1
|
Solomon C, Comi A. Sturge-Weber syndrome: updates in translational neurology. Front Neurol 2024; 15:1493873. [PMID: 39687400 PMCID: PMC11646805 DOI: 10.3389/fneur.2024.1493873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
Sturge-Weber syndrome (SWS) is a rare congenital neurovascular disorder that initially presents with a facial port-wine birthmark (PWB) and most commonly associated with a R183Q somatic mosaic mutation in the gene GNAQ. This mutation is enriched in endothelial cells. Contrast-enhanced magnetic resonance imaging (MRI) diagnoses brain abnormalities including leptomeningeal vascular malformation, an enlarged choroid plexus, and abnormal cortical and subcortical blood vessels. Mouse SWS models identify dysregulated proteins important for abnormal vasculogenesis and blood brain barrier permeability. Recent clinical research has focused on early diagnosis, biomarker development, presymptomatic treatment, and development of novel treatment strategies. Prospective pilot clinical drug trials with cannabidiol (Epidiolex) or with sirolimus, an mTOR inhibitor, indicate possible reductions in seizure frequency and improved cognitive outcome. This review connects the most recent molecular research in SWS cell culture and animal models to developing new treatment methods and identifies future areas of research.
Collapse
Affiliation(s)
- Chase Solomon
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Anne Comi
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Bobkova S, Oldham EP, Loykasek P, Henderson CL, Shendrik I. Persistent Thrombotic Hemangioma With Organizing/Anastomosing Features: A Case Report of a Guanine Nucleotide-Binding Protein Alpha Subunit (GNA)-Mutated Cutaneous Vascular Lesion. Cureus 2024; 16:e68446. [PMID: 39360118 PMCID: PMC11446179 DOI: 10.7759/cureus.68446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Thrombotic hemangioma with organizing/anastomosing features (THOA) is a newly identified variant within the spectrum of hemangiomas that harbor mutations in the guanine nucleotide-binding protein alpha subunit (GNA) genes (like GNAQ or GNA11). While THOA shares similarities with anastomosing hemangioma, it possesses distinct clinical and morphological characteristics that make it a separate entity. All reported cases of THOA have demonstrated benign behavior. However, histologic features such as anastomosing vascular growth, mitotic figures, and endothelial hobnailing may raise concerns for a low-grade malignant vascular neoplasm. We report the case of a 74-year-old female with an unremarkable medical history who presented with a vascular lesion on her upper torso. The lesion persisted after the initial biopsy and was re-excised, displaying similar histologic characteristics. Next-generation sequencing (NGS) revealed a GNAQ mutation (p.Q209H) in both samples. Notably, a TP53 mutation (p.R273H) was detected in the first specimen but was absent in the subsequent excision. The lesion was diagnosed as persistent THOA. This case report discusses the salient features, genetic profile, and prognosis of this uncommon lesion.
Collapse
Affiliation(s)
- Svetlana Bobkova
- School of Biomedical Sciences, Oklahoma State University Center for Health Sciences, Tulsa, USA
| | - Eli P Oldham
- Osteopathic Medicine, Oklahoma State University Center for Health Sciences, Tulsa, USA
| | - Patti Loykasek
- Molecular, Immunohistochemistry and Flow Cytometry, Pathology Laboratory Associates, Tulsa, USA
| | - Clifford L Henderson
- Skin Cancer Surgery, Saints Dermatology Center of Excellence, Oklahoma City, USA
| | - Igor Shendrik
- Dermatopathology Section, Regional Medical Laboratory and Pathology Laboratory Associates, Tulsa, USA
| |
Collapse
|
3
|
Ren J, Cui Z, Jiang C, Wang L, Guan Y, Ren Y, Zhang S, Tu T, Yu J, Li Y, Duan W, Guan J, Wang K, Zhang H, Xing D, Kahn ML, Zhang H, Hong T. GNA14 and GNAQ somatic mutations cause spinal and intracranial extra-axial cavernous hemangiomas. Am J Hum Genet 2024; 111:1370-1382. [PMID: 38917801 PMCID: PMC11267519 DOI: 10.1016/j.ajhg.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Extra-axial cavernous hemangiomas (ECHs) are complex vascular lesions mainly found in the spine and cavernous sinus. Their removal poses significant risk due to their vascularity and diffuse nature, and their genetic underpinnings remain incompletely understood. Our approach involved genetic analyses on 31 tissue samples of ECHs employing whole-exome sequencing and targeted deep sequencing. We explored downstream signaling pathways, gene expression changes, and resultant phenotypic shifts induced by these mutations, both in vitro and in vivo. In our cohort, 77.4% of samples had somatic missense variants in GNA14, GNAQ, or GJA4. Transcriptomic analysis highlighted significant pathway upregulation, with the GNAQ c.626A>G (p.Gln209Arg) mutation elevating PI3K-AKT-mTOR and angiogenesis-related pathways, while GNA14 c.614A>T (p.Gln205Leu) mutation led to MAPK and angiogenesis-related pathway upregulation. Using a mouse xenograft model, we observed enlarged vessels from these mutations. Additionally, we initiated rapamycin treatment in a 14-year-old individual harboring the GNAQ c.626A>G (p.Gln209Arg) variant, resulting in gradual regression of cutaneous cavernous hemangiomas and improved motor strength, with minimal side effects. Understanding these mutations and their pathways provides a foundation for developing therapies for ECHs resistant to current therapies. Indeed, the administration of rapamycin in an individual within this study highlights the promise of targeted treatments in treating these complex lesions.
Collapse
Affiliation(s)
- Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Ziwei Cui
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Chendan Jiang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Leiming Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunqian Guan
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yeqing Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Shikun Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Jiaxing Yu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Ye Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Jian Guan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Hongdian Zhang
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China.
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China; Department of Neurosurgery, Xiongan Xuanwu Hospital, Xiong'an New Area, China.
| |
Collapse
|
4
|
Jung R, Trivedi CM. Congenital Vascular and Lymphatic Diseases. Circ Res 2024; 135:159-173. [PMID: 38900856 PMCID: PMC11192239 DOI: 10.1161/circresaha.124.323181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Over the past several centuries, the integration of contemporary medical techniques and innovative technologies, like genetic sequencing, have played a pivotal role in enhancing our comprehension of congenital vascular and lymphatic disorders. Nonetheless, the uncommon and complex characteristics of these disorders, especially considering their formation during the intrauterine stage, present significant obstacles in diagnosis and treatment. Here, we review the intricacies of these congenital abnormalities, offering an in-depth examination of key diagnostic approaches, genetic factors, and therapeutic methods.
Collapse
Affiliation(s)
- Roy Jung
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA 01605 USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605 USA
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605 USA
| | - Chinmay M. Trivedi
- Division of Cardiovascular Medicine, UMass Chan Medical School, Worcester, MA 01605 USA
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605 USA
- Translational Science Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605 USA
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School; Worcester, MA 01605 USA
| |
Collapse
|
5
|
Hammill AM, Boscolo E. Capillary malformations. J Clin Invest 2024; 134:e172842. [PMID: 38618955 PMCID: PMC11014659 DOI: 10.1172/jci172842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Capillary malformation (CM), or port wine birthmark, is a cutaneous congenital vascular anomaly that occurs in 0.1%-2% of newborns. Patients with a CM localized on the forehead have an increased risk of developing a neurocutaneous disorder called encephalotrigeminal angiomatosis or Sturge-Weber syndrome (SWS), with complications including seizure, developmental delay, glaucoma, and vision loss. In 2013, a groundbreaking study revealed causative activating somatic mutations in the gene (GNAQ) encoding guanine nucleotide-binding protein Q subunit α (Gαq) in CM and SWS patient tissues. In this Review, we discuss the disease phenotype, the causative GNAQ mutations, and their cellular origin. We also present the endothelial Gαq-related signaling pathways, the current animal models to study CM and its complications, and future options for therapeutic treatment. Further work remains to fully elucidate the cellular and molecular mechanisms underlying the formation and maintenance of the abnormal vessels.
Collapse
Affiliation(s)
- Adrienne M. Hammill
- Division of Hematology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elisa Boscolo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Gong X, Zhou J, Chen S, Ji Y. Coexistence of kaposiform hemangioendothelioma and capillary malformation: More than a coincidence? Two case reports. Heliyon 2024; 10:e28802. [PMID: 38576567 PMCID: PMC10990900 DOI: 10.1016/j.heliyon.2024.e28802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
The coexistence of kaposiform hemangioendothelioma (KHE) and capillary malformation (CM) is quite rare, and few relevant studies can be found to confirm whether this phenomenon is accidental. We diagnosed and treated two such patients, revealing interesting phenomena associated with the development of vascular diseases. These cases offer the possibility that the coexistence of KHE and CM is not accidental and open up a new field of research related to pediatric vascular tumors and vascular malformations. Personalization and precision are required in the diagnosis and treatment of such patients, and the present findings provide a reliable theoretical and practical basis for further research on the pathogenesis and therapy of patients with multiple vascular diseases.
Collapse
Affiliation(s)
- Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Zecchin D, Knöpfel N, Gluck AK, Stevenson M, Sauvadet A, Polubothu S, Barberan-Martin S, Michailidis F, Bryant D, Inoue A, Lines KE, Hannan FM, Semple RK, Thakker RV, Kinsler VA. GNAQ/GNA11 Mosaicism Causes Aberrant Calcium Signaling Susceptible to Targeted Therapeutics. J Invest Dermatol 2024; 144:811-819.e4. [PMID: 37802293 PMCID: PMC10957341 DOI: 10.1016/j.jid.2023.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/12/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
Mosaic variants in genes GNAQ or GNA11 lead to a spectrum of vascular and pigmentary diseases including Sturge-Weber syndrome, in which progressive postnatal neurological deterioration led us to seek biologically targeted therapeutics. Using two cellular models, we find that disease-causing GNAQ/11 variants hyperactivate constitutive and G-protein coupled receptor ligand-induced intracellular calcium signaling in endothelial cells. We go on to show that the aberrant ligand-activated intracellular calcium signal is fueled by extracellular calcium influx through calcium-release-activated channels. Treatment with targeted small interfering RNAs designed to silence the variant allele preferentially corrects both the constitutive and ligand-activated calcium signaling, whereas treatment with a calcium-release-activated channel inhibitor rescues the ligand-activated signal. This work identifies hyperactivated calcium signaling as the primary biological abnormality in GNAQ/11 mosaicism and paves the way for clinical trials with genetic or small molecule therapies.
Collapse
Affiliation(s)
- Davide Zecchin
- Mosaicism and Precision Medicine Laboratory, Francis Crick Institute, London, United Kingdom; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, United Kingdom
| | - Nicole Knöpfel
- Mosaicism and Precision Medicine Laboratory, Francis Crick Institute, London, United Kingdom; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, United Kingdom; Department of Paediatric Dermatology, Great Ormond St Hospital for Children, London, United Kingdom
| | - Anna K Gluck
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mark Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Aimie Sauvadet
- Mosaicism and Precision Medicine Laboratory, Francis Crick Institute, London, United Kingdom; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, United Kingdom
| | - Satyamaanasa Polubothu
- Mosaicism and Precision Medicine Laboratory, Francis Crick Institute, London, United Kingdom; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, United Kingdom; Department of Paediatric Dermatology, Great Ormond St Hospital for Children, London, United Kingdom
| | - Sara Barberan-Martin
- Mosaicism and Precision Medicine Laboratory, Francis Crick Institute, London, United Kingdom; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, United Kingdom
| | - Fanourios Michailidis
- Mosaicism and Precision Medicine Laboratory, Francis Crick Institute, London, United Kingdom; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, United Kingdom
| | - Dale Bryant
- Mosaicism and Precision Medicine Laboratory, Francis Crick Institute, London, United Kingdom; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, United Kingdom
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kate E Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Fadil M Hannan
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Robert K Semple
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; National Institute for Health Research Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Veronica A Kinsler
- Mosaicism and Precision Medicine Laboratory, Francis Crick Institute, London, United Kingdom; Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, United Kingdom; Department of Paediatric Dermatology, Great Ormond St Hospital for Children, London, United Kingdom.
| |
Collapse
|
8
|
Nasim S, Bichsel C, Dayneka S, Mannix R, Holm A, Vivero M, Alexandrescu S, Pinto A, Greene AK, Ingber DE, Bischoff J. MRC1 and LYVE1 expressing macrophages in vascular beds of GNAQ p.R183Q driven capillary malformations in Sturge Weber syndrome. Acta Neuropathol Commun 2024; 12:47. [PMID: 38532508 PMCID: PMC10964691 DOI: 10.1186/s40478-024-01757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Sturge-Weber syndrome (SWS), a neurocutaneous disorder, is characterized by capillary malformations (CM) in the skin, brain, and eyes. Patients may suffer from seizures, strokes, and glaucoma, and only symptomatic treatment is available. CM are comprised of enlarged vessels with endothelial cells (ECs) and disorganized mural cells. Our recent finding indicated that the R183Q mutation in ECs leads to heightened signaling through phospholipase Cβ3 and protein kinase C, leading to increased angiopoietin-2 (ANGPT2). Furthermore, knockdown of ANGPT2, a crucial mediator of pro-angiogenic signaling, inflammation, and vascular remodeling, in EC-R183Q rescued the enlarged vessel phenotype in vivo. This prompted us to look closer at the microenvironment in CM-affected vascular beds. We analyzed multiple brain histological sections from patients with GNAQ-R183Q CM and found enlarged vessels devoid of mural cells along with increased macrophage-like cells co-expressing MRC1 (CD206, a mannose receptor), CD163 (a scavenger receptor and marker of the monocyte/macrophage lineage), CD68 (a pan macrophage marker), and LYVE1 (a lymphatic marker expressed by some macrophages). These macrophages were not found in non-SWS control brain sections. To investigate the mechanism of increased macrophages in the perivascular environment, we examined THP1 (monocytic/macrophage cell line) cell adhesion to EC-R183Q versus EC-WT under static and laminar flow conditions. First, we observed increased THP1 cell adhesion to EC-R183Q compared to EC-WT under static conditions. Next, using live cell imaging, we found THP1 cell adhesion to EC-R183Q was dramatically increased under laminar flow conditions and could be inhibited by anti-ICAM1. ICAM1, an endothelial cell adhesion molecule required for leukocyte adhesion, was strongly expressed in the endothelium in SWS brain histological sections, suggesting a mechanism for recruitment of macrophages. In conclusion, our findings demonstrate that macrophages are an important component of the perivascular environment in CM suggesting they may contribute to the CM formation and SWS disease progression.
Collapse
Affiliation(s)
- Sana Nasim
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Colette Bichsel
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- CSEM SA, Hegenheimermattweg 167 A, 4123, Allschwil, Switzerland
| | - Stephen Dayneka
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Robert Mannix
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Annegret Holm
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Mathew Vivero
- Department of Plastic & Oral Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Anna Pinto
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Arin K Greene
- Department of Plastic & Oral Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Donald E Ingber
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02215, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02139, USA
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Valery CB, Iannotti I, Kossoff EH, Zabel A, Cohen B, Ou Y, Pinto A, Comi AM. Retrospective Analysis of Presymptomatic Treatment In Sturge-Weber Syndrome. ANNALS OF THE CHILD NEUROLOGY SOCIETY 2024; 2:60-72. [PMID: 38745912 PMCID: PMC11090403 DOI: 10.1002/cns3.20058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 05/16/2024]
Abstract
Background Ninety percent of infants with Sturge-Weber syndrome (SWS) brain involvement have seizure onset before 2 years of age; this is associated with worse neurologic outcome. Presymptomatic treatment before seizure onset may delay seizure onset and improve outcome, as has been shown in other conditions with a high-risk of developing epilepsy such as tuberous sclerosis complex. Electroencephalogram (EEG) may be a biomarker to predict seizure onset. This retrospective clinical data analysis aims to assess impact of presymptomatic treatment in SWS. Methods This two-centered, IRB-approved, retrospective study analyzed records from patients with SWS brain involvement. Clinical data recorded included demographics, age of seizure onset (if present), brain involvement extent (unilateral versus bilateral), port-wine birthmark (PWB) extent, family history of seizure, presymptomatic treatment if received, neuroscore, and anti-seizure medication. EEG reports prior to seizure onset were analyzed. Results Ninety-two patients were included (48 females), and 32 received presymptomatic treatment outside of a formal protocol (5 aspirin, 16 aspirin and levetiracetam; 9 aspirin and oxcarbazepine, 2 valproic acid). Presymptomatically-treated patients were more likely to be seizure-free at 2 years (15 of 32; 47% versus 7 of 60; 12%; p<.001). A greater percentage of presymptomatically-treated patients had bilateral brain involvement (38% treated versus 17% untreated; p=.026). Median hemiparesis neuroscore at 2 years was better in presymptomatically-treated patients. In EEG reports prior to seizure onset, the presence of slowing, epileptiform discharges, or EEG-identified seizures was associated with seizure onset by 2 (p=.001). Conclusion Presymptomatic treatment is a promising approach to children diagnosed with SWS prior to seizure onset. Further study is needed, including prospective drug trials, long-term neuropsychological outcome, and prospective EEG analysis to assess this approach and determine biomarkers for presymptomatic treatment.
Collapse
Affiliation(s)
| | | | - Eric H. Kossoff
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine
| | - Andrew Zabel
- Department of Neuropsychology, Kennedy Krieger Institute
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine
| | - Bernard Cohen
- Department if Dermatology and Pediatrics, Johns Hopkins School of Medicine
| | - Yangming Ou
- Department of Radiology, Boston Children’s Hospital, Harvard Medical School
| | - Anna Pinto
- Department of Neurology, Boston Children’s Hospital
| | - Anne M. Comi
- Department of Neurology, Kennedy Krieger Institute
- Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine
| |
Collapse
|
10
|
Woodis KM, Garlisi Torales LD, Wolf A, Britt A, Sheppard SE. Updates in Genetic Testing for Head and Neck Vascular Anomalies. Oral Maxillofac Surg Clin North Am 2024; 36:1-17. [PMID: 37867039 PMCID: PMC11092895 DOI: 10.1016/j.coms.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Vascular anomalies include benign or malignant tumors or benign malformations of the arteries, veins, capillaries, or lymphatic vasculature. The genetic etiology of the lesion is essential to define the lesion and can help navigate choice of therapy. . In the United States, about 1.2% of the population has a vascular anomaly, which may be underestimating the true prevalence as genetic testing for these conditions continues to evolve.
Collapse
Affiliation(s)
- Kristina M Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA
| | - Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA
| | - Alejandro Wolf
- Department of Pathology and ARUP Laboratories, University of Utah, 2000 Circle of Hope, Room 3100, Salt Lake City, UT 84112, USA
| | - Allison Britt
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA.
| |
Collapse
|
11
|
Wetzel-Strong SE, Galeffi F, Benavides C, Patrucco M, Bullock JL, Gallione CJ, Lee HK, Marchuk DA. Developmental expression of the Sturge-Weber syndrome-associated genetic mutation in Gnaq: a formal test of Happle's paradominant inheritance hypothesis. Genetics 2023; 224:iyad077. [PMID: 37098137 PMCID: PMC10894004 DOI: 10.1093/genetics/iyad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
Sturge-Weber Syndrome (SWS) is a sporadic (non-inherited) syndrome characterized by capillary vascular malformations in the facial skin, leptomeninges, or the choroid. A hallmark feature is the mosaic nature of the phenotype. SWS is caused by a somatic mosaic mutation in the GNAQ gene (p.R183Q), leading to activation of the G protein, Gαq. Decades ago, Rudolf Happle hypothesized SWS as an example of "paradominant inheritance", that is, a "lethal gene (mutation) surviving by mosaicism". He predicted that the "presence of the mutation in the zygote will lead to death of the embryo at an early stage of development". We have created a mouse model for SWS using gene targeting to conditionally express the GNAQ p.R183Q mutation. We have employed two different Cre-drivers to examine the phenotypic effects of expression of this mutation at different levels and stages of development. As predicted by Happle, global, ubiquitous expression of this mutation in the blastocyst stage results in 100% embryonic death. The majority of these developing embryos show vascular defects consistent with the human vascular phenotype. By contrast, global but mosaic expression of the mutation enables a fraction of the embryos to survive, but those that survive to birth and beyond do not exhibit obvious vascular defects. These data validate Happle's paradominant inheritance hypothesis for SWS and suggest the requirement of a tight temporal and developmental window of mutation expression for the generation of the vascular phenotype. Furthermore, these engineered murine alleles provide the template for the development of a mouse model of SWS that acquires the somatic mutation during embryonic development, but permits the embryo to progress to live birth and beyond, so that postnatal phenotypes can also be investigated. These mice could then also be employed in pre-clinical studies of novel therapies.
Collapse
Affiliation(s)
- Sarah E Wetzel-Strong
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Francesca Galeffi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Christian Benavides
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mary Patrucco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jessica L Bullock
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carol J Gallione
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Han Kyu Lee
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Schrenk S, Bischoff LJ, Goines J, Cai Y, Vemaraju S, Odaka Y, Good SR, Palumbo JS, Szabo S, Reynaud D, Van Raamsdonk CD, Lang RA, Boscolo E. MEK inhibition reduced vascular tumor growth and coagulopathy in a mouse model with hyperactive GNAQ. Nat Commun 2023; 14:1929. [PMID: 37024491 PMCID: PMC10079932 DOI: 10.1038/s41467-023-37516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Activating non-inherited mutations in the guanine nucleotide-binding protein G(q) subunit alpha (GNAQ) gene family have been identified in childhood vascular tumors. Patients experience extensive disfigurement, chronic pain and severe complications including a potentially lethal coagulopathy termed Kasabach-Merritt phenomenon. Animal models for this class of vascular tumors do not exist. This has severely hindered the discovery of the molecular consequences of GNAQ mutations in the vasculature and, in turn, the preclinical development of effective targeted therapies. Here we report a mouse model expressing hyperactive mutant GNAQ in endothelial cells. Mutant mice develop vascular and coagulopathy phenotypes similar to those seen in patients. Mechanistically, by transcriptomic analysis we demonstrate increased mitogen activated protein kinase signaling in the mutant endothelial cells. Targeting of this pathway with Trametinib suppresses the tumor growth by reducing vascular cell proliferation and permeability. Trametinib also prevents the development of coagulopathy and improves mouse survival.
Collapse
Affiliation(s)
- Sandra Schrenk
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lindsay J Bischoff
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jillian Goines
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yuqi Cai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shruti Vemaraju
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yoshinobu Odaka
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biology, University of Cincinnati Blue Ash College, Blue Ash, OH, USA
| | - Samantha R Good
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joseph S Palumbo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sara Szabo
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Damien Reynaud
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Richard A Lang
- Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elisa Boscolo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
14
|
The Genetic Architecture of Vascular Anomalies: Current Data and Future Therapeutic Perspectives Correlated with Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232012199. [PMID: 36293054 PMCID: PMC9603778 DOI: 10.3390/ijms232012199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular anomalies (VAs) are morphogenesis defects of the vascular system (arteries, capillaries, veins, lymphatic vessels) singularly or in complex combinations, sometimes with a severe impact on the quality of life. The progress made in recent years with the identification of the key molecular pathways (PI3K/AKT/mTOR and RAS/BRAF/MAPK/ERK) and the gene mutations that lead to the appearance of VAs has allowed the deciphering of their complex genetic architecture. Understanding these mechanisms is critical both for the correct definition of the phenotype and classification of VAs, as well as for the initiation of an optimal therapy and the development of new targeted therapies. The purpose of this review is to present in synthesis the current data related to the genetic factors involved in the etiology of VAs, as well as the possible directions for future research. We analyzed the data from the literature related to VAs, using databases (Google Scholar, PubMed, MEDLINE, OMIM, MedGen, Orphanet) and ClinicalTrials.gov. The obtained results revealed that the phenotypic variability of VAs is correlated with genetic heterogeneity. The identification of new genetic factors and the molecular mechanisms in which they intervene, will allow the development of modern therapies that act targeted as a personalized therapy. We emphasize the importance of the geneticist in the diagnosis and treatment of VAs, as part of a multidisciplinary team involved in the management of VAs.
Collapse
|