1
|
Pan Z, Yao Q, Kong W, Ma X, Tian L, Zhao Y, Zhu S, Chen S, Sun M, Liu J, Jiang S, Ma J, Liu Q, Peng X, Li X, Hong Z, Hong Y, Wang X, Liu J, Zhang J, Zhang W, Sun B, Pahlavan S, Xia Y, Shen W, Liu Y, Jiang W, Xie Z, Kong W, Wang X, Wang K. Generation of iPSC-derived human venous endothelial cells for the modeling of vascular malformations and drug discovery. Cell Stem Cell 2024:S1934-5909(24)00377-1. [PMID: 39579761 DOI: 10.1016/j.stem.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Venous malformations (VMs) represent prevalent vascular anomalies typically attributed to non-inherited somatic mutations within venous endothelial cells (VECs). The lack of robust disease models for VMs impedes drug discovery. Here, we devise a robust protocol for the generation of human induced VECs (iVECs) through manipulation of cell-cycle dynamics via the retinoic signaling pathway. We introduce an L914F mutation into the TIE2 gene locus of induced pluripotent stem cells (iPSCs) and show that the mutated iVECs form dilated blood vessels after transplantation into mice, thereby recapitulating the phenotypic characteristics observed in VMs. Moreover, utilizing a deep neural network and a high-throughput digital RNA with perturbation of genes sequencing (DRUG-seq) approach, we perform drug screening and demonstrate that bosutinib effectively rescues the disease phenotype in vitro and in vivo. In summary, by leveraging genome editing and stem cell technology, we generate VM models that enable the development of additional therapeutics.
Collapse
Affiliation(s)
- Zihang Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Qiyang Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Weijing Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xiaojing Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Liangliang Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yun Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Shuntian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Sheng Chen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengze Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, China
| | - Simin Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jianxun Ma
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Qijia Liu
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Xiaohong Peng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xiaoxia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Zixuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yi Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xue Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jiarui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Bingbing Sun
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Youchen Xia
- Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Weimin Shen
- Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuyong Liu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Wenjian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China.
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China.
| |
Collapse
|
2
|
Morin GM, Zerbib L, Kaltenbach S, Fraissenon A, Balducci E, Asnafi V, Canaud G. PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. Annu Rev Genomics Hum Genet 2024; 25:211-237. [PMID: 38316164 DOI: 10.1146/annurev-genom-121222-114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.
Collapse
Affiliation(s)
- Gabriel M Morin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- CREATIS, CNRS UMR 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
- Service d'Imagerie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Estelle Balducci
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
3
|
Stor MLE, Horbach SER, Lokhorst MM, Tan E, Maas SM, van Noesel CJM, van der Horst CMAM. Genetic mutations and phenotype characteristics in peripheral vascular malformations: A systematic review. J Eur Acad Dermatol Venereol 2024; 38:1314-1328. [PMID: 38037869 DOI: 10.1111/jdv.19640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 12/02/2023]
Abstract
Vascular malformations (VMs) are clinically diverse with regard to the vessel type, anatomical location, tissue involvement and size. Consequently, symptoms and disease impact differ significantly. Diverse causative mutations in more and more genes are discovered and play a major role in the development of VMs. However, the relationship between the underlying causative mutations and the highly variable phenotype of VMs is not yet fully understood. In this systematic review, we aimed to provide an overview of known causative mutations in genes in VMs and discuss associations between the causative mutations and clinical phenotypes. PubMed and EMBASE libraries were systematically searched on November 9th, 2022 for randomized controlled trials and observational studies reporting causative mutations in at least five patients with peripheral venous, lymphatic, arteriovenous and combined malformations. Study quality was assessed with the Newcastle-Ottawa Scale. Data were extracted on patient and VM characteristics, molecular sequencing method and results of molecular analysis. In total, 5667 articles were found of which 69 studies were included, reporting molecular analysis in a total of 4261 patients and 1686 (40%) patients with peripheral VMs a causative mutation was detected. In conclusion, this systematic review provides a comprehensive overview of causative germline and somatic mutations in various genes and associated phenotypes in peripheral VMs. With these findings, we attempt to better understand how the underlying causative mutations in various genes contribute to the highly variable clinical characteristics of VMs. Our study shows that some causative mutations lead to a uniform phenotype, while other causal variants lead to more varying phenotypes. By contrast, distinct causative mutations may lead to similar phenotypes and result in almost indistinguishable VMs. VMs are currently classified based on clinical and histopathology features, however, the findings of this systematic review suggest a larger role for genotype in current diagnostics and classification.
Collapse
Affiliation(s)
- M L E Stor
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - S E R Horbach
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - M M Lokhorst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - E Tan
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - S M Maas
- Department of Clinical Genetics, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - C J M van Noesel
- Department of Pathology, Molecular Diagnostics, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - C M A M van der Horst
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Zerbib L, Ladraa S, Fraissenon A, Bayard C, Firpion M, Venot Q, Protic S, Hoguin C, Thomas A, Fraitag S, Duong JP, Kaltenbach S, Balducci E, Lefevre C, Villarese P, Asnafi V, Broissand C, Goudin N, Nemazanyy I, Autret G, Tavitian B, Legendre C, Arzouk N, Minard-Colin V, Chopinet C, Dussiot M, Adams DM, Mirault T, Guibaud L, Isenring P, Canaud G. Targeted therapy for capillary-venous malformations. Signal Transduct Target Ther 2024; 9:146. [PMID: 38880808 PMCID: PMC11180659 DOI: 10.1038/s41392-024-01862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/19/2024] [Accepted: 05/12/2024] [Indexed: 06/18/2024] Open
Abstract
Sporadic venous malformations are genetic conditions primarily caused by somatic gain-of-function mutation of PIK3CA or TEK, an endothelial transmembrane receptor signaling through PIK3CA. Venous malformations are associated with pain, bleedings, thrombosis, pulmonary embolism, esthetic deformities and, in severe cases, life-threatening situations. No authorized medical treatment exists for patients with venous malformations. Here, we created a genetic mouse model of PIK3CA-related capillary venous malformations that replicates patient phenotypes. We showed that these malformations only partially signal through AKT proteins. We compared the efficacy of different drugs, including rapamycin, a mTORC1 inhibitor, miransertib, an AKT inhibitor and alpelisib, a PI3Kα inhibitor at improving the lesions seen in the mouse model. We demonstrated the effectiveness of alpelisib in preventing vascular malformations' occurrence, improving the already established ones, and prolonging survival. Considering these findings, we were authorized to treat 25 patients with alpelisib, including 7 children displaying PIK3CA (n = 16) or TEK (n = 9)-related capillary venous malformations resistant to usual therapies including sirolimus, debulking surgical procedures or percutaneous sclerotherapies. We assessed the volume of vascular malformations using magnetic resonance imaging (MRI) for each patient. Alpelisib demonstrated improvement in all 25 patients. Vascular malformations previously considered intractable were reduced and clinical symptoms were attenuated. MRI showed a decrease of 33.4% and 27.8% in the median volume of PIK3CA and TEK malformations respectively, over 6 months on alpelisib. In conclusion, this study supports PI3Kα inhibition as a promising therapeutic strategy in patients with PIK3CA or TEK-related capillary venous malformations.
Collapse
Affiliation(s)
- Lola Zerbib
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Sophia Ladraa
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Service d'Imagerie Pédiatrique, Hôpital Femme-Mère-Enfant, HCL, Bron, France
- CREATIS UMR 5220, Villeurbanne, 69100, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
| | - Charles Bayard
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Marina Firpion
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Quitterie Venot
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Sanela Protic
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Clément Hoguin
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Amandine Thomas
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Sylvie Fraitag
- Service d'Anatomie pathologique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Jean-Paul Duong
- Université Paris Cité, Paris, France
- Service d'Anatomie pathologique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Estelle Balducci
- Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Coline Lefevre
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Patrick Villarese
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Vahid Asnafi
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | | | - Nicolas Goudin
- Necker Bio-Image Analysis, INSERM US24/CNRS UMS 3633, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Gwennhael Autret
- Plateforme Imageries du Vivant, Université de Paris, PARCC, INSERM, Paris, France
| | - Bertrand Tavitian
- Plateforme Imageries du Vivant, Université de Paris, PARCC, INSERM, Paris, France
| | - Christophe Legendre
- Université Paris Cité, Paris, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Service de Néphrologie, Transplantation Adultes, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Nadia Arzouk
- Service de Transplantation, Hôpital La Pitié Salpétrière, AP-HP, Paris, France
| | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, INSERM 1015, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Caroline Chopinet
- Service de Physiologie & Explorations Fonctionnelles Cardiovasculaires, CHU de Lille, Lille, 59000, France
| | - Michael Dussiot
- INSERM U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Denise M Adams
- Division of Oncology, Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tristan Mirault
- Université Paris Cité, Paris, France
- Service de Médecine Vasculaire, hôpital Européen Georges-Pompidou, Paris, France
| | - Laurent Guibaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France
- Service d'Imagerie Pédiatrique, Hôpital Femme-Mère-Enfant, HCL, Bron, France
| | - Paul Isenring
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Center, Department of Medicine, Faculty of Medicine, Laval University, Quebec, QC, G1R2J6, Canada
| | - Guillaume Canaud
- Université Paris Cité, Paris, France.
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France.
- Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.
- CNRS UMR8253, Institut Necker-Enfants Malades, Paris, France.
| |
Collapse
|
5
|
Zhao Y, Yu B, Wang Y, Tan S, Xu Q, Wang Z, Zhou K, Liu H, Ren Z, Jiang Z. Ang-1 and VEGF: central regulators of angiogenesis. Mol Cell Biochem 2024:10.1007/s11010-024-05010-3. [PMID: 38652215 DOI: 10.1007/s11010-024-05010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Angiopoietin-1 (Ang-1) and Vascular Endothelial Growth Factor (VEGF) are central regulators of angiogenesis and are often inactivated in various cardiovascular diseases. VEGF forms complexes with ETS transcription factor family and exerts its action by downregulating multiple genes. Among the target genes of the VEGF-ETS complex, there are a significant number encoding key angiogenic regulators. Phosphorylation of the VEGF-ETS complex releases transcriptional repression on these angiogenic regulators, thereby promoting their expression. Ang-1 interacts with TEK, and this phosphorylation release can be modulated by the Ang-1-TEK signaling pathway. The Ang-1-TEK pathway participates in the transcriptional activation of VEGF genes. In summary, these elements constitute the Ang-1-TEK-VEGF signaling pathway. Additionally, Ang-1 is activated under hypoxic and inflammatory conditions, leading to an upregulation in the expression of TEK. Elevated TEK levels result in the formation of the VEGF-ETS complex, which, in turn, downregulates the expression of numerous angiogenic genes. Hence, the Ang-1-dependent transcriptional repression is indirect. Reduced expression of many target genes can lead to aberrant angiogenesis. A significant overlap exists between the target genes regulated by Ang-1-TEK-VEGF and those under the control of the Ang-1-TEK-TSP-1 signaling pathway. Mechanistically, this can be explained by the replacement of the VEGF-ETS complex with the TSP-1 transcriptional repression complex at the ETS sites on target gene promoters. Furthermore, VEGF possesses non-classical functions unrelated to ETS and DNA binding. Its supportive role in TSP-1 formation may be exerted through the VEGF-CRL5-VHL-HIF-1α-VH032-TGF-β-TSP-1 axis. This review assesses the regulatory mechanisms of the Ang-1-TEK-VEGF signaling pathway and explores its significant overlap with the Ang-1-TEK-TSP-1 signaling pathway.
Collapse
Affiliation(s)
- Yuanqin Zhao
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Bo Yu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Yanxia Wang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Shiming Tan
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Qian Xu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhaoyue Wang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Kun Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Huiting Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhisheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China.
| |
Collapse
|
6
|
Hirose K, Hori Y, Ozeki M, Motooka D, Hata K, Tahara S, Matsui T, Kohara M, Maruyama K, Imanaka-Yoshida K, Toyosawa S, Morii E. Comprehensive phenotypic and genomic characterization of venous malformations. Hum Pathol 2024; 145:48-55. [PMID: 38367816 DOI: 10.1016/j.humpath.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Venous malformations (VMs) are the most common vascular malformations. TEK and PIK3CA are the causal genes of VMs, and may be involved in the PI3K/AKT pathway. However, the downstream mechanisms underlying the TEK or PIK3CA mutations in VMs are not completely understood. This study aimed to identify a possible association between genetic mutations and clinicopathological features. A retrospective clinical, pathological, and genetic study of 114 patients with VMs was performed. TEK, PIK3CA, and combined TEK/PIK3CA mutations were identified in 49 (43%), 13 (11.4%), and 2 (1.75%) patients, respectively. TEK-mutant VMs more commonly occurred in younger patients than TEK and PIK3CA mutation-negative VMs (other-mutant VMs), and showed more frequent skin involvement and no lymphocytic aggregates. No significant differences were observed in sex, location of occurrence, malformed vessel size, vessel density, or thickness of the vascular smooth muscle among the VM genotypes. Immunohistochemical analysis revealed that the expression levels of phosphorylated AKT (p-AKT) were higher in the TEK-mutant VMs than those in PIK3CA-mutant and other-mutant VMs. The expression levels of p-mTOR and its downstream effectors were higher in all the VM genotypes than those in normal vessels. Spatial transcriptomics revealed that the genes involved in "blood vessel development", "positive regulation of cell migration", and "extracellular matrix organization" were up-regulated in a TEK-mutant VM. Significant genotype-phenotype correlations in clinical and pathological features were observed among the VM genotypes, indicating gene-specific effects. Detailed analysis of gene-specific effects in VMs may offer insights into the underlying molecular pathways and implications for targeted therapies.
Collapse
Affiliation(s)
- Katsutoshi Hirose
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Central Laboratory and Surgical Pathology, NHO Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka, 540-0006, Japan.
| | - Michio Ozeki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takahiro Matsui
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masaharu Kohara
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu. Mie, 514-8507, Japan.
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu. Mie, 514-8507, Japan.
| | - Satoru Toyosawa
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Chen S, Wang Y, Kong L, Ji Y, Cui J, Shen W. Role of UDP-glucose ceramide glucosyltransferase in venous malformation. Front Cell Dev Biol 2023; 11:1178045. [PMID: 37274734 PMCID: PMC10235597 DOI: 10.3389/fcell.2023.1178045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Venous malformation (VM) results from the abnormal growth of the vasculature; however, the detailed molecular mechanism remains unclear. As a glycosyltransferase, UDP-glucose ceramide glucosyltransferase (UGCG) is localized to the Golgi body and is a key enzyme in the first step of glycosphingolipid synthesis. Here, we aimed to explore the relationship between UGCG and the development of VM. First, investigations using RT-qPCR and Western blotting on the diseased vasculature of VM patients and normal vascular tissues revealed that UGCG expression was markedly elevated in the diseased vessels. Subsequently, immunofluorescence assay showed that UGCG was co-localized with CD31, an endothelial cell marker, in tissues from patients with VM and healthy subjects. Then, we established TIE2-L914F-mutant human umbilical vein endothelial cells (HUVECs) by lentivirus transfection. Next, Western blotting revealed that UGCG expression was considerably higher in HUVECsTIE2-L914F. In addition, we established a UGCG-overexpressing HUVECs line by plasmid transfection. With the CCK8 cell proliferation experiment, wound healing assay, and tube formation assay, we found that UGCG could promote the proliferation, migration, and tube formation activity of HUVECs, whereas the inhibition of UGCG could inhibit the proliferation, migration, and tube formation activity of HUVECsTIE2-L914F. Finally, Western blotting revealed that UGCG regulates the AKT/mTOR pathway in HUVECs. These data demonstrated that UGCG can affect the activity of vascular endothelial cells and regulate the AKT/mTOR signaling pathway; this is a potential mechanism underlying VM pathogenesis.
Collapse
|
8
|
Zhang J, Croft J, Le A. Familial CCM Genes Might Not Be Main Drivers for Pathogenesis of Sporadic CCMs-Genetic Similarity between Cancers and Vascular Malformations. J Pers Med 2023; 13:jpm13040673. [PMID: 37109059 PMCID: PMC10143507 DOI: 10.3390/jpm13040673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are abnormally dilated intracranial capillaries that form cerebrovascular lesions with a high risk of hemorrhagic stroke. Recently, several somatic "activating" gain-of-function (GOF) point mutations in PIK3CA (phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit p110α) were discovered as a dominant mutation in the lesions of sporadic forms of cerebral cavernous malformation (sCCM), raising the possibility that CCMs, like other types of vascular malformations, fall in the PIK3CA-related overgrowth spectrum (PROS). However, this possibility has been challenged with different interpretations. In this review, we will continue our efforts to expound the phenomenon of the coexistence of gain-of-function (GOF) point mutations in the PIK3CA gene and loss-of-function (LOF) mutations in CCM genes in the CCM lesions of sCCM and try to delineate the relationship between mutagenic events with CCM lesions in a temporospatial manner. Since GOF PIK3CA point mutations have been well studied in reproductive cancers, especially breast cancer as a driver oncogene, we will perform a comparative meta-analysis for GOF PIK3CA point mutations in an attempt to demonstrate the genetic similarities shared by both cancers and vascular anomalies.
Collapse
Affiliation(s)
- Jun Zhang
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Jacob Croft
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Alexander Le
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| |
Collapse
|
9
|
Jiang Y, Liu J, Qin J, Lei J, Zhang X, Xu Z, Li W, Liu X, Wang R, Li B, Lu X. Light-activated gold nanorods for effective therapy of venous malformation. Mater Today Bio 2022; 16:100401. [PMID: 36052154 PMCID: PMC9424588 DOI: 10.1016/j.mtbio.2022.100401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Gold nanorods have been studied extensively in the field of tumor therapy but have not been explored in the treatment of venous malformation (VM), which is a common vascular disease in clinic practice lacking an effective therapeutic approach. Herein we reported a nanoplatform of CD31 antibody-conjugated gold nanorods for the photothermal therapy of venous malformation. We immobilized CD31 antibodies on gold nanorods using standard 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysulfosuccinimide sodium (NHS) amine coupling strategies. Besides, a VM xenograft model suitable for testing therapeutic efficacy was established by isolating and culturing VM patient endothelial cells. In vitro experiments indicated that anti-CD31 gold nanorods (GNRs) combined with photothermal therapy (PTT) contributed to the suppression of proliferation and activation of the apoptosis pathway. For in vivo experiments, anti-CD31 GNRs were locally injected into VM xenograft models followed by near infrared (NIR) 808 nm laser irradiation. Notably, VM on the mice was destroyed and absorbed. The anti-CD31 GNRs nanoplatform may serve as a new strategy for the treatment of VM which is of good biosafety and high value of applications.
Collapse
Affiliation(s)
- Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiahao Lei
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xing Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weimin Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruihua Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Department of Vascular Surgery, Fengcheng Branch, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201411, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Department of Vascular Surgery, Fengcheng Branch, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201411, China
| |
Collapse
|
10
|
Nozawa A, Fujino A, Yuzuriha S, Suenobu S, Kato A, Shimizu F, Aramaki-Hattori N, Kuniyeda K, Sakaguchi K, Ohnishi H, Aoki Y, Ozeki M. Comprehensive targeted next-generation sequencing in patients with slow-flow vascular malformations. J Hum Genet 2022; 67:721-728. [PMID: 36171295 DOI: 10.1038/s10038-022-01081-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 01/19/2023]
Abstract
Recent studies have shown that the PI3K signaling pathway plays an important role in the pathogenesis of slow-flow vascular malformations (SFVMs). Analysis of genetic mutations has advanced our understanding of the mechanisms involved in SFVM pathogenesis and may identify new therapeutic targets. We screened for somatic variants in a cohort of patients with SFVMs using targeted next-generation sequencing. Targeted next-generation sequencing of 29 candidate genes associated with vascular anomalies or with the PI3K signaling pathway was performed on affected tissues from patients with SFVMs. Fifty-nine patients with SFVMs (venous malformations n = 21, lymphatic malformations n = 27, lymphatic venous malformations n = 1, and Klippel-Trenaunay syndrome n = 10) were included in the study. TEK and PIK3CA were the most commonly mutated genes in the study. We detected eight TEK pathogenic variants in 10 samples (16.9%) and three PIK3CA pathogenic variants in 28 samples (47.5%). In total, 37 of 59 patients (62.7%) with SFVMs harbored pathogenic variants in these three genes involved in the PI3K signaling pathway. Inhibitors of this pathway may prove useful as molecular targeted therapies for SFVMs.
Collapse
Affiliation(s)
- Akifumi Nozawa
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.,Department of Medical Genetics, Tohoku University School of Medicine, Sendai, 980-8574, Japan
| | - Akihiro Fujino
- Division of Surgery, Department of Surgical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Shunsuke Yuzuriha
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto-Shi, Nagano, 390-8621, Japan
| | - Souichi Suenobu
- Department of Pediatrics, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan.,Division of General Pediatrics and Emergency Medicine, Department of Pediatrics, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Aiko Kato
- Department of Plastic Surgery, Oita University Hospital, 1-1 Idaigaoka, Hasamamachi, Yufu-shi, Oita, 879-5503, Japan
| | - Fumiaki Shimizu
- Department of Plastic Surgery, Oita University Hospital, 1-1 Idaigaoka, Hasamamachi, Yufu-shi, Oita, 879-5503, Japan
| | - Noriko Aramaki-Hattori
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kanako Kuniyeda
- ARTham Therapeutics, Inc., 24-8, Yamashita-cho, Naka-ku, Yokohama Kanagawa, 231-0023, Japan
| | - Kazuya Sakaguchi
- Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome Fujisawa, Kanagawa, 251-0012, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.,Clinical Genetics Center, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, 980-8574, Japan
| | - Michio Ozeki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
11
|
Angulo-Urarte A, Graupera M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. NATURE CARDIOVASCULAR RESEARCH 2022; 1:700-714. [PMID: 39196083 DOI: 10.1038/s44161-022-00107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 08/29/2024]
Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Zhang J, Abou-Fadel J, Renteria M, Belkin O, Chen B, Zhu Y, Dammann P, Rigamonti D. Cerebral cavernous malformations do not fall in the spectrum of PIK3CA-related overgrowth. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328901. [PMID: 35477890 DOI: 10.1136/jnnp-2022-328901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 11/04/2022]
Abstract
Somatic gain-of-function (GOF) mutations in phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), the catalytic subunit of phosphoinositide 3-kinase (PI3K), have been recently discovered in cerebral cavernous malformations (CCMs), raising the possibility that the activation of PI3K pathways is a possible universal regulator of vascular morphogenesis. However, there have been contradicting data presented among various groups and studies. To enhance the current understanding of vascular anomalies, it is essential to explore this possible relationship between altered PI3K signalling pathways and its influence on the pathogenesis of CCMs. GOF PIK3CA-mutants have been linked to overgrowth syndromes, allowing this group of disorders, resulting from somatic activating mutations in PIK3CA, to be collectively named as PIK3CA-related overgrowth spectrum disorders. This paper reviews and attempts to conceptualise the relationships and differences among clinical presentations, genotypic and phenotypic correlations and possible coexistence of PIK3CA and CCM mutations/phenotypes in CCM lesions. Finally, we present a model reflecting our hypothetical understanding of CCM pathogenesis based on a systematic review and conceptualisation of data obtained from other studies.
Collapse
Affiliation(s)
- Jun Zhang
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Johnathan Abou-Fadel
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Mellisa Renteria
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Ofek Belkin
- Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Bixia Chen
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
13
|
Zhu J, Tang Z, Ren J, Geng J, Guo F, Xu Z, Jia J, Chen L, Jia Y. Downregulation of microRNA-21 contributes to decreased collagen expression in venous malformations via transforming growth factor-β/Smad3/microRNA-21 signaling feedback loop. J Vasc Surg Venous Lymphat Disord 2021; 10:469-481.e2. [PMID: 34506963 DOI: 10.1016/j.jvsv.2021.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Venous malformations (VMs) are the most frequent vascular malformations and are characterized by dilated and tortuous veins with a dysregulated vascular extracellular matrix. The purpose of the present study was to investigate the potential involvement of microRNA-21 (miR-21), a multifunctional microRNA tightly associated with extracellular matrix regulation, in the pathogenesis of VMs. METHODS The expression of miR-21, collagen I, III, and IV, transforming growth factor-β (TGF-β), and Smad3 (mothers against decapentaplegic homolog 3) was evaluated in VMs and normal skin tissue using in situ hybridization, immunohistochemistry, Masson trichrome staining, and real-time polymerase chain reaction. Human umbilical vein endothelial cells (HUVECs) were used to explore the underlying mechanisms. RESULTS miR-21 expression was markedly decreased in the VM specimens compared with normal skin, in parallel with downregulation of collagen I, III, and IV and the TGF-β/Smad3 pathway in VMs. Moreover, our data demonstrated that miR-21 positively regulated the expression of collagens in HUVECs and showed a positive association with the TGF-β/Smad3 pathway in the VM tissues. In addition, miR-21 was found to mediate TGF-β-induced upregulation of collagens in HUVECs. Our data have indicated that miR-21 and the TGF-β/Smad3 pathway could form a positive feedback loop to synergistically regulate endothelial collagen synthesis. In addition, TGF-β/Smad3/miR-21 feedback loop signaling was upregulated in bleomycin-treated HUVECs and VM specimens, which was accompanied by increased collagen deposition. CONCLUSIONS To the best of our knowledge, the present study has, for the first time, revealed downregulation of miR-21 in VMs, which might contribute to decreased collagen expression via the TGF-β/Smad3/miR-21 signaling feedback loop. These findings provide new information on the pathogenesis of VMs and might facilitate the development of new therapies for VMs.
Collapse
Affiliation(s)
- Junyi Zhu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zirong Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiangang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jinhuan Geng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Fengyuan Guo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jun Jia
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yulin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| |
Collapse
|
14
|
A Xenograft Model for Venous Malformation. Methods Mol Biol 2021; 2206:179-192. [PMID: 32754818 DOI: 10.1007/978-1-0716-0916-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Xenograft models allow for an in vivo approach to monitor cellular functions within the context of a host microenvironment. Here we describe a protocol to generate a xenograft model of venous malformation (VM) based on the use of human umbilical vein endothelial cells (HUVEC) expressing a constitutive active form of the endothelial tyrosine kinase receptor TEK (TIE2 p.L914F) or patient-derived EC containing TIE2 and/or PIK3CA gene mutations. Hyperactive somatic TIE2 and PIK3CA mutations are a common hallmark of VM in patient lesions. The EC are injected subcutaneously on the back of athymic nude mice to generate ectatic vascular channels and recapitulate histopathological features of VM patient tissue histology. Lesion plugs with TIE2/PIK3CA-mutant EC are visibly vascularized within 7-9 days of subcutaneous injection, making this a great tool to study venous malformation.
Collapse
|
15
|
Kilmister EJ, Hansen L, Davis PF, Hall SRR, Tan ST. Cell Populations Expressing Stemness-Associated Markers in Vascular Anomalies. Front Surg 2021; 7:610758. [PMID: 33634164 PMCID: PMC7900499 DOI: 10.3389/fsurg.2020.610758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment of vascular anomalies (VAs) is mostly empirical and, in many instances unsatisfactory, as the pathogeneses of these heterogeneous conditions remain largely unknown. There is emerging evidence of the presence of cell populations expressing stemness-associated markers within many types of vascular tumors and vascular malformations. The presence of these populations in VAs is supported, in part, by the observed clinical effect of the mTOR inhibitor, sirolimus, that regulates differentiation of embryonic stem cells (ESCs). The discovery of the central role of the renin-angiotensin system (RAS) in regulating stem cells in infantile hemangioma (IH) provides a plausible explanation for its spontaneous and accelerated involution induced by β-blockers and ACE inhibitors. Recent work on targeting IH stem cells by inhibiting the transcription factor SOX18 using the stereoisomer R(+) propranolol, independent of β-adrenergic blockade, opens up exciting opportunities for novel treatment of IH without the β-adrenergic blockade-related side effects. Gene mutations have been identified in several VAs, involving mainly the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways. Existing cancer therapies that target these pathways engenders the exciting possibility of repurposing these agents for challenging VAs, with early results demonstrating clinical efficacy. However, there are several shortcomings with this approach, including the treatment cost, side effects, emergence of treatment resistance and unknown long-term effects in young patients. The presence of populations expressing stemness-associated markers, including transcription factors involved in the generation of induced pluripotent stem cells (iPSCs), in different types of VAs, suggests the possible role of stem cell pathways in their pathogenesis. Components of the RAS are expressed by cell populations expressing stemness-associated markers in different types of VAs. The gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways interact with different components of the RAS, which may influence cell populations expressing stemness-associated markers within VAs. The potential of targeting these populations by manipulating the RAS using repurposed, low-cost and commonly available oral medications, warrants further investigation. This review presents the accumulating evidence demonstrating the presence of stemness-associated markers in VAs, their expression of the RAS, and their interaction with gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways, in the pathogenesis of VAs.
Collapse
Affiliation(s)
| | - Lauren Hansen
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Genetic landscape of common venous malformations in the head and neck. J Vasc Surg Venous Lymphat Disord 2020; 9:1007-1016.e7. [PMID: 33248299 DOI: 10.1016/j.jvsv.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/15/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Common venous malformations (VMs) are a frequent sporadic subtype of vascular malformations. Given the TEK and PIK3CA mutations identified, this study aims to investigate the genetic landscape of VMs in the head and neck. METHODS Patients from published sequencing studies related to common VMs were reviewed. Detailed data regarding clinical characteristics, sequencing strategies, and mutation frequency were synthesized. Lesion distribution of common VMs in the head and neck were further retrospectively analyzed by the pathologic database of the Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital. For the frequently affected sites in the head and neck, patients were selected for targeted sequencing with a designed vascular malformation-related gene panel or whole exome sequencing. Detected variants were analyzed by classical bioinformatic algorithms (SIFT23, PolyPhen-2 HDIV, LRT, MutationTaster, Mutation Assessor, and GERP++). To confirm the expression pattern of particular candidate gene, specimens were examined histochemically. Gene ontology enrichment analysis and a protein-protein interaction network were also constructed. RESULTS Three hundred patients from eight sequencing studies related to common VMs were reviewed. The total prevalence rates of TEK and PIK3CA mutations were 41.3% and 26.7%, respectively. The most frequent TEK/PIK3CA mutations were TEK-L914F/PIK3CA-H1047R. TEK/PIK3CA mutations existed in 70.3% and 2.7% of VMs in the head and neck. In retrospective data from 649 patients carrying cervicofacial VMs at Shanghai Ninth Hospital, the most frequent sites were the maxillofacial region (lips, cheek, parotid-masseteric region, submandibular region) and the oral and oropharyngeal region (buccal mucosa, tongue). Targeted sequencing for 14 frequent lesions detected TEK variants in three patients (21.4%), but no PIK3CA mutations. On whole exome sequencing of two patients without TEK/PIK3CA mutations, CDH11 was the only shared deleteriously mutated gene. Bioinformatic analyses of CDH11 implied that genes involved in cellular adhesion and junctions formed a significant portion. CONCLUSIONS Common VMs of the head and neck have a unique genetic landscape. Novel CDH11 and TEK variants imply that pathogenesis is mediated by the regulatory relationship between endothelial cells and extracellular components.
Collapse
|
17
|
Abstract
Vascular anomalies are developmental defects of the vasculature and encompass a variety of disorders. The identification of genes mutated in the different malformations provides insight into the etiopathogenic mechanisms and the specific roles the associated proteins play in vascular development and maintenance. A few familial forms of vascular anomalies exist, but most cases occur sporadically. It is becoming evident that somatic mosaicism plays a major role in the formation of vascular lesions. The use of Next Generating Sequencing for high throughput and "deep" screening of both blood and lesional DNA and RNA has been instrumental in detecting such low frequency somatic changes. The number of novel causative mutations identified for many vascular anomalies has soared within a 10-year period. The discovery of such genes aided in unraveling a holistic overview of the pathogenic mechanisms, by which in vitro and in vivo models could be generated, and opening the doors to development of more effective treatments that do not address just symptoms. Moreover, as many mutations and the implicated signaling pathways are shared with cancers, current oncological therapies could potentially be repurposed for the treatment of vascular anomalies.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium; WELBIO (Walloon Excellence in Lifesciences and Biotechnology), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
18
|
Schrenk S, Goines J, Boscolo E. A Patient-Derived Xenograft Model for Venous Malformation. J Vis Exp 2020. [PMID: 32597867 DOI: 10.3791/61501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Venous malformation (VM) is a vascular anomaly that arises from impaired development of the venous network resulting in dilated and often dysfunctional veins. The purpose of this article is to carefully describe the establishment of a murine xenograft model that mimics human VM and is able to reflect patient heterogeneity. Hyper-activating non-inherited (somatic) TEK (TIE2) and PIK3CA mutations in endothelial cells (EC) have been identified as the main drivers of pathological vessel enlargement in VM. The following protocol describes the isolation, purification and expansion of patient-derived EC expressing mutant TIE2 and/or PIK3CA. These EC are injected subcutaneously into the back of immunodeficient athymic mice to generate ectatic vascular channels. Lesions generated with TIE2 or PIK3CA-mutant EC are visibly vascularized within 7‒9 days of injection and recapitulate histopathological features of VM patient tissue. This VM xenograft model provides a reliable platform to investigate the cellular and molecular mechanisms driving VM formation and expansion. In addition, this model will be instrumental for translational studies testing the efficacy of novel drug candidates in preventing the abnormal vessel enlargement seen in human VM.
Collapse
Affiliation(s)
- Sandra Schrenk
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Jillian Goines
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Elisa Boscolo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine;
| |
Collapse
|
19
|
Le Cras TD, Goines J, Lakes N, Pastura P, Hammill AM, Adams DM, Boscolo E. Constitutively active PIK3CA mutations are expressed by lymphatic and vascular endothelial cells in capillary lymphatic venous malformation. Angiogenesis 2020; 23:425-442. [PMID: 32350708 PMCID: PMC7311380 DOI: 10.1007/s10456-020-09722-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Capillary lymphatic venous malformations (CLVM) are complex vascular anomalies characterized by aberrant and enlarged lymphatic and blood vessels. CLVM appear during fetal development and enlarge after birth, causing life-long complications such as coagulopathy, pulmonary embolism, chronic pain, and disfigurement. Treatment includes surgical debulking, amputation, and recurrent sclerotherapy. Somatic, mosaic mutations in the 110-kD catalytic α-subunit of phosphoinositide-3-kinase (PIK3CA) gene have been previously identified in affected tissues from CLVM patients; however, the cell population harboring the mutation is still unknown. In this study, we hypothesized that endothelial cells (EC) carry the PIK3CA mutations and play a major role in the cellular origin of CLVM. We isolated EC from the lesions of seven patients with CLVM and identified PIK3CA hotspot mutations. The CLVM EC exhibited constitutive phosphorylation of the PI3K effector AKT as well as hyperproliferation and increased resistance to cell death compared to normal EC. Inhibitors of PIK3CA (BYL719) and AKT (ARQ092) attenuated the proliferation of CLVM EC in a dose-dependent manner. A xenograft model of CLVM was developed by injecting patient-derived EC into the flanks of immunocompromised mice. CLVM EC formed lesions with enlarged lymphatic and vascular channels, recapitulating the patient histology. EC subpopulations were further obtained by both immunomagnetic separation into lymphatic EC (LEC) and vascular EC (VEC) and generation of clonal populations. By sequencing these subpopulations, we determined that both LEC and VEC from the same patient express the PIK3CA mutation, exhibit increased AKT activation and can form lymphatic or vascular lesions in mouse.
Collapse
Affiliation(s)
- Timothy D Le Cras
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Jillian Goines
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Nora Lakes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Patricia Pastura
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Adrienne M Hammill
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Denise M Adams
- Boston Children's Hospital Division of Hematology/Oncology Harvard Medical School, Boston, MA, USA
| | - Elisa Boscolo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Zhu J, Shao M, Guo F, Ren J, Tang Z, Geng J, Xu Z, Jia J, Chen L, Jia Y. Downregulation of lysyl oxidase in venous malformations: Association with vascular destabilization and sclerotherapy. J Dermatol 2020; 47:518-526. [PMID: 32162383 DOI: 10.1111/1346-8138.15297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Abstract
Venous malformations (VM) are localized defects in vascular morphogenesis manifested by dilated venous channels with reduced perivascular cell coverage. As a vital enzyme for extracellular matrix (ECM) deposition, lysyl oxidase (LOX) plays important roles in vascular development and diseases. However, the expression and significance of LOX are unknown in VM. Herein, 22 VM specimens and eight samples of normal skin tissues were evaluated immunohistochemically for the expression of LOX, α-smooth muscle cell actin (α-SMA) and transforming growth factor-β (TGF-β). In vitro studies on human umbilical vein endothelial cells (HUVEC) were employed for determining potential mechanisms. Our results showed that LOX expression was significantly reduced in VM compared with normal skin tissues, in parallel with attenuated perivascular α-SMA+ cell coverage and TGF-β downregulation in VM. Further correlation analysis indicated that LOX expression was positively correlated with perivascular α-SMA+ cell coverage and TGF-β expression in VM. Moreover, marked elevation of LOX, TGF-β and α-SMA was observed in bleomycin-treated VM samples. Furthermore, our in vitro data demonstrated that both recombinant TGF-β and bleomycin induced obvious increase of LOX expression and activity and a concomitant increase in ECM components in HUVEC, which could be reversed by LOX inhibition. To our best knowledge, this study revealed for the first time the downregulation of LOX in VM and its correlation with vascular destabilization and TGF-β-induced endothelial ECM deposition. Moreover, our results highlighted that LOX may be implicated in the sclerotherapy of VM and holds promise as a therapeutic target.
Collapse
Affiliation(s)
- Junyi Zhu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Shao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengyuan Guo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangang Ren
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zirong Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhuan Geng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Jia
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Dodds M, Tollefson M, Castelo-Soccio L, Garzon MC, Hogeling M, Hook K, Boull C, Maguiness S. Treatment of superficial vascular anomalies with topical sirolimus: A multicenter case series. Pediatr Dermatol 2020; 37:272-277. [PMID: 31957126 DOI: 10.1111/pde.14104] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Systemic sirolimus (rapamycin) has recently been found effective in treating complex vascular anomalies by reducing the size and associated complications. Many vascular anomalies have a cutaneous component, and thus, we sought to determine whether topical administration of sirolimus may be an effective therapy, as data on the use of topical sirolimus are limited. OBJECTIVE We reviewed the efficacy and tolerability of topical formulations of sirolimus in the treatment of various simple and combined vascular malformations and tumors. METHODS Eighteen patients with any vascular anomaly treated exclusively with topical sirolimus were retrospectively reviewed. RESULTS Eleven patients had combined venous lymphatic malformations, three had tufted angiomas, two had a lymphatic malformation, one had a venous malformation, and one had a verrucous venous malformation. All (100%) patients reported some degree of improvement and 50% of patients reported marked improvement in one or more symptoms, most commonly blebs and lymphatic drainage, and bleeding. LIMITATIONS The retrospective nature, small number of patients, and differences in topical preparations limit the broad application of the results. CONCLUSION Topical sirolimus appears to be a safe and useful non-invasive therapy that is well-tolerated in the treatment of the cutaneous portion of a variety of vascular anomalies.
Collapse
Affiliation(s)
- Melissa Dodds
- Division of Pediatric Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Megha Tollefson
- Division of Pediatric Dermatology, Mayo Clinic, Rochester, Minnesota
| | - Leslie Castelo-Soccio
- Division of Pediatric Dermatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maria C Garzon
- Division of Pediatric Dermatology, Columbia University Irving Medical Center, Columbia, New York
| | - Marcia Hogeling
- Division of Pediatric Dermatology, University of California Los Angeles, Los Angeles, California
| | - Kristen Hook
- Division of Pediatric Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Christina Boull
- Division of Pediatric Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Sheilagh Maguiness
- Division of Pediatric Dermatology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
22
|
Huang L, Bischoff J. Isolation of Stem Cells, Endothelial Cells and Pericytes from Human Infantile Hemangioma. Bio Protoc 2020; 10:e3487. [PMID: 33654720 DOI: 10.21769/bioprotoc.3487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 12/12/2019] [Indexed: 11/02/2022] Open
Abstract
Infantile hemangioma (IH) is a vascular tumor noted for its excessive blood vessel formation during infancy, glucose-transporter-1 (GLUT1)-positive staining of the blood vessels, and its slow spontaneous involution over several years in early childhood. For most children, IH poses no serious threat because it will eventually involute, but a subset can destroy facial structures and impair vision, breathing and feeding. To unravel the molecular mechanism(s) driving IH-specific vascular overgrowth, which to date remains elusive, investigators have studied IH histopathology, the cellular constituents and mRNA expression. Hemangioma endothelial cells (HemEC) were first isolated from surgically removed IH specimens in 1982 by Mulliken and colleagues ( Mulliken et al., 1982 ). Hemangioma stem cells (HemSC) were isolated in 2008, hemangioma pericytes in 2013 and GLUT1-positive HemEC in 2015. Indeed, as we describe here, it is possible to isolate HemSC, GLUT1-positive HemEC, GLUT1-negative HemEC and HemPericytes from a single proliferating IH tissue specimen. This is accomplished by sequential selection using antibodies against specific cell surface markers: anti-CD133 to select HemSC, anti-GLUT1 and anti-CD31 to select HemECs and anti-PDGFRβ to select HemPericytes. IH-derived cells proliferate well in culture and can be used for in vitro and in vivo vasculogenesis and angiogenesis assays.
Collapse
Affiliation(s)
- Lan Huang
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Li X, Cai Y, Goines J, Pastura P, Brichta L, Lane A, Le Cras TD, Boscolo E. Ponatinib Combined With Rapamycin Causes Regression of Murine Venous Malformation. Arterioscler Thromb Vasc Biol 2020; 39:496-512. [PMID: 30626204 PMCID: PMC6392210 DOI: 10.1161/atvbaha.118.312315] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Objective- Venous malformations (VMs) arise from developmental defects of the vasculature and are characterized by massively enlarged and tortuous venous channels. VMs grow commensurately leading to deformity, obstruction of vital structures, bleeding, and pain. Most VMs are associated with the activating mutation L914F in the endothelial cell (EC) tyrosine kinase receptor TIE2. Therapeutic options for VM are limited and ineffective while therapy with the mammalian target of rapamycin inhibitor rapamycin shows moderate efficacy. Here, we investigated novel therapeutic targets promoting VM regression. Approach and Results- We performed an unbiased screen of Food and Drug Administration-approved drugs in human umbilical vein ECs expressing the TIE2-L914F mutation (HUVEC-TIE2-L914F). Three ABL (Abelson) kinase inhibitors prevented cell proliferation of HUVEC-TIE2-L914F. Moreover, c-ABL, common target of these inhibitors, was highly phosphorylated in HUVEC-TIE2-L914F and VM patient-derived ECs with activating TIE2 mutations. Knockdown of c-ABL/ARG in HUVEC-TIE2-L914F reduced cell proliferation and vascularity of murine VM. Combination treatment with the ABL kinase inhibitor ponatinib and rapamycin caused VM regression in a xenograft model based on injection of HUVEC-TIE2-L914F. A reduced dose of this drug combination was effective in this VM murine model with minimal side effects. The drug combination was antiproliferative, enhanced cell apoptosis and vascular channel regression both in vivo and in a 3-dimensional fibrin gel assay. Conclusions- This is the first report of a combination therapy with ponatinib and rapamycin promoting regression of VM. Mechanistically, the drug combination enhanced AKT inhibition compared with single drug treatment and reduced PLCγ (phospholipase C) and ERK (extracellular signal-regulated kinase) activity.
Collapse
Affiliation(s)
- Xian Li
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Yuqi Cai
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Jillian Goines
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Patricia Pastura
- Cancer and Blood Disease Institute and Division of Pulmonary Biology (P.P., T.D.L.C.), Cincinnati Children's Hospital Medical Center, OH
| | - Lars Brichta
- Chemistry Rx Compounding and Specialty Pharmacy, Philadelphia, PA (L.B.)
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency (A.L.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| | - Timothy D Le Cras
- Cancer and Blood Disease Institute and Division of Pulmonary Biology (P.P., T.D.L.C.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| | - Elisa Boscolo
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| |
Collapse
|
24
|
Mack JM, Verkamp B, Richter GT, Nicholas R, Stewart K, Crary SE. Effect of sirolimus on coagulopathy of slow-flow vascular malformations. Pediatr Blood Cancer 2019; 66:e27896. [PMID: 31250546 DOI: 10.1002/pbc.27896] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/25/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Stagnant blood flow present in slow-flow vascular malformations can lead to localized intravascular coagulopathy (LIC), measured by elevated D-dimer levels, low fibrinogen, and/or thrombocytopenia. LIC can lead to localized thrombosis and/or bleeding, resulting in pain, swelling, and functional limitations. Patients with complex vascular malformations treated with sirolimus show clinical improvement in these symptoms. We hypothesized that the clinical benefits of sirolimus may correlate with improvements in coexisting LIC. DESIGN/METHODS A retrospective chart review was performed, including D-dimer, fibrinogen, and platelet count, in patients with slow-flow vascular malformations treated with sirolimus. Laboratory values were assessed at three time points (presirolimus, 1-3 months postsirolimus, and last clinic visit). Clinical response, as defined by decreased pain and swelling, was extracted from the record. RESULTS Thirty-five patients at our vascular anomalies center had been prescribed sirolimus between 2014 and 2017. Fifteen patients (12 combined slow-flow vascular malformations and three pure venous malformations) remained after excluding patients that did not have adequate records or a venous component to their vascular malformation. Patients who did not adhere to the treatment were also excluded. All 15 had elevated D-dimer levels prior to treatment and there was a statistically significant decrease in D-dimer levels following treatment with sirolimus. Symptomatic improvement of pain and swelling was reported after 3 months of starting sirolimus in 13/15 patients. CONCLUSION This study suggests that sirolimus improves coagulopathy in slow-flow vascular malformations, as evidenced by reduced D-dimer levels. Improvement in LIC symptoms also correlates with sirolimus-corrected coagulopathy.
Collapse
Affiliation(s)
- Joana M Mack
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Arkansas
| | - Bethany Verkamp
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Arkansas.,School of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Gresham T Richter
- Division of Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Richard Nicholas
- Division of Pediatric Orthopedic Surgery, Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kelly Stewart
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Arkansas
| | - Shelley E Crary
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Division of Pediatric Hematology-Oncology, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, Arkansas
| |
Collapse
|
25
|
Constitutive Active Mutant TIE2 Induces Enlarged Vascular Lumen Formation with Loss of Apico-basal Polarity and Pericyte Recruitment. Sci Rep 2019; 9:12352. [PMID: 31451744 PMCID: PMC6710257 DOI: 10.1038/s41598-019-48854-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Abnormalities in controlling key aspects of angiogenesis including vascular cell migration, lumen formation and vessel maturation are hallmarks of vascular anomalies including venous malformation (VM). Gain-of-function mutations in the tyrosine kinase receptor TIE2 can cause VM and induce a ligand-independent hyperactivation of TIE2. Despite these important findings, the TIE2-dependent mechanisms triggering enlarged vascular lesions are not well understood. Herein we studied TIE2 p.L914F, the most frequent mutation identified in VM patients. We report that endothelial cells harboring a TIE2-L914F mutation display abnormal cell migration due to a loss of front-rear polarity as demonstrated by a non-polarized Golgi apparatus. Utilizing a three-dimensional fibrin-matrix based model we show that TIE2-L914F mutant cells form enlarged lumens mimicking vascular lesions present in VM patients, independently of exogenous growth factors. Moreover, these abnormal vascular channels demonstrate a dysregulated expression pattern of apico-basal polarity markers Podocalyxin and Collagen IV. Furthermore, in this system we recapitulated another pathological feature of VM, the paucity of pericytes around ectatic veins. The presented data emphasize the value of this in vitro model as a powerful tool for the discovery of cellular and molecular signals contributing to abnormal vascular development and subsequent identification of novel therapeutic approaches.
Collapse
|
26
|
Boscolo E, Pastura P, Glaser K, Goines J, Hammill AM, Adams DM, Dickie P, Dickie BH, Le Cras TD. Signaling pathways and inhibitors of cells from patients with kaposiform lymphangiomatosis. Pediatr Blood Cancer 2019; 66:e27790. [PMID: 31045327 PMCID: PMC6588438 DOI: 10.1002/pbc.27790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Kaposiform lymphangiomatosis (KLA) is a rare lymphatic anomaly with significant morbidity and mortality. KLA is characterized by diffuse multifocal lesions comprised of focal areas of "kaposiform" spindled cells accompanying malformed lymphatic channels. The goal of this study was to identify activated signaling pathways in cells isolated from three KLA patients for the purpose of testing new therapies. PROCEDURE Cells were obtained from the lungs of one patient isolated at autopsy and the spleen of two patients removed in surgery due to disease complications. A protein kinase array was performed on the KLA cell lysates and normal lymphatic endothelial cells. RESULTS Higher activation of key signaling pathways in the KLA cells, including PRAS40, AKT1/2/3, and ERK-1/2, was identified by protein kinase array and confirmed by Western blot analysis. This indicated a role for highly activated PI3K-AKT and MAPK-ERK-1/2 signaling pathways in KLA cells. Cell proliferation studies assessed PI3K inhibitors (LY294002; BYL719), AKT inhibitor ARQ092, mTOR inhibitor rapamycin, and MAPK inhibitor U0126. These studies demonstrated that PI3K-AKT-mTOR and MAPK signaling are important mediators of KLA cell proliferation. BYL719 and rapamycin were more effective at inhibiting KLA cell proliferation than U0126. CONCLUSIONS Our studies using cells from KLA patient lesions demonstrate that these cells are highly proliferative and the PI3K-AKT-mTOR and MAPK pathways are promising therapeutic targets. Development and clinical trials of PI3K, AKT, and MAPK inhibitors for cancer treatment and the data in this study lend support for early clinical trials assessing the efficacy of these inhibitors in KLA patients.
Collapse
Affiliation(s)
- Elisa Boscolo
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Patricia Pastura
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Kathryn Glaser
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jillian Goines
- Division of Experimental Hematology and Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Adrienne M. Hammill
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Hemangioma & Vascular Anomalies Center & Division of Hematology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Denise M. Adams
- Vascular Anomalies Center, Boston, MA, USA,Boston Children’s Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Peter Dickie
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Belinda Hsi Dickie
- Boston Children’s Hospital, Boston, MA, USA,Colorectal and Pelvic Malformation Center, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Timothy D. Le Cras
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA,Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| |
Collapse
|
27
|
Le Cras TD, Boscolo E. Cellular and molecular mechanisms of PIK3CA-related vascular anomalies. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:H33-H40. [PMID: 32923951 PMCID: PMC7439927 DOI: 10.1530/vb-19-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a major mediator of growth factor signaling, cell proliferation and metabolism. Somatic gain-of-function mutations in PIK3CA, the catalytic subunit of PI3K, have recently been discovered in a number of vascular anomalies. The timing and origin of these mutations remain unclear although they are believed to occur during embryogenesis. The cellular origin of these lesions likely involves endothelial cells or an early endothelial cell lineage. This review will cover the diseases and syndromes associated with PIK3CA mutations and discuss the cellular origin, pathways and mechanisms. Activating PIK3CA 'hot spot' mutations have long been associated with a multitude of cancers allowing the development of targeted pharmacological inhibitors that are FDA-approved or in clinical trials. Current and future therapeutic approaches for PIK3CA-related vascular anomalies are discussed.
Collapse
Affiliation(s)
- Timothy D Le Cras
- Division of Pulmonary Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Elisa Boscolo
- Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
28
|
Castillo SD, Baselga E, Graupera M. PIK3CA mutations in vascular malformations. Curr Opin Hematol 2019; 26:170-178. [DOI: 10.1097/moh.0000000000000496] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|