering mitochondrial abnormalities and activating the Smad2 signaling pathway. Retinal pigmented epithelial ARPE-19 cells were presented with a high-glucose challenge in vitro. Cell viability and apoptosis were measured via western blotting, ELISAs, and immunofluorescence assays. Mitochondrial function was detected via JC-1 staining, mitochondrial ROS flow cytometry, western blotting, and ELISAs. Loss- and gain-of-function assays were performed via cell transfection and transduction with Mst1 siRNA and Smad2 adenovirus, respectively. The results indicated that hyperglycemia treatment upregulated the levels of Mst1, an effect that was accompanied by an increase in ARPE-19 cell apoptosis. Loss of Mst1 attenuated hyperglycemia-induced cell apoptosis, and this effect seemed to be associated with mitochondrial protection. In response to hyperglycemia stimulus, mitochondrial stress was noted in ARPE-19 cells, including mitochondrial ROS overproduction, mitochondrial respiratory metabolism dysfunction, mitochondrial fission/fusion imbalance, and mitochondrial apoptosis activation. Further, we provided evidence to support the crucial role played by Smad2 in promoting Mst1-mediated cell apoptosis and mitochondrial stress. Overexpression of Smad2 abrogated the beneficial effects of Mst1 deletion on ARPE-19 cell viability and mitochondrial protection. Altogether, our results identified Mst1 as a novel mediator controlling the fate of retinal pigmented epithelial cells and mitochondrial homeostasis via the Smad2 signaling pathway. Based on this finding, strategies to repress Mst1 upregulation and block Smad2 activation are vital to alleviate hyperglycemia-mediated retinal pigmented epithelial cell damage.
Collapse
Affiliation(s)
- Bing Wei
- Department of Medicine, He University, No.66, Sishui Street, Hunnan District, Shenyang City, Liaoning Province, China
| | - Min Wang
- Department of Medicine, He University, No.66, Sishui Street, Hunnan District, Shenyang City, Liaoning Province, China
| | - Wei Hao
- Department of Medicine, He University, No.66, Sishui Street, Hunnan District, Shenyang City, Liaoning Province, China
| | - Xiangdong He
- Department of Medicine, He University, No.66, Sishui Street, Hunnan District, Shenyang City, Liaoning Province, China.
| |
Collapse
|
38
|
Sinibaldi A, Montaño-Machado V, Danz N, Munzert P, Chiavaioli F, Michelotti F, Mantovani D. Real-Time Study of the Adsorption and Grafting Process of Biomolecules by Means of Bloch Surface Wave Biosensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33611-33618. [PMID: 30152997 DOI: 10.1021/acsami.8b08335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A combined label-free and fluorescence surface optical technique was used to quantify the mass deposited in binary biomolecular coatings. These coatings were constituted by fibronectin (FN), to stimulate endothelialization, and phosphorylcholine (PRC), for its hemocompatibility, which are two properties of relevance for cardiovascular applications. One-dimensional photonic crystals sustaining a Bloch surface wave were used to characterize different FN/PRC coatings deposited by a combination of adsorption and grafting processes. In particular, the label-free results permitted to quantitatively assess the mass deposited in FN adsorbed (185 ng/cm2) and grafted (160 ng/cm2). PRC binding to grafted FN coatings was also quantified, showing a coverage as low as 10 and 12 ng/cm2 for adsorbed and grafted PRC, respectively. Moreover, desorption of FN deposited by adsorption was detected and quantified upon the addition of PRC. The data obtained by the surface optical technique were complemented by water contact angle and X-ray photoelectron spectroscopy (XPS) analyses. The results were in accordance with those obtained previously by qualitative and semiquantitative techniques (XPS, time-of-flight secondary ion mass spectrometry) on several substrates (PTFE and stainless steel), confirming that grafted FN coatings show higher stability than those obtained by FN adsorption.
Collapse
Affiliation(s)
- A Sinibaldi
- Department of Basic and Applied Science for Engineering , SAPIENZA University of Rome , 00161 Rome , Italy
| | - V Montaño-Machado
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center , Laval University , Quebec City G1V0A6 , Canada
| | - N Danz
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF , 07745 Jena , Germany
| | - P Munzert
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF , 07745 Jena , Germany
| | - F Chiavaioli
- Institute of Applied Physics "Nello Carrara" (IFAC), National Research Council of Italy (CNR) , Sesto Fiorentino, 50019 Firenze , Italy
| | - F Michelotti
- Department of Basic and Applied Science for Engineering , SAPIENZA University of Rome , 00161 Rome , Italy
| | - D Mantovani
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center , Laval University , Quebec City G1V0A6 , Canada
| |
Collapse
|