1
|
Chaurasia PK, Nagraj, Sharma N, Kumari S, Yadav M, Singh S, Mani A, Yadava S, Bharati SL. Fungal assisted bio-treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnol Bioeng 2023; 120:57-81. [PMID: 36253930 DOI: 10.1002/bit.28268] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In the present time of speedy developments and industrialization, heavy metals are being uncovered in aquatic environment and soil via refining, electroplating, processing, mining, metallurgical activities, dyeing and other several metallic and metal based industrial and synthetic activities. Heavy metals like lead (Pb), mercury (Hg), cadmium (Cd), arsenic (As), Zinc (Zn), Cobalt (Co), Iron (Fe), and many other are considered as seriously noxious and toxic for the aquatic environment, human, and other aquatic lives and have damaging influences. Such heavy metals, which are very tough to be degraded, can be managed by reducing their potential through various processes like removal, precipitation, oxidation-reduction, bio-sorption, recovery, bioaccumulation, bio-mineralization etc. Microbes are known as talented bio-agents for the heavy metals detoxification process and fungi are one of the cherished bio-sources that show noteworthy aptitude of heavy metal sorption and metal tolerance. Thus, the main objective of the authors was to come with a comprehensive review having methodological insights on the novel and recent results in the field of mycoremediation of heavy metals. This review significantly assesses the potential talent of fungi in heavy metal detoxification and thus, in environmental restoration. Many reported works, methodologies and mechanistic sights have been evaluated to explore the fungal-assisted heavy metal remediation. Herein, a compact and effectual discussion on the recent mycoremediation studies of organic pollutants like dyes, petroleum, pesticides, insecticides, herbicides, and pharmaceutical wastes have also been presented.
Collapse
Affiliation(s)
- Pankaj Kumar Chaurasia
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagraj
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Nagendra Sharma
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Kumari
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Mithu Yadav
- P. G. Department of Chemistry, L.S. College, B. R. A. Bihar University, Muzaffarpur, Bihar, India
| | - Sunita Singh
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sudha Yadava
- Department of Chemistry, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Shashi Lata Bharati
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| |
Collapse
|
2
|
Ruscasso F, Bezus B, Garmendia G, Vero S, Curutchet G, Cavello I, Cavalitto S. Debaryomyces hansenii F39A as biosorbent for textile dye removal. Rev Argent Microbiol 2021; 53:257-265. [PMID: 33454152 DOI: 10.1016/j.ram.2020.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022] Open
Abstract
Many industries generate a considerable amount of wastewater containing toxic and recalcitrant dyes. The main objective of this research was to examine the biosorption capacity of Reactive Blue 19 and Reactive Red 141 by the Antarctic yeast Debaryomyces hansenii F39A biomass. Some variables, including pH, dye concentration, amount of adsorbent and contact time, were studied. The equilibrium sorption capacity of the biomass increased with increasing initial dye concentration up to 350mg/l. Experimental isotherms fit the Langmuir model and the maximum uptake capacity (qmax) for the selected dyes was in the range of 0.0676-0.169mmol/g biomass. At an initial dye concentration of 100mg/l, 2g/l biomass loading and 20±1°C, D. hansenii F39A adsorbed around 90% of Reactive Red 141 and 50% of Reactive Blue 19 at pH 6.0. When biomass loading was increased (6g/l), the uptake reached up to 90% for Reactive Blue 19. The dye uptake process followed a pseudo-second-order kinetics for each dye system. As seen throughout this research study, D. hansenii has the potential to efficiently and effectively remove dyes in a biosorption process and may be an alternative to other costly materials.
Collapse
Affiliation(s)
- Florencia Ruscasso
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 50 y 115 (1900), La Plata, Bs As, Argentina
| | - Brenda Bezus
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 50 y 115 (1900), La Plata, Bs As, Argentina
| | - Gabriela Garmendia
- Cátedra de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Silvana Vero
- Cátedra de Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gustavo Curutchet
- Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martin, CONICET, Buenos Aires 1650, Argentina
| | - Ivana Cavello
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 50 y 115 (1900), La Plata, Bs As, Argentina.
| | - Sebastián Cavalitto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), CONICET-UNLP, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 50 y 115 (1900), La Plata, Bs As, Argentina
| |
Collapse
|
3
|
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.09.001] [Citation(s) in RCA: 773] [Impact Index Per Article: 154.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Martorell MM, Rosales Soro MDM, Pajot HF, de Figueroa LIC. Optimization and mechanisms for biodecoloration of a mixture of dyes by Trichosporon akiyoshidainum HP 2023. ENVIRONMENTAL TECHNOLOGY 2018; 39:3169-3180. [PMID: 28859550 DOI: 10.1080/09593330.2017.1375024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
Trichosporon akiyoshidainum HP2023 is a basidiomycetous yeast isolated from Las Yungas rainforest (Tucumán, Argentina) and selected based on its outstanding textile-dye-decolorizing ability. In this work, the decolorization process was optimized using Reactive Black 5 as dye model. Lactose and urea were chosen as carbon and nitrogen sources through a one-at-time approach. Afterwards, factorial designs were employed for medium optimization, leading to the formulation of a simpler optimized medium which contains in g L-1: lactose 10, yeast extract 1, urea 0.5, KH2PO4 1 and MgSO4 1. Temperature and agitation conditions were also optimized. The optimized medium and incubation conditions for dye removal were extrapolated to other dyes individually and a mixture of them. Dye removal process happened through both biosorption and biodegradation mechanisms, depending primarily on the dye structure. A positive relation between initial inoculum and dye removal rate and a negative relation between initial dye concentration and final dye removal percentages were found. Under optimized conditions, T. akiyoshidainum HP2023 was able to completely remove a mixture of dyes up to a concentration of 300 mg L-1, a concentration much higher than those expected in real effluents.
Collapse
Affiliation(s)
| | - María Del M Rosales Soro
- b PROIMI - CONICET (Planta Piloto de Procesos Industriales Microbiológicos) , Tucumán , Argentina
| | - Hipólito F Pajot
- b PROIMI - CONICET (Planta Piloto de Procesos Industriales Microbiológicos) , Tucumán , Argentina
| | - Lucía I C de Figueroa
- b PROIMI - CONICET (Planta Piloto de Procesos Industriales Microbiológicos) , Tucumán , Argentina
- c Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia , Universidad Nacional de Tucumán , Tucumán , Argentina
| |
Collapse
|
5
|
Bulacio Gil NM, Pajot HF, Rosales Soro MDM, de Figueroa LIC, Kurth D. Genome-wide overview of Trichosporon akiyoshidainum HP-2023, new insights into its mechanism of dye discoloration. 3 Biotech 2018; 8:440. [PMID: 30306009 DOI: 10.1007/s13205-018-1465-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/26/2018] [Indexed: 01/08/2023] Open
Abstract
Trichosporon akiyoshidainum HP-2023 completely discolorised Reactive Black 5 (200 mg/l) in 24 h. Manganese peroxidase and phenoloxidase, but no laccase activities were detected throughout the incubation. Total aromatic amines in media with Reactive Black 5 decreased 83% after 24 h, supporting an oxidative mechanism of azo dye discoloration. To unravel the genetic basis of these activities, the genome of Trichosporon akiyoshidainum HP-2023 was sequenced, assembled and annotated de novo. T. akiyoshidainum HP-2023 genome comprises 30 MB with a G+C content of 60.75% and 9019 gene models. Thirty-three putative carbohydrate-active enzymes with auxiliary activities, probably involved in lignin degradation and dye discoloration, were identified in the annotated genome, including two laccases, four extracellular fungal heme-peroxidases, nineteen hydrogen peroxide-producing enzymes, and four benzoquinone oxidoreductases. This report will facilitate further studies of textile-dye discoloration with this and closely related strains and poses questions about the ligninolytic potential of Trichosporon akiyoshidainum HP-2023 and related species.
Collapse
Affiliation(s)
- Natalia María Bulacio Gil
- 1PROIMI-CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Av. Belgrano y Caseros (T4001MVB), Tucuman, Argentina
| | - Hipólito Fernando Pajot
- 1PROIMI-CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Av. Belgrano y Caseros (T4001MVB), Tucuman, Argentina
| | - María Del Milagro Rosales Soro
- 1PROIMI-CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Av. Belgrano y Caseros (T4001MVB), Tucuman, Argentina
| | - Lucía Inés Castellanos de Figueroa
- 1PROIMI-CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Av. Belgrano y Caseros (T4001MVB), Tucuman, Argentina
- 2Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Daniel Kurth
- 1PROIMI-CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Av. Belgrano y Caseros (T4001MVB), Tucuman, Argentina
| |
Collapse
|
6
|
Martorell MM, Pajot HF, Ahmed PM, de Figueroa LIC. Biodecoloration of Reactive Black 5 by the methylotrophic yeast Candida boidinii MM 4035. J Environ Sci (China) 2017; 53:78-87. [PMID: 28372763 DOI: 10.1016/j.jes.2016.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 06/07/2023]
Abstract
Azo dyes are extensively used in textile dyeing and other industries. Effluents of dying industries are specially colored and could cause severe damage to the environment. The anaerobic treatment of textile dying effluents is nowadays the preferred option, but it could generate carcinogenic aromatic amines. Recently, yeasts have become a promising alternative, combining unicellular growth with oxidative mechanisms. This work reports the characterization of the first methylotrophic yeast with dye decolorizing ability, Candida boidinii MM 4035 and some insights into its decoloration mechanism. The analysis of two selected media revealed a possible two stages mechanism of Reactive Black 5 decoloration. In glucose poor media, decoloration is incomplete and only the first stage proceeds, leading to the accumulation of a purple compound. In media with higher glucose concentrations, the yeast is able to decolorize totally an initial concentration of 200mg/L. The entire process is co-metabolic, being largely dependent on glucose concentration but being able to proceed with several nitrogen sources. Manganese dependent peroxidase but not laccase activity could be detected during decoloration. Aromatic amines do not accumulate in culture media, supporting an oxidative decoloration mechanism of unknown ecophysiological relevance.
Collapse
Affiliation(s)
| | - Hipólito F Pajot
- PROIMI - CONICET, Tucumán, Argentina; Department of Products Quality IV, San Pablo University-Tucumán, Tucumán, Argentina
| | - Pablo M Ahmed
- Agroindustrial Experimental Station Obispo Colombres, Tucumán, Argentina
| | - Lucía I C de Figueroa
- PROIMI - CONICET, Tucumán, Argentina; Department of Superior Microbiology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, Tucumán, Argentina
| |
Collapse
|
7
|
Jafari N, Soudi MR, Kasra-Kermanshahi R. Biodegradation perspectives of azo dyes by yeasts. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714050130] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
8
|
Gluconic acid produced by Gluconacetobacter diazotrophicus Pal5 possesses antimicrobial properties. Res Microbiol 2014; 165:549-58. [DOI: 10.1016/j.resmic.2014.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 11/22/2022]
|
9
|
Rovati JI, Pajot HF, Ruberto L, Mac Cormack W, Figueroa LIC. Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast 2014; 30:459-70. [PMID: 24298603 DOI: 10.1002/yea.2982] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antarctica offers a range of extreme climatic conditions, such as low temperatures, high solar radiation and low nutrient availability, and constitutes one of the harshest environments on Earth. Despite that, it has been successfully colonized by ’cold-loving’ fungi, which play a key role in decomposition cycles in cold ecosystems. However, knowledge about the ecological role of yeasts in nutrient or organic matter recycling/mineralization remains highly fragmentary. The aim of this work was to study the yeast microbiota in samples collected on 25 de Mayo/King George Island regarding the scope of their ability to degrade polyphenolic substrates such as lignin and azo dyes. Sixty-one yeast isolates were obtained from 37 samples, including soil, rocks, wood and bones. Molecular analyses based on rDNA sequences revealed that 35 yeasts could be identified at the species level and could be classified in the genera Leucosporidiella, Rhodotorula, Cryptococcus, Bullera and Candida. Cryptococcus victoriae was by far the most ubiquitous species. In total, 33% of the yeast isolates examined showed significant activity for dye decolorization, 25% for laccase activity and 38% for ligninolytic activity. Eleven yeasts did not show positive activity in any of the assays performed and no isolates showed positive activity across all tested substrates. A high diversity of yeasts were isolated in this work, possibly including undescribed species and conspicuous Antarctic yeasts, most of them belonging to oligotrophic, slow-growing and metabolically diverse basidiomycetous genera.
Collapse
|
10
|
Taverna CG, Cordoba S, Murisengo OA, Vivot W, Davel G, Bosco-Borgeat ME. Molecular identification, genotyping, and antifungal susceptibility testing of clinically relevant Trichosporon species from Argentina. Med Mycol 2014; 52:356-66. [DOI: 10.1093/mmy/myt029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Wang Y, Kang W, Xu Y, Li J. Effect of Different Indigenous Yeast β-Glucosidases on the Liberation of Bound Aroma Compounds. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00466.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Martorell MM, Pajot HF, Rovati JI, Figueroa LIC. Optimization of culture medium composition for manganese peroxidase and tyrosinase production during Reactive Black 5 decolourization by the yeast Trichosporon akiyoshidainum. Yeast 2012; 29:137-44. [DOI: 10.1002/yea.2896] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/07/2012] [Indexed: 11/10/2022] Open
|
13
|
Unraveling the decolourizing ability of yeast isolates from dye-polluted and virgin environments: an ecological and taxonomical overview. Antonie van Leeuwenhoek 2010; 99:443-56. [DOI: 10.1007/s10482-010-9495-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
|
14
|
Dias AA, Lucas MS, Sampaio A, Peres JA, Bezerra RMF. Decolorization of Azo Dyes by Yeasts. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2010. [DOI: 10.1007/698_2009_49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Rodríguez-Bustamante E, Maldonado-Robledo G, Arreguín-Espinosa R, Mendoza-Hernández G, Rodríguez-Sanoja R, Sánchez S. Glucose exerts a negative effect over a peroxidase from Trichosporon asahii, with carotenoid cleaving activity. Appl Microbiol Biotechnol 2009; 84:499-510. [PMID: 19390852 DOI: 10.1007/s00253-009-1996-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/11/2009] [Accepted: 03/31/2009] [Indexed: 11/29/2022]
Abstract
Tobacco aroma compounds were generated via lutein cleavage by the combined action of a yeast and a bacterium identified as Trichosporon asahii and Paenibacillus amylolyticus, respectively. In this study, an inverse relationship between glucose concentration and the generation of three compounds, present in the tobacco aroma profile, was observed in mixed cultures. In order to identify the organism sensitive to the sugar effect, both were grown separately. The presence of glucose suppressed beta-ionone production by T. asahii grown with lutein. However, the biotransformation of the ionone into its reduced derivatives (7,8-dihydro-beta-ionone and 7,8-dihydro-beta-ionol) by P. amylolyticus was not affected by the sugar. This pointed to the cleavage of lutein, a step within the process necessary for the synthesis of beta-ionone, as the target of the glucose effect. In vitro studies with crude extracts and concentrated cell-free medium derived from T. asahii cultures showed that the carotenoid breakdown activity was located extracellularly and only detected in supernatants from yeast cells grown in the absence of the sugar. Rather than an inhibition or a mechanism affecting the enzyme secretion, the glucose effect on lutein degradation comprised another regulatory level. Further experiments showed that the enzyme responsible for lutein breakdown and susceptible to the sugar effect exhibited a high degree of identity to fungal peroxidases, studied as well, for their involvement in carotenoid cleavage.
Collapse
Affiliation(s)
- Eduardo Rodríguez-Bustamante
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico.
| | | | | | | | | | | |
Collapse
|
16
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|