1
|
Ishihara T, Kato K, Matsumoto K, Tanaka M, Hara A, Shiraki Y, Morisaki H, Urano Y, Ando R, Ito K, Mii S, Esaki N, Furuhashi K, Takefuji M, Suganami T, Murohara T, Enomoto A. Meflin/ISLR is a marker of adipose stem and progenitor cells in mice and humans that suppresses white adipose tissue remodeling and fibrosis. Genes Cells 2024; 29:902-920. [PMID: 39136356 DOI: 10.1111/gtc.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024]
Abstract
Identifying specific markers of adipose stem and progenitor cells (ASPCs) in vivo is crucial for understanding the biology of white adipose tissues (WAT). PDGFRα-positive perivascular stromal cells represent the best candidates for ASPCs. This cell lineage differentiates into myofibroblasts that contribute to the impairment of WAT function. However, ASPC marker protein(s) that are functionally crucial for maintaining WAT homeostasis are unknown. We previously identified Meflin as a marker of mesenchymal stem cells (MSCs) in bone marrow and tissue-resident perivascular fibroblasts in various tissues. We also demonstrated that Meflin maintains the undifferentiated status of MSCs/fibroblasts. Here, we show that Meflin is expressed in WAT ASPCs. A lineage-tracing experiment showed that Meflin+ ASPCs proliferate in the WAT of obese mice induced by a high-fat diet (HFD), while some of them differentiate into myofibroblasts or mature adipocytes. Meflin knockout mice fed an HFD exhibited a significant fibrotic response as well as increases in adipocyte cell size and the number of crown-like structures in WAT, accompanied by impaired glucose tolerance. These data suggested that Meflin expressed by ASPCs may have a role in reducing disease progression associated with WAT dysfunction.
Collapse
Affiliation(s)
- Toshikazu Ishihara
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kotaro Matsumoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyako Tanaka
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Akitoshi Hara
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidenori Morisaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Urano
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Ando
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kisuke Ito
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Furuhashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayoshi Suganami
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| |
Collapse
|
2
|
Liu K, Li R, Wang S, Fu X, Zhu N, Liang X, Li H, Wang X, Wang L, Li Y, Dai J, Yang J. Cu(II)-baicalein enhance paracrine effect and regenerative function of stem cells in patients with diabetes. Bioact Mater 2024; 36:455-473. [PMID: 39055352 PMCID: PMC11269795 DOI: 10.1016/j.bioactmat.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 07/27/2024] Open
Abstract
The development of engineered or modified autologous stem cells is an effective strategy to improve the efficacy of stem cell therapy. In this study, the stemness and functionality of adipose stem cells derived from type 1 diabetic donors (T1DM-ASC) were enhanced by treatment with Cu(II)-baicalein microflowers (Cu-MON). After treatment with Cu-MON, T1DM-ASC showed enhanced expression of the genes involved in the cytokine-cytokine receptor interaction pathway and increased cytokine secretion. Among the top 13 differentially expressed genes between T1DM-ASC and Cu-MON-treated T1DM-ASC (CMTA), some genes were also expressed in HUVEC, Myoblast, Myofibroblast, and Vascular Smooth Muscle cells, inferring the common role of these cell types. In vivo experiments showed that CMTA had the same therapeutic effect as adipose-derived stem cells from non-diabetic donors (ND-ASC) at a 15% cell dose, greatly reducing the treatment cost. Taken together, these findings suggest that Cu-MON promoted angiogenesis by promoting the stemness and functionality of T1DM-ASC and influencing multiple overall repair processes, including paracrine effects.
Collapse
Affiliation(s)
- Kaijing Liu
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Ruihao Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| | - Xue Fu
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Ni Zhu
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoyu Liang
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Huiyang Li
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoli Wang
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Le Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
- Tianjin Clinical Research Center for Organ Transplantation, Tianjin, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
| | - Jianwu Dai
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Jing Yang
- Key Laboratory of Advanced Medical Materials and Devices, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
- Tianjin Medical Health Research Institute, Tianjin, 300192, China
| |
Collapse
|
3
|
Che Y, Shimizu Y, Hayashi T, Suzuki J, Pu Z, Tsuzuki K, Narita S, Shibata R, Murohara T. Chronic circadian rhythm disorder induces heart failure with preserved ejection fraction-like phenotype through the Clock-sGC-cGMP-PKG1 signaling pathway. Sci Rep 2024; 14:10777. [PMID: 38734687 PMCID: PMC11088651 DOI: 10.1038/s41598-024-61710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Emerging evidence has documented that circadian rhythm disorders could be related to cardiovascular diseases. However, there is limited knowledge on the direct adverse effects of circadian misalignment on the heart. This study aimed to investigate the effect of chronic circadian rhythm disorder on heart homeostasis in a mouse model of consistent jetlag. The jetlag model was induced in mice by a serial 8-h phase advance of the light cycle using a light-controlled isolation box every 4 days for up to 3 months. Herein, we demonstrated for the first time that chronic circadian rhythm disorder established in the mouse jetlag model could lead to HFpEF-like phenotype such as cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction, following the attenuation of the Clock-sGC-cGMP-PKG1 signaling. In addition, clock gene knock down in cardiomyocytes induced hypertrophy via decreased sGC-cGMP-PKG signaling pathway. Furthermore, treatment with an sGC-activator riociguat directly attenuated the adverse effects of jetlag model-induced cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction. Our data suggest that circadian rhythm disruption could induce HFpEF-like phenotype through downregulation of the clock-sGC-cGMP-PKG1 signaling pathway. sGC could be one of the molecular targets against circadian rhythm disorder-related heart disease.
Collapse
Affiliation(s)
- Yiyang Che
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takumi Hayashi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Junya Suzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Zhongyue Pu
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhito Tsuzuki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Narita
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
4
|
Guo W, Pan L, Yang R, Sun J, Hu Q, Huang P. Acupoint transplantation versus non-acupoint transplantation using autologous peripheral blood mononuclear cells in treating peripheral arterial disease. BLOOD SCIENCE 2024; 6:e00175. [PMID: 38226019 PMCID: PMC10789451 DOI: 10.1097/bs9.0000000000000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024] Open
Abstract
Numerous studies have discussed the therapeutic outcomes of using cell therapy or acupuncture to treat peripheral artery disease (PAD). However, there are no long-term studies on the safety and efficacy of transplanting peripheral blood mononuclear cells (PBMNCs) via acupoints to treat PAD. We first reviewed the short-term and long-term clinical results of PAD patients treated with PBMNCs through intramuscular non-acupoint transplantation (control group; n = 45) or intramuscular acupoint transplantation (acupoint group; n = 45) at a single university hospital general medical center between December 2002 and September 2022. Pain intensity (assessed with the verbal rating scale [VRS] score) in the acupoint group was considerably lower than that in the control group at month 1 (mean ± standard deviation [SD]: 1.29 ± 0.96 vs 1.76 ± 0.82; P = 0.016) and month 3 (mean ± SD: 1.27 ± 0.90 vs 1.61 ± 0.86; P = 0.042). We observed significant improvement of VRS score (P < .001 for all) and ankle-brachial index (ABI; P < .001 for all) from baseline in both groups at months 1, 3, 6, 12, 36, and 60. The 10-year cumulative rate of major amputation-free survival (MAFS) was higher in the acupoint group as compared to the control group (81.9%, 95% confidence interval [CI]: 71.3%-94.1% vs 78.5%, 95% CI: 66.7%-92.3%; P = 0.768). Compared with the routine injection method, intramuscular transplantation of PBMNCs via selected acupoints could significantly decrease the short-term pain intensity in patients with PAD, which remains an option for consideration.
Collapse
Affiliation(s)
- Wenjing Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ling Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ruiyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jiali Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qinglin Hu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Pingping Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
5
|
Inoue O, Goten C, Hashimuko D, Yamaguchi K, Takeda Y, Nomura A, Ootsuji H, Takashima S, Iino K, Takemura H, Halurkar M, Lim HW, Hwa V, Sanchez-Gurmaches J, Usui S, Takamura M. Single-cell transcriptomics identifies adipose tissue CD271 + progenitors for enhanced angiogenesis in limb ischemia. Cell Rep Med 2023; 4:101337. [PMID: 38118404 PMCID: PMC10772587 DOI: 10.1016/j.xcrm.2023.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identify CD271+ progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271+ progenitors demonstrate robust in vivo angiogenic capacity over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271+ progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271+ progenitors are strikingly reduced in insulin-resistant donors. Our study highlights the identification of AT-CD271+ progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy.
Collapse
Affiliation(s)
- Oto Inoue
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiaki Goten
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Daiki Hashimuko
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kosei Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Takeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ayano Nomura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ootsuji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinichiro Takashima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Iino
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirofumi Takemura
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Manasi Halurkar
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vivian Hwa
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Premium Research Institute for Human Medicine (WPI-PRIMe), Osaka University, Osaka, Japan; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joan Sanchez-Gurmaches
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
6
|
Mohamad Yusoff F, Higashi Y. Mesenchymal Stem/Stromal Cells for Therapeutic Angiogenesis. Cells 2023; 12:2162. [PMID: 37681894 PMCID: PMC10486439 DOI: 10.3390/cells12172162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are known to possess medicinal properties to facilitate vascular regeneration. Recent advances in the understanding of the utilities of MSCs in physiological/pathological tissue repair and technologies in isolation, expansion, and enhancement strategies have led to the use of MSCs for vascular disease-related treatments. Various conditions, including chronic arterial occlusive disease, diabetic ulcers, and chronic wounds, cause significant morbidity in patients. Therapeutic angiogenesis by cell therapy has led to the possibilities of treatment options in promoting angiogenesis, treating chronic wounds, and improving amputation-free survival. Current perspectives on the options for the use of MSCs for therapeutic angiogenesis in vascular research and in medicine, either as a monotherapy or in combination with conventional interventions, for treating patients with peripheral artery diseases are discussed in this review.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
- Division of Regeneration and Medicine, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
7
|
Shimizu Y, Murohara T. Therapeutic Angiogenesis for Thromboangiitis Obliterans. Circ J 2023; 87:1238-1239. [PMID: 37005248 DOI: 10.1253/circj.cj-23-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Affiliation(s)
- Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| |
Collapse
|
8
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Liu L, Huang S, Du Y, Zhou H, Zhang K, He J. Lats2 deficiency protects the heart against myocardial infarction by reducing inflammation and inhibiting mitochondrial fission and STING/p65 signaling. Int J Biol Sci 2023; 19:3428-3440. [PMID: 37497006 PMCID: PMC10367568 DOI: 10.7150/ijbs.84426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/09/2023] [Indexed: 07/28/2023] Open
Abstract
Large tumor suppressor kinase 2 (Lats2) is a member of the Hippo pathway, a critical regulator of organ size. Since Lats2 activity may trigger mitochondrial dysfunction, a key pathogenic factor in acute myocardial infarction (AMI), this study sought to investigate whether Lats2 deletion confers cardioprotection in AMI. AMI was induced in cardiomyocyte-specific Lats2 knockout (Lats2Cko) and control (Lats2flox) mice. Twenty-eight days after AMI surgery, myocardial performance and mitochondrial homeostasis were impaired in Lats2floxmice. In contrast, Lats2Cko mice exhibited markedly preserved cardiac structure and contraction/relaxation activity, decreased fibrosis, reduced circulating cardiac injury biomarker levels, and enhanced cardiomyocyte viability. Consistent with these findings, siRNA-mediated Lats2 silencing sustained mitochondrial respiration and inhibited apoptosis in hypoxia-treated HL-1 cardiomyocytes. Notably, Lats2 deficiency inhibited AMI/hypoxia-related mitochondrial fission and inactivated STING/p65 signaling by preventing hypoxia-induced release of mtDNA into the cytosol. Accordingly, pharmacological reactivation of STING signaling abolished the cardioprotective effects of Lats2 ablation. Those data suggest that AMI-induced Lats2 upregulation is associated with impaired cardiomyocyte viability and function resulting from enhanced mitochondrial fission, mtDNA release, and STING/p65 pathway activation.
Collapse
Affiliation(s)
- Libao Liu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat sen University, Guangzhou, Guangdong, 510620, China
| | - Shuai Huang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat sen University, Guangzhou, Guangdong, 510620, China
| | - Yingzhen Du
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Hao Zhou
- School of Medicine, University of Rochester Medical Center Rochester, Rochester, NY 14642, United States
| | - Kai Zhang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat sen University, Guangzhou, Guangdong, 510620, China
| | - Jinyuan He
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat sen University, Guangzhou, Guangdong, 510620, China
| |
Collapse
|
10
|
Shimizu Y, Che Y, Murohara T. Therapeutic Lymphangiogenesis Is a Promising Strategy for Secondary Lymphedema. Int J Mol Sci 2023; 24:7774. [PMID: 37175479 PMCID: PMC10178056 DOI: 10.3390/ijms24097774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Secondary lymphedema is caused by lymphatic insufficiency (lymphatic drainage failure) following lymph node dissection during the surgical treatment or radiation therapy of breast or pelvic cancer. The clinical problems associated with lymphedema are reduced quality of life in terms of appearance and function, as well as the development of skin ulcers, recurrent pain, and infection. Currently, countermeasures against lymphedema are mainly physical therapy such as lymphatic massage, elastic stockings, and skin care, and there is no effective and fundamental treatment with a highly recommended grade. Therefore, there is a need for the development of a fundamental novel treatment for intractable lymphedema. Therapeutic lymphangiogenesis, which has been attracting attention in recent years, is a treatment concept that reconstructs the fragmented lymphatic network to recover lymphatic vessel function and is revolutionary to be a fundamental cure. This review focuses on the translational research of therapeutic lymphangiogenesis for lymphedema and outlines the current status and prospects in the development of therapeutic applications.
Collapse
Affiliation(s)
- Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
11
|
Iso Y, Usui S, Suzuki H. Mesenchymal Stem/Stromal Cells in Skeletal Muscle Are Pro-Angiogenic, and the Effect Is Potentiated by Erythropoietin. Pharmaceutics 2023; 15:pharmaceutics15041049. [PMID: 37111534 PMCID: PMC10142054 DOI: 10.3390/pharmaceutics15041049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this study was to investigate the angiogenic potential of skeletal muscle mesenchymal stem/stromal cells (mMSCs). Platelet-derived growth factor receptor (PDGFR)-α positive mMSCs secreted vascular endothelial growth factor (VEGF) and hepatocyte growth factor when cultured in an ELISA assay. The mMSC-medium significantly induced endothelial tube formation in an in vitro angiogenesis assay. The mMSC implantation promoted capillary growth in rat limb ischemia models. Upon identifying the erythropoietin receptor (Epo-R) in the mMSCs, we examined how Epo affected the cells. Epo stimulation enhanced the phosphorylation of Akt and STAT3 in the mMSCs and significantly promoted cellular proliferation. Next, Epo was directly administered into the rats' ischemic hindlimb muscles. PDGFR-α positive mMSCs in the interstitial area of muscles expressed VEGF and proliferating cell markers. The proliferating cell index was significantly higher in the ischemic limbs of Epo-treated rats than in untreated controls. Investigations by laser Doppler perfusion imaging and immunohistochemistry demonstrated significantly improved perfusion recovery and capillary growth in the Epo-treated groups versus the control groups. Taken together, the results of this study demonstrated that mMSCs possessed a pro-angiogenic property, were activated by Epo, and potentially contributed to capillary growth in skeletal muscle after ischemic injury.
Collapse
Affiliation(s)
- Yoshitaka Iso
- Division of Cardiology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Yokohama City 227-8501, Kanagawa, Japan
| | - Sayaka Usui
- Division of Cardiology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Yokohama City 227-8501, Kanagawa, Japan
| | - Hiroshi Suzuki
- Division of Cardiology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Yokohama City 227-8501, Kanagawa, Japan
| |
Collapse
|
12
|
Inoue O, Goten C, Hashimuko D, Yamaguchi K, Takeda Y, Nomura A, Ootsuji H, Takashima S, Iino K, Takemura H, Halurkar M, Lim HW, Hwa V, Sanchez-Gurmaches J, Usui S, Takamura M. Single cell transcriptomics identifies adipose tissue CD271+ progenitors for enhanced angiogenesis in limb ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527726. [PMID: 36865239 PMCID: PMC9980009 DOI: 10.1101/2023.02.09.527726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Therapeutic angiogenesis using mesenchymal stem/stromal cell grafts have shown modest and controversial effects in preventing amputation for patients with critical limb ischemia. Through single-cell transcriptomic analysis of human tissues, we identified CD271 + progenitors specifically from subcutaneous adipose tissue (AT) as having the most prominent pro-angiogenic gene profile distinct from other stem cell populations. AT-CD271 + progenitors demonstrated robust in vivo angiogenic capacity, over conventional adipose stromal cell grafts, characterized by long-term engraftment, augmented tissue regeneration, and significant recovery of blood flow in a xenograft model of limb ischemia. Mechanistically, the angiogenic capacity of CD271 + progenitors is dependent on functional CD271 and mTOR signaling. Notably, the number and angiogenic capacity of CD271 + progenitors was strikingly reduced in insulin resistant donors. Our study highlights the identification of AT-CD271 + progenitors with in vivo superior efficacy for limb ischemia. Furthermore, we showcase comprehensive single-cell transcriptomics strategies for identification of suitable grafts for cell therapy. HIGHLIGHTS Adipose tissue stromal cells have a distinct angiogenic gene profile among human cell sources. CD271 + progenitors in adipose tissue have a prominent angiogenic gene profile. CD271 + progenitors show superior therapeutic capacities for limb ischemia. CD271 + progenitors are reduced and functionally impaired in insulin resistant donors. GRAPHICAL ABSTRACT
Collapse
|
13
|
Duplex and Angiographic-Assisted Evaluation of Outcomes of Endovascular Embolization after Surgical Deep Vein Arterialization for the Treatment No-Option Critical Limb Ischemia Patients. Diagnostics (Basel) 2022; 12:diagnostics12122986. [PMID: 36552992 PMCID: PMC9777475 DOI: 10.3390/diagnostics12122986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To report early and mid-term outcomes of the arterialization of the deep venous system in no-option critical limb-threatening ischemia (CLTI) using duplex ultrasound and angiographic evaluation to improve limb perfusion. METHODS A single-center prospective study of patients with no-option CLTI treated with hybrid surgical arterialization of the deep venous circulation and staged endovascular embolization of the venous collateral. Embolization was performed using a controlled-release spiral, within two weeks after bypass surgery. Patients were assessed for clinical status, wound healing, median transcutaneous partial pressure of O2 (TcPO2), and post-operative duplex ultrasound evaluating peak systolic velocity (PSV), end diastolic velocity (EDV), and resistance index (RI) to assess foot perfusion and bypass features. Primary endpoint analysis was primary technical success, limb salvage, patency rates, and clinical improvement. Secondary endpoints were 30-day and long-term mortality, major cardiovascular events (MACE), including myocardial infarction or stroke, and serious adverse events (SAE). RESULTS Five patients with no-option CLTI were treated at our center using the hybrid deep vein arterialization technique. Clinical stage was grade 3 in one patient and grade 4 in the remaining four. Mean age was 65.8 years (range 49-76 years), and two patients were affected by Buerger's disease. Primary technical success was achieved in all patients, and all the bypasses were patent at the angiographic examination. At 30-day and at average follow-up of 9.8 months (range 2-24 months), mortality, major cardiovascular events (MACE), and serious adverse events (SAE) were not reported, with a primary patency and limb salvage rates of 100%. Three patients required minor amputation. Clinical improvement was demonstrated in all patients with granulation, resolution of rest pain, or both. Median TcPO2 values rose from 10 mm Hg (range 4-25) before the procedure to 35 (range 31-57) after surgery, and to 59 mm Hg (range 50-76) after the staged endovascular procedure. CONCLUSIONS In our initial experience, the arterialization of the deep venous circulation, with subsequent selective embolization of the venous escape routes from the foot, seems a feasible and effective solution for limb salvage in patients with no-option CLTI and those in the advanced wound, ischemia, and foot infection (WIfI) clinical stage.
Collapse
|
14
|
Ishizaki Y, Sasaki KI, Yoshikawa T, Nakayoshi T, Sasaki M, Ohtsuka M, Hatada-Katakabe S, Takata Y, Fukumoto Y. RTA-dh404 decreased oxidative stress in mice ischemic limbs and augmented efficacy of therapeutic angiogenesis by intramuscular injection of adipose-derived regenerative cells in the limbs. Eur J Pharmacol 2022; 938:175422. [PMID: 36442622 DOI: 10.1016/j.ejphar.2022.175422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Although an intramuscular injection of angiogenic cells to ischemic limbs with peripheral artery disease is a therapeutic option to rescue patients by augmenting neovascularization in the limbs, oxidative stress in the limbs may accelerate apoptosis of the injected cells and thereby reduce the therapeutic effect. In this study involving mice with ischemic lower limbs, whether daily oral administration of RTA-dh404, which is an activator of nuclear factor erythroid 2-related factor 2 (Nrf2) with antioxidant activity, could reduce oxidative stress in the limbs and suppress apoptosis of adipose-derived regenerative cells (ADRCs) injected in the limbs, eventually augmenting neovascularization in the limbs, was evaluated. The tissue expression of Nrf2 and concentrations of total antioxidant capacity and superoxide dismutase in the mice ischemic limbs were higher in the RTA-dh404-treated mice than in the control treated mice, and oxidative stress in the limbs of the RTA-dh404 treated mice was decreased. The day after an intramuscular injection of human ADRCs into ischemic lower limbs of immunodeficient mice, the number of apoptotic ADRCs in the ischemic limbs was decreased by approximately 25% in the RTA-dh404-treated mice compared to the control mice. Fourteen days after cell injection, neovascularization and the salvage ratio were increased by approximately 10% and 63%, respectively, in the ischemic limbs in the RTA-dh404-treated mice compared to the control mice. Pretreatment of ischemic limbs by daily oral administration of RTA-dh404 may augment the effect of therapeutic angiogenesis using an intramuscular injection of ADRCs into the ischemic limbs.
Collapse
Affiliation(s)
- Yuta Ishizaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ken-Ichiro Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan.
| | - Takahiro Yoshikawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takaharu Nakayoshi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Motoki Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Ohtsuka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sachiko Hatada-Katakabe
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yuki Takata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|