1
|
Sato R, Yamazaki H, Mori K, Aburatani S, Ishiya K, Shida Y, Ogasawara W, Tashiro K, Kuhara S, Takaku H. Identification and characterization of the suppressed lipid accumulation-related gene, SLA1, in the oleaginous yeast Lipomyces starkeyi. Biosci Biotechnol Biochem 2024; 88:1370-1380. [PMID: 39085043 DOI: 10.1093/bbb/zbae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The oleaginous yeast Lipomyces starkeyi is an attractive industrial yeast that can accumulate high amounts of intracellular lipids. Identification of genes involved in lipid accumulation contributes not only to elucidating the lipid accumulation mechanism but also to breeding industrially useful high lipid-producing strains. In this study, the suppressed lipid accumulation-related gene (SLA1) was identified as the causative gene of the sr22 mutant with decreased lipid productivity. Suppressed lipid accumulation-related gene mutation reduced gene expression in lipid biosynthesis and increased gene expression in β-oxidation. Our results suggest that SLA1 mutation may leads to decreased lipid productivity. Suppressed lipid accumulation-related gene deletion also exhibited decreased gene expression in β-oxidation and increased lipid accumulation, suggesting that SLA1 deletion is a useful tool to improve lipid accumulation in L. starkeyi for industrialization.
Collapse
Affiliation(s)
- Rikako Sato
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Akiha-ku, Niigata, Japan
| | - Harutake Yamazaki
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Akiha-ku, Niigata, Japan
| | - Kazuki Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Satoru Kuhara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Akiha-ku, Niigata, Japan
| |
Collapse
|
2
|
Czajka JJ, Han Y, Kim J, Mondo SJ, Hofstad BA, Robles A, Haridas S, Riley R, LaButti K, Pangilinan J, Andreopoulos W, Lipzen A, Yan J, Wang M, Ng V, Grigoriev IV, Spatafora JW, Magnuson JK, Baker SE, Pomraning KR. Genome-scale model development and genomic sequencing of the oleaginous clade Lipomyces. Front Bioeng Biotechnol 2024; 12:1356551. [PMID: 38638323 PMCID: PMC11024372 DOI: 10.3389/fbioe.2024.1356551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
The Lipomyces clade contains oleaginous yeast species with advantageous metabolic features for biochemical and biofuel production. Limited knowledge about the metabolic networks of the species and limited tools for genetic engineering have led to a relatively small amount of research on the microbes. Here, a genome-scale metabolic model (GSM) of Lipomyces starkeyi NRRL Y-11557 was built using orthologous protein mappings to model yeast species. Phenotypic growth assays were used to validate the GSM (66% accuracy) and indicated that NRRL Y-11557 utilized diverse carbohydrates but had more limited catabolism of organic acids. The final GSM contained 2,193 reactions, 1,909 metabolites, and 996 genes and was thus named iLst996. The model contained 96 of the annotated carbohydrate-active enzymes. iLst996 predicted a flux distribution in line with oleaginous yeast measurements and was utilized to predict theoretical lipid yields. Twenty-five other yeasts in the Lipomyces clade were then genome sequenced and annotated. Sixteen of the Lipomyces species had orthologs for more than 97% of the iLst996 genes, demonstrating the usefulness of iLst996 as a broad GSM for Lipomyces metabolism. Pathways that diverged from iLst996 mainly revolved around alternate carbon metabolism, with ortholog groups excluding NRRL Y-11557 annotated to be involved in transport, glycerolipid, and starch metabolism, among others. Overall, this study provides a useful modeling tool and data for analyzing and understanding Lipomyces species metabolism and will assist further engineering efforts in Lipomyces.
Collapse
Affiliation(s)
- Jeffrey J. Czajka
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Yichao Han
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Joonhoon Kim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, United States
| | - Stephen J. Mondo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Beth A. Hofstad
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - AnaLaura Robles
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - William Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Juying Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jon K. Magnuson
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, United States
| | - Scott E. Baker
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
- US Department of Energy Joint BioEnergy Institute, Emeryville, CA, United States
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kyle R. Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| |
Collapse
|
3
|
Sato R, Fujii Y, Ara S, Yamazaki H, Aburatani S, Ogasawara W, Takaku H. Deletion of LsSNF1 enhances lipid accumulation in the oleaginous yeast Lipomyces starkeyi. J Biosci Bioeng 2024; 137:260-267. [PMID: 38341331 DOI: 10.1016/j.jbiosc.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The oleaginous yeast, Lipomyces starkeyi can have diverse industrial applications due to its remarkable capacity to use various carbon sources for the biosynthesis intracellular triacylglycerides (TAGs). In L. starkeyi, TAG synthesis is enhanced through upregulation of genes involved in citrate-mediated acyl-CoA synthesis and Kennedy pathways through the transcriptional regulator LsSpt23p. High expression of LsSPT23 can considerably enhance TAG production. Altering the regulatory factors associated with lipid production can substantially augment lipid productivity. In this study, we identified and examined the L. starkeyi homolog sucrose nonfermenting 1 SNF1 (LsSNF1) of YlSNF1, which encodes a negative regulator of lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica. The deletion of LsSNF1 enhanced TAG productivity in L. starkeyi, suggesting that LsSnf1p is a negative regulator in TAG production. The enhancement of TAG production following deletion of LsSNF1 can primarily be attributed to the upregulation of genes in the citrate-mediated acyl-CoA synthesis and Kennedy pathways, pivotal routes in TAG biosynthesis. The overexpression of LsSPT23 enhanced lipid productivity; strain overexpressing LsSPT23 and without LsSNF1 exhibited increased TAG production capacity per cell. LsSnf1p also has a significant role in the utilization of carbon sources, including xylose or glycerol, in L. starkeyi. Our study results elucidated the role of LsSnf1p in the negative regulation of TAG synthesis in L. starkeyi, which has not previously been reported.
Collapse
Affiliation(s)
- Rikako Sato
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Yuuya Fujii
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Satoshi Ara
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Harutake Yamazaki
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
| |
Collapse
|
4
|
Kitahara Y, Itani A, Ohtomo K, Oda Y, Takahashi Y, Okamura M, Mizoshiri M, Shida Y, Nakamura T, Harakawa R, Iwahashi M, Ogasawara W. The monitoring of oil production process by deep learning based on morphology in oleaginous yeasts. Appl Microbiol Biotechnol 2023; 107:915-929. [PMID: 36576569 DOI: 10.1007/s00253-022-12338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Monitoring jar fermenter-cultured microorganisms in real time is important for controlling productivity of bioproducts in large-scale cultivation settings. Morphological data is used to understand the growth and fermentation states of these microorganisms during monitoring. Oleaginous yeasts are used for their high productivity of single-cell oils but the relationship between lipid productivity and morphology has not been elucidated in these organisms. RESULTS In this study, we investigated the relationship between the morphology of oleaginous yeasts (Lipomyces starkeyi and Rhodosporidium toruloides were used) and their cultivation state in a large-scale cultivation setting using a real-time monitoring system. We combined this with deep learning by feeding a large amount of high-definition cell images obtained from the monitoring system to a deep learning algorithm. Our results showed that the cell images could be grouped into 7 distinct groups and that a strong correlation existed between each group and its biochemical activity (growth and oil-productivity). CONCLUSIONS This is the first report describing the morphological variations of oleaginous yeasts in a large-scale cultivation, and describes a promising new avenue for improving productivity of microorganisms in large-scale cultivation through the use of a real-time monitoring system combined with deep learning. KEY POINTS • A real-time monitoring system followed the morphological change of oleaginous yeasts. • Deep learning grouped them into 7 distinct groups based on their morphology. • A correlation between the cultivation state and the shape of the yeast was observed.
Collapse
Affiliation(s)
- Yukina Kitahara
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Ayaka Itani
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Kazuma Ohtomo
- Department of Information Science and Control Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Yosuke Oda
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Yuka Takahashi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Makoto Okamura
- NRI System Techno Ltd, 4-4-1 Minato Mirai, Nishi-Ku, Yokohama, 220-0012, Japan
| | - Mizue Mizoshiri
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Toru Nakamura
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Ryosuke Harakawa
- Department of Electrical Electronics and Information Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Masahiro Iwahashi
- Department of Electrical Electronics and Information Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Wataru Ogasawara
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan. .,Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
5
|
LsSpt23p is a regulator of triacylglycerol synthesis in the oleaginous yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 2023; 107:1269-1284. [PMID: 36648525 DOI: 10.1007/s00253-023-12361-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/28/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
The oleaginous yeast Lipomyces starkeyi has considerable potential in industrial application, since it can accumulate a large amount of triacylglycerol (TAG), which is produced from sugars under nitrogen limitation condition. However, the regulation of lipogenesis in L. starkeyi has not been investigated in depth. In this study, we compared the genome sequences of wild-type and mutants with increased TAG productivity, and identified a regulatory protein, LsSpt23p, which contributes to the regulation of TAG synthesis in L. starkeyi. L. starkeyi mutants overexpressing LsSPT23 had increased TAG productivity compared with the wild-type strain. Quantitative real-time PCR analysis showed that LsSpt23p upregulated the expression of GPD1, which encodes glycerol 3-phosphate dehydrogenase; the Kennedy pathway genes SCT1, SLC1, PAH1, DGA1, and DGA2; the citrate-mediated acyl-CoA synthesis pathway-related genes ACL1, ACL2, ACC1, FAS1, and FAS2; and OLE1, which encodes ∆9 fatty acid desaturase. Chromatin immunoprecipitation-quantitative PCR assays indicated that LsSpt23p acts as a direct regulator of SLC1 and PAH1, all the citrate-mediated acyl-CoA synthesis pathway-related genes, and OLE1. These results indicate that LsSpt23p regulates TAG synthesis. Phosphatidic acid is a common substrate of phosphatidic acid phosphohydrolase, which is used for TAG synthesis, and phosphatidate cytidylyltransferase 1 for phospholipid synthesis in the Kennedy pathway. LsSpt23p directly regulated PAH1 but did not affect the expression of CDS1, suggesting that the preferred route of carbon is the Pah1p-mediated TAG synthesis pathway under nitrogen limitation condition. The present study contributes to understanding the regulation of TAG synthesis, and will be valuable in future improvement of TAG productivity in oleaginous yeasts. KEY POINTS: LsSpt23p was identified as a positive regulator of TAG biosynthesis LsSPT23 overexpression enhanced TAG biosynthesis gene expression and TAG production LsSPT23M1108T overexpression mutant showed fivefold higher TAG production than control.
Collapse
|
6
|
Yamazaki A, Lorliam W, Uchino M, Suzuki KI, Kawasaki H. North-to-South diversity of lipomycetaceous yeasts in soils evaluated with a cultivation-based approach from 11 locations in Japan. MYCOSCIENCE 2022; 64:1-10. [PMID: 37089900 PMCID: PMC10025075 DOI: 10.47371/mycosci.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/26/2022]
Abstract
To understand the species distribution, diversity, and density of lipomycetaceous yeasts in soil based on their north-to-south location in Japan, 1146 strains were isolated from soil samples at 11 locations from Hokkaido to Okinawa Prefecture and taxonomically characterized. Lipomycetaceous yeast strains were isolated efficiently from soil by selecting watery mucoid-like colonies on agar plates with nitrogen-depleted medium. Twenty-four (80%) of the 30 known species of the genus Lipomyces were isolated from the soil samples collected in Japan, including species recently proposed. Among the species isolated, L. starkeyi was the most predominant in Japan, except on Iriomote Island, Okinawa, and accounted for 60-98% of the isolated strains. Lipomyces yarrowii was the dominant species on Iriomote Island (64%). The second most dominant species were L. chichibuensis in Saitama Prefecture and L. doorenjongii from Yamaguchi to Okinawa Prefecture. The species diversity of lipomycetaceous yeasts was in Japan and the significant correlation with the latitude of the sampling sites was revealed.
Collapse
Affiliation(s)
- Atsushi Yamazaki
- NITE Biological
Resource Center (NBRC), National Institute of Technology and
Evaluation (NITE)
| | - Wanlapa Lorliam
- Department of
Microbiology, Faculty of Science, Srinakarinvirot
University
| | - Masataka Uchino
- Department of
Molecular Microbiology, Faculty of Life Science, Tokyo University of
Agriculture
| | - Ken-ichiro Suzuki
- Department of
Fermentation Science, Faculty of Applied Bioscience, Tokyo University
of Agriculture
| | - Hiroko Kawasaki
- NITE Biological
Resource Center (NBRC), National Institute of Technology and
Evaluation (NITE)
| |
Collapse
|
7
|
Optimization and Rheological Study of an Exopolysaccharide Obtained from Fermented Mature Coconut Water with Lipomyces starkeyi. Foods 2022; 11:foods11070999. [PMID: 35407085 PMCID: PMC8997579 DOI: 10.3390/foods11070999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 12/10/2022] Open
Abstract
The current research aimed to solve the environmental pollution of mature coconut water by Lipomyces starkeyi and provide a study of its high value utilization. The innovation firstly investigated the rheological properties and interface behavior of a crude exopolysaccharide and provided a technical support for its application in food. A response surface methodology was performed to ameliorate the fermentation factors of the new exopolysaccharide with mature coconut water as a substrate, and the consequences suggested that the maximum yield was 7.76 g/L under optimal conditions. Rotary shear measurements were used to study the influence of four variables on the viscosity of the exopolysaccharide solution. The results illustrated that the exopolysaccharide solution demonstrated a shear-thinning behavior and satisfactory thermal stability within the test range. The viscosity of the exopolysaccharide solution was significantly affected by ionic strength and pH; it reached the peak viscosity when the concentration of NaCl was 0.1 mol/L and the pH was neutral. The adsorption behavior of the exopolysaccharide at the medium chain triglyceride–water interface was investigated by a quartz crystal microbalance with a dissipation detector. The results demonstrated that the exopolysaccharide might form a multilayer adsorption layer, and the thickness of the adsorption layer was at its maximum at a concentration of 1.0%, while the interfacial film was the most rigid at a concentration of 0.4%. Overall, these results suggest that the exopolysaccharide produced by Lipomyces starkeyi is an excellent biomaterial for usage in drink, makeup and drug fabrications as a thickening and stabilizing agent.
Collapse
|
8
|
Citrate-Mediated Acyl-CoA Synthesis Is Required for the Promotion of Growth and Triacylglycerol Production in Oleaginous Yeast Lipomyces starkeyi. Microorganisms 2021; 9:microorganisms9081693. [PMID: 34442772 PMCID: PMC8400019 DOI: 10.3390/microorganisms9081693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022] Open
Abstract
The oleaginous yeast Lipomyces starkeyi is an excellent producer of triacylglycerol (TAG) as a feedstock for biodiesel production. To understand the regulation of TAG synthesis, we attempted to isolate mutants with decreased lipid productivity and analyze the expression of TAG synthesis-related genes in this study. A mutant with greatly decreased lipid productivity, sr22, was obtained by an effective screening method using Percoll density gradient centrifugation. The expression of citrate-mediated acyl-CoA synthesis-related genes (ACL1, ACL2, ACC1, FAS1, and FAS2) was decreased in the sr22 mutant compared with that of the wild-type strain. Together with a notion that L. starkeyi mutants with increased lipid productivities had increased gene expression, there was a correlation between the expression of these genes and TAG synthesis. To clarify the importance of citrate-mediated acyl-CoA synthesis pathway on TAG synthesis, we also constructed a strain with no ATP-citrate lyase responsible for the first reaction of citrate-mediated acyl-CoA synthesis and investigated the importance of ATP-citrate lyase on TAG synthesis. The ATP-citrate lyase was required for the promotion of cell growth and TAG synthesis in a glucose medium. This study may provide opportunities for the development of an efficient TAG synthesis for biodiesel production.
Collapse
|
9
|
Zhou W, Wang Y, Zhang J, Zhao M, Tang M, Zhou W, Gong Z. A metabolic model of Lipomyces starkeyi for predicting lipogenesis potential from diverse low-cost substrates. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:148. [PMID: 34210354 PMCID: PMC8247262 DOI: 10.1186/s13068-021-01997-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Lipomyces starkeyi has been widely regarded as a promising oleaginous yeast with broad industrial application prospects because of its wide substrate spectrum, good adaption to fermentation inhibitors, excellent fatty acid composition for high-quality biodiesel, and negligible lipid remobilization. However, the currently low experimental lipid yield of L. starkeyi prohibits its commercial success. Metabolic model is extremely valuable to comprehend the complex biochemical processes and provide great guidance for strain modification to facilitate the lipid biosynthesis. RESULTS A small-scale metabolic model of L. starkeyi NRRL Y-11557 was constructed based on the genome annotation information. The theoretical lipid yields of glucose, cellobiose, xylose, glycerol, and acetic acid were calculated according to the flux balance analysis (FBA). The optimal flux distribution of the lipid synthesis showed that pentose phosphate pathway (PPP) independently met the necessity of NADPH for lipid synthesis, resulting in the relatively low lipid yields. Several targets (NADP-dependent oxidoreductases) beneficial for oleaginicity of L. starkeyi with significantly higher theoretical lipid yields were compared and elucidated. The combined utilization of acetic acid and other carbon sources and a hypothetical reverse β-oxidation (RBO) pathway showed outstanding potential for improving the theoretical lipid yield. CONCLUSIONS The lipid biosynthesis potential of L. starkeyi can be significantly improved through appropriate modification of metabolic network, as well as combined utilization of carbon sources according to the metabolic model. The prediction and analysis provide valuable guidance to improve lipid production from various low-cost substrates.
Collapse
Affiliation(s)
- Wei Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Junlu Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Man Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Mou Tang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| |
Collapse
|
10
|
Dai Z, Pomraning KR, Panisko EA, Hofstad BA, Campbell KB, Kim J, Robles AL, Deng S, Magnuson JK. Genetically Engineered Oleaginous Yeast Lipomyces starkeyi for Sesquiterpene α-Zingiberene Production. ACS Synth Biol 2021; 10:1000-1008. [PMID: 33915043 DOI: 10.1021/acssynbio.0c00503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oleaginous yeast, such as Lipomyces starkeyi, are logical organisms for production of higher energy density molecules like lipids and terpenes. We demonstrate that transgenic L. starkeyi strains expressing an α-zingiberene synthase gene from lemon basil or Hall's panicgrass can produce up to 17 mg/L α-zingiberene in yeast extract peptone dextrose (YPD) medium containing 4% glucose. The transgenic strain was further examined in 8% glucose media with C/N ratios of 20 or 100, and YPD. YPD medium resulted in 59 mg/L α-zingiberene accumulation. Overexpression of selected genes from the mevalonate pathway achieved 145% improvement in α-zingiberene synthesis. Optimization of the growth medium for α-zingiberene production led to 15% higher titer than YPD medium. The final transgenic strain produced 700 mg/L α-zingiberene in fed-batch bioreactor culture. This study opens a new synthetic route to produce α-zingiberene or other terpenoids in L. starkeyi and establishes this yeast as a platform for jet fuel biosynthesis.
Collapse
Affiliation(s)
- Ziyu Dai
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kyle R. Pomraning
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ellen A. Panisko
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Beth A. Hofstad
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kristen B. Campbell
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joonhoon Kim
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ana L. Robles
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Shuang Deng
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jon K. Magnuson
- Chemical and Biological Processes Development Group, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
11
|
Takaku H, Ebina S, Kasuga K, Sato R, Ara S, Kazama H, Matsuzawa T, Yaoi K, Araki H, Shida Y, Ogasawara W, Ishiya K, Aburatani S, Yamazaki H. Isolation and characterization of Lipomyces starkeyi mutants with greatly increased lipid productivity following UV irradiation. J Biosci Bioeng 2021; 131:613-621. [PMID: 33582014 DOI: 10.1016/j.jbiosc.2021.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
Abstract
The oleaginous yeast Lipomyces starkeyi is an intriguing lipid producer that can produce triacylglycerol (TAG), a feedstock for biodiesel production. We previously reported that the L. starkeyi mutant E15 with high levels of TAG production compared with the wild-type was efficiently obtained using Percoll density gradient centrifugation. However, considering its use for biodiesel production, it is necessary to further improve the lipid productivity of the mutant. In this study, we aimed to obtain mutants with better lipid productivity than E15, evaluate its lipid productivity, and analyze lipid synthesis-related gene expression in the wild-type and mutant strains. The mutants E15-11, E15-15, and E15-25 exhibiting higher lipid productivity than E15 were efficiently isolated from cells exposed to ultraviolet light using Percoll density gradient centrifugation. They exhibited approximately 4.5-fold higher lipid productivity than the wild-type on day 3. The obtained mutants did not exhibit significantly different fatty acid profiles than the wild-type and E15 mutant strains. E15-11, E15-15, and E15-25 exhibited higher expression of acyl-CoA synthesis- and Kennedy pathway-related genes than the wild-type and E15 mutant strains. Activation of the pentose phosphate pathway, which supplies NADPH, was also observed. These results suggested that the increased expression of acyl-CoA synthesis- and Kennedy pathway-related genes plays a vital role in lipid productivity in the oleaginous yeast L. starkeyi.
Collapse
Affiliation(s)
- Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan.
| | - Sayaka Ebina
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Kotoha Kasuga
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Rikako Sato
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Satoshi Ara
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Haruka Kazama
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| | - Tomohiko Matsuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hideo Araki
- Research Institute for Creating the Future, Fuji Oil Holdings Inc., 4-3 Kinunodai, Tsukubamirai-shi, Ibaraki 300-2497, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Sachiyo Aburatani
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tokyo Waterfront Main Bldg. 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Harutake Yamazaki
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata 956-8603, Japan
| |
Collapse
|
12
|
Lipid Production by Yeasts Growing on Commercial Xylose in Submerged Cultures with Process Water Being Partially Replaced by Olive Mill Wastewaters. Processes (Basel) 2020. [DOI: 10.3390/pr8070819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Six yeast strains belonging to Rhodosporidium toruloides, Lipomyces starkeyi, Rhodotorula glutinis and Cryptococcus curvatus were shake-flask cultured on xylose (initial sugar—S0 = 70 ± 10 g/L) under nitrogen-limited conditions. C. curvatus ATCC 20509 and L. starkeyi DSM 70296 were further cultured in media where process waters were partially replaced by the phenol-containing olive mill wastewaters (OMWs). In flasks with S0 ≈ 100 g/L and OMWs added yielding to initial phenolic compounds concentration (PCC0) between 0.0 g/L (blank experiment) and 2.0 g/L, C. curvatus presented maximum total dry cell weight—TDCWmax ≈ 27 g/L, in all cases. The more the PCC0 increased, the fewer lipids were produced. In OMW-enriched media with PCC0 ≈ 1.2 g/L, TDCW = 20.9 g/L containing ≈ 40% w/w of lipids was recorded. In L. starkeyi cultures, when PCC0 ≈ 2.0 g/L, TDCW ≈ 25 g/L was synthesized, whereas lipids in TDCW = 24–28% w/w, similar to the experiments without OMWs, were recorded. Non-negligible dephenolization and species-dependent decolorization of the wastewater occurred. A batch-bioreactor trial by C. curvatus only with xylose (S0 ≈ 110 g/L) was performed and TDCW = 35.1 g/L (lipids in TDCW = 44.3% w/w) was produced. Yeast total lipids were composed of oleic and palmitic and to lesser extent linoleic and stearic acids. C. curvatus lipids were mainly composed of nonpolar fractions (i.e., triacylglycerols).
Collapse
|
13
|
Lipid metabolism of the oleaginous yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 2020; 104:6141-6148. [DOI: 10.1007/s00253-020-10695-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
|
14
|
Milo S, Harari-Misgav R, Hazkani-Covo E, Covo S. Limited DNA Repair Gene Repertoire in Ascomycete Yeast Revealed by Comparative Genomics. Genome Biol Evol 2020; 11:3409-3423. [PMID: 31693105 PMCID: PMC7145719 DOI: 10.1093/gbe/evz242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Ascomycota is the largest phylogenetic group of fungi that includes species important to human health and wellbeing. DNA repair is important for fungal survival and genome evolution. Here, we describe a detailed comparative genomic analysis of DNA repair genes in Ascomycota. We determined the DNA repair gene repertoire in Taphrinomycotina, Saccharomycotina, Leotiomycetes, Sordariomycetes, Dothideomycetes, and Eurotiomycetes. The subphyla of yeasts, Saccharomycotina and Taphrinomycotina, have a smaller DNA repair gene repertoire comparing to Pezizomycotina. Some genes were absent from most, if not all, yeast species. To study the conservation of these genes in Pezizomycotina, we used the Gain Loss Mapping Engine algorithm that provides the expectations of gain or loss of genes given the tree topology. Genes that were absent from most of the species of Taphrinomycotina or Saccharomycotina showed lower conservation in Pezizomycotina. This suggests that the absence of some DNA repair in yeasts is not random; genes with a tendency to be lost in other classes are missing. We ranked the conservation of DNA repair genes in Ascomycota. We found that Rad51 and its paralogs were less conserved than other recombinational proteins, suggesting that there is a redundancy between Rad51 and its paralogs, at least in some species. Finally, based on the repertoire of UV repair genes, we found conditions that differentially kill the wine pathogen Brettanomyces bruxellensis and not Saccharomyces cerevisiae. In summary, our analysis provides testable hypotheses to the role of DNA repair proteins in the genome evolution of Ascomycota.
Collapse
Affiliation(s)
- Shira Milo
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| | - Reut Harari-Misgav
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| |
Collapse
|
15
|
Yamazaki A, Lorliam W, Kawasaki H, Uchino M, Suzuki KI. Fourteen novel lipomycetaceous yeast species isolated from soil in Japan and transfer of Dipodascopsis anomala to the genus Babjevia based on ascospore production phenotype. Int J Syst Evol Microbiol 2020; 70:1372-1397. [PMID: 32122458 DOI: 10.1099/ijsem.0.003924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fourteen novel lipomycetaceous yeasts species were isolated from soil samples collected from the Hokkaido, Chiba and Okinawa prefectures of Japan. Phylogenetic analyses of the D1/D2 domains of the large subunit rRNAs and translation elongation factor 1 alpha genes (TEF1-α) revealed that five strains of two species from the soil in Furano-shi, Hokkaido were related to Dipodascopsis anomala and 29 strains representing 12 species from soils in Kamogawa-shi, Chiba and Iriomote Island, Okinawa were in the Myxozyma clade. The two species of Dipodascopsis form globose or ellipsoid ascospores in their sac-like ascus and pseudohyphae. Furthermore, these species produce ascospores in their pseudohyphae and do not produce an acicular ascus, which is common among the three species including D. anomala. Therefore, we propose transferring D. anomala to the genus Babjevia and amending Babjevia. Two novel species were described and included in the genus Babjevia: Babjevia hyphoforaminiformans sp. nov. (holotype NBRC 111233; MycoBank no. MB 829051) and Babjevia hyphasca sp. nov. (holotype NBRC 112965; MycoBank no. MB 829053). The 12 species in the Myxozyma clade produce neither ascospores nor pseudohyphae and have different characteristics in assimilating several carbon sources from each other. Thus, we propose that the novel species of Lipomyces be classified as forma asexualis (f.a.). From Kamogawa-shi, Chiba (19 strains representing five species): Lipomyces melibiosiraffinosiphilus f.a., sp. nov. (holotype NBRC 111411; MycoBank no. MB 829034), Lipomyces kiyosumicus f.a., sp. nov. (holotype NBRC 111424; MycoBank no. MB 829035), Lipomyces chibensis f.a., sp. nov. (holotype NBRC 111413; MycoBank no. MB 829036), Lipomyces kamogawensis f.a., sp. nov. (holotype NBRC 112967; MycoBank no. MB 829037), Lipomyces amatsuensis f.a., sp. nov. (holotype NBRC 111420; MycoBank no. MB 829041). From Iriomote island, Okinawa (10 strains representing seven species): Lipomyces taketomicus f.a., sp. nov. (holotype NBRC 112966; MycoBank no. MB 829042), Lipomyces yaeyamensis f.a., sp. nov. (holotype NBRC 110433; MycoBank no. MB 829050), Lipomyces iriomotensis f.a., sp. nov. (holotype NBRC 110436; MycoBank no. MB 829045), Lipomyces haiminakanus f.a., sp. nov. (holotype NBRC 110435; MycoBank no. MB 829046), Lipomyces komiensis f.a., sp. nov. (holotype NBRC 110440; MycoBank no. MB 829047), Lipomyces nakamensis f.a., sp. nov. (holotype NBRC 110434; MycoBank no. MB 829048), Lipomyces sakishimensis f.a., sp. nov. (holotype NBRC 110439; MycoBank no. MB 829049).
Collapse
Affiliation(s)
- Atsushi Yamazaki
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok, 10110, Thailand
| | - Hiroko Kawasaki
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Masataka Uchino
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Ken-Ichiro Suzuki
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
16
|
Abstract
Oleaginous microbes, which contain over 20% intracellular lipid, predominantly triacylglycerols (TG), by dry weight, have been discovered to have high oil content by many different protocols, ranging from simple staining to more complex chromatographic methods. In our laboratory, a methodical process was implemented to identify high oil yeasts, designed to minimize labor while optimizing success in identifying high oil strains among thousands of candidates. First, criteria were developed to select candidate yeast strains for analysis. These included observation of buoyancy of the yeast cell mass in 20% glycerol, and phylogenetic placement near known oleaginous species. A low-labor, semiquantitative Nile red staining protocol was implemented to screen numerous yeast cultures for high oil content in 96-well plates. Then, promising candidates were selected for more quantitative analysis. A more labor-intensive and quantitative gravimetric assay was implemented that gave consistent values for intracellular oil content for a broad range of yeast species. Finally, an LC-MS protocol was utilized to quantify and identify yeast triacylglycerols. This progressive approach was successful in identifying 30 new oleaginous yeast species, out of over 1000 species represented in the Phaff Yeast Culture Collection.
Collapse
|
17
|
A novel electroporation procedure for highly efficient transformation of Lipomyces starkeyi. J Microbiol Methods 2020; 169:105816. [DOI: 10.1016/j.mimet.2019.105816] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
|
18
|
Yamazaki H, Kobayashi S, Ebina S, Abe S, Ara S, Shida Y, Ogasawara W, Yaoi K, Araki H, Takaku H. Highly selective isolation and characterization of Lipomyces starkeyi mutants with increased production of triacylglycerol. Appl Microbiol Biotechnol 2019; 103:6297-6308. [PMID: 31165226 DOI: 10.1007/s00253-019-09936-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022]
Abstract
The oleaginous yeast Lipomyces starkeyi is an attractive organism for the industrial production of lipids; however, the amount of lipid produced by wild-type L. starkeyi is insufficient. The study aims to obtain L. starkeyi mutants that rapidly accumulate large amounts of triacylglycerol (TAG). Mutagenized yeast cells at the early stages of cultivation were subjected to Percoll density gradient centrifugation; cells with increased production of TAG were expected to be enriched in the resultant upper fraction because of their lower density. Among 120 candidates from the upper fractions, five mutants were isolated that accumulated higher amounts of TAG. Moreover, when omitting cells with mucoid colony morphology, 11 objective mutants from 11 candidates from the upper fraction were effectively (100%) isolated. Of total 16 mutants obtained, detailed characterization of five mutants was performed to reveal that five mutants achieved about 1.5-2.0 times TAG concentration (4.7-6.0 g/L) as compared with the wild-type strain (3.6 g/L) at day 5. Among these five mutants, strain E15 was the best for industrial use because only strain E15 showed significantly higher TAG concentration as well as significantly higher degree of lipid to glucose and biomass to glucose yields than the wild-type strain. Thus, Percoll density gradient centrifugation is an effective method to isolate mutant cells that rapidly accumulate large amounts of TAG. It is expected that by repeating this procedure as part of a yeast-breeding program, L. starkeyi mutants suitable for industrial lipid production can be easily and effectively obtained.
Collapse
Affiliation(s)
- Harutake Yamazaki
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Suzuka Kobayashi
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Sayaka Ebina
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Shiho Abe
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Satoshi Ara
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Katsurou Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hideo Araki
- Research Institute for Creating the Future, FUJI OIL HOLDINGS INC, 4-3 Kinunodai, Tsukubamirai-shi, Ibaraki, 300-2497, Japan
| | - Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata, 956-8603, Japan.
| |
Collapse
|
19
|
KUROKAWA H, FUKANO Y, OHKI T, NAGANUMA T. Conversion of Glycerol to Triacylglycerol by Lipomyces Yeast. ACTA ACUST UNITED AC 2019. [DOI: 10.5650/oleoscience.17.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hiroshi KUROKAWA
- Functional Materials Science Research Laboratories Research & Development Headquarters, Lion Corporation
| | - Yuka FUKANO
- Functional Materials Science Research Laboratories Research & Development Headquarters, Lion Corporation
| | - Tohru OHKI
- Analytical Technology Research Center Research & Development Headquarters, Lion Corporation
| | - Takafumi NAGANUMA
- Graduate School of research Interdisciplinary, Division of Engineering Faculty of Life and Environmental Sciences (Biotechnology), Yamanashi University
| |
Collapse
|
20
|
Selection of oleaginous yeasts capable of high lipid accumulation during challenges from inhibitory chemical compounds. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Dai Z, Pomraning KR, Deng S, Hofstad BA, Panisko EA, Rodriguez D, Butcher MG, Culley DE, Magnuson JK. Deletion of the KU70 homologue facilitates gene targeting in Lipomyces starkeyi strain NRRL Y-11558. Curr Genet 2018; 65:269-282. [DOI: 10.1007/s00294-018-0875-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|
22
|
Three novel lipomycetaceous yeasts, Lipomyces maratuensis sp. nov., Lipomyces tropicalis sp. nov., and Lipomyces kalimantanensis f.a., sp. nov. isolated from soil from the Maratua and Kalimantan Islands, Indonesia. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2017.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Yamazaki A, Yanagiba M, Naganuma T. Two novel Lipomycetaceous yeast species, Lipomyces okinawensis sp. nov. and Lipomyces yamanashiensis f.a., sp. nov., isolated from soil in the Okinawa and Yamanashi prefectures, Japan. Int J Syst Evol Microbiol 2017; 67:2941-2946. [PMID: 28820103 DOI: 10.1099/ijsem.0.002050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four novel Lipomyces strains were isolated from soil collected in the Okinawa and Yamanashi prefectures, Japan. Based on their morphological and biochemical characteristics, along with sequence typing using the D1/D2 domain of the LSU rRNA, internal transcribed spacer (ITS) region including 5.8S rRNA, and translation elongation factor 1 alpha gene (EF-1α), the four strains were shown to represent two novel species of the genus Lipomyces, described as Lipomyces okinawensis sp. nov. (type strain No.3-a(35)T=NBRC 110620T=CBS 14747T) and Lipomyces yamanashiensis f.a., sp. nov. (type strain No.313T=NBRC 110621T=CBS 14748T).
Collapse
Affiliation(s)
- Atsushi Yamazaki
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mana Yanagiba
- Biotechnology, Human Environment Medical Engineering, Department of Education Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Takafumi Naganuma
- Biotechnology, Human Environment Medical Engineering, Department of Education Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8511, Japan
| |
Collapse
|
24
|
Dai Z, Deng S, Culley DE, Bruno KS, Magnuson JK. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species. Appl Microbiol Biotechnol 2017. [DOI: 10.1007/s00253-017-8357-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Signori L, Ami D, Posteri R, Giuzzi A, Mereghetti P, Porro D, Branduardi P. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts. Microb Cell Fact 2016; 15:75. [PMID: 27149859 PMCID: PMC4858929 DOI: 10.1186/s12934-016-0467-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/20/2016] [Indexed: 01/31/2023] Open
Abstract
Background Microbial lipids can represent a valuable alternative feedstock for biodiesel production in the context of a viable bio-based economy. This production can be driven by cultivating some oleaginous microorganisms on crude-glycerol, a 10 % (w/w) by-product produced during the transesterification process from oils into biodiesel. Despite attractive, the perspective is still economically unsustainable, mainly because impurities in crude glycerol can negatively affect microbial performances. In this view, the selection of the best cell factory, together with the development of a robust and effective production process are primary requirements. Results The present work compared crude versus pure glycerol as carbon sources for lipid production by three different oleaginous yeasts: Rhodosporidium toruloides (DSM 4444), Lipomyces starkeyi (DSM 70295) and Cryptococcus curvatus (DSM 70022). An efficient yet simple feeding strategy for avoiding the lag phase caused by growth on crude glycerol was developed, leading to high biomass and lipid production for all the tested yeasts. Flow-cytometry and fourier transform infrared (FTIR) microspectroscopy, supported by principal component analysis (PCA), were used as non-invasive and quick techniques to monitor, compare and analyze the lipid production over time. Gas chromatography (GC) analysis completed the quali-quantitative description. Under these operative conditions, the highest lipid content (up to 60.9 % wt/wt) was measured in R. toruloides, while L. starkeyi showed the fastest glycerol consumption rate (1.05 g L−1 h−1). Being productivity the most industrially relevant feature to be pursued, under the presented optimized conditions R. toruloides showed the best lipid productivity (0.13 and 0.15 g L−1 h−1 on pure and crude glycerol, respectively). Conclusions Here we demonstrated that the development of an efficient feeding strategy is sufficient in preventing the inhibitory effect of crude glycerol, and robust enough to ensure high lipid accumulation by three different oleaginous yeasts. Single cell and in situ analyses allowed depicting and comparing the transition between growth and lipid accumulation occurring differently for the three different yeasts. These data provide novel information that can be exploited for screening the best cell factory, moving towards a sustainable microbial biodiesel production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0467-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lorenzo Signori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.,Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126, Milan, Italy.,Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), UdR Milano-Bicocca, Via R. Cozzi 53, 20126, Milan, Italy
| | - Riccardo Posteri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Andrea Giuzzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Paolo Mereghetti
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Danilo Porro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| |
Collapse
|
26
|
Polburee P, Yongmanitchai W, Lertwattanasakul N, Ohashi T, Fujiyama K, Limtong S. Characterization of oleaginous yeasts accumulating high levels of lipid when cultivated in glycerol and their potential for lipid production from biodiesel-derived crude glycerol. Fungal Biol 2015; 119:1194-1204. [DOI: 10.1016/j.funbio.2015.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
27
|
Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL. Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnol Adv 2014; 32:1336-1360. [DOI: 10.1016/j.biotechadv.2014.08.003] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/25/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
28
|
Yamazaki A, Kawasaki H. Lipomyces chichibuensis sp. nov., isolated in Japan, and reidentification of the type strains of Lipomyces kononenkoae and Lipomyces spencermartinsiae. Int J Syst Evol Microbiol 2014; 64:2566-2572. [DOI: 10.1099/ijs.0.059972-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We isolated two strains of a novel Lipomyces species from soil collected in Chichibu forest, Saitama prefecture, Japan. Based on their morphological and biochemical characteristics, along with multilocus sequence typing using the D1/D2 domain of the large-subunit (LSU) rRNA gene, the internal transcribed spacer (ITS) region and the translation elongation factor 1 alpha gene (EF-1α), the two strains were shown to represent a novel species of the genus Lipomyces, described as Lipomyces chichibuensis sp. nov. (type strain CB08-2T = NBRC 109582T = CBS 12929T; Mycobank no. MB808164). In addition, we reidentified the type strains of Lipomyces kononenkoae and Lipomyces spencermartinsiae maintained in culture collections based on phenotypic characters and/or DNA–DNA hybridization to ensure correct future identification of species of the genus Lipomyces. The correct type strains of L. kononenkoae and L. spencermartinsiae are NBRC 107661T ( = CBS 2514T) and NBRC 10376T ( = CBS 5608T), respectively.
Collapse
Affiliation(s)
- Atsushi Yamazaki
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hiroko Kawasaki
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
29
|
Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Shima J. Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. BIORESOURCE TECHNOLOGY 2014; 153:230-5. [PMID: 24368271 DOI: 10.1016/j.biortech.2013.11.086] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/25/2013] [Accepted: 11/30/2013] [Indexed: 05/24/2023]
Abstract
The lipid-accumulating ability of 500 yeast strains isolated in Japan was evaluated. Primary screening revealed that 31 strains were identified as potential lipid producers, from which 12 strains were cultivated in a medium containing 3% glucose. It was found that JCM 24511 accumulated the highest lipid content, up to 61.53%, while JCM 24512 grew the fastest. They were tentatively identified as Cryptococcus sp. and Cryptococcus musci, respectively. The maximum lipid concentration of 1.49g/L was achieved by JCM 24512. Similarly, JCM 24511 also achieved a high lipid production of 1.37g/L. High lipid productivity is the most important characteristic of oleaginous yeasts from the viewpoint of practical production. Among the strains tested here, JCM 24512 had the best lipid productivity, 0.37g/L/day. The results show that the isolated yeasts could be promising candidates for biodiesel production.
Collapse
Affiliation(s)
- Ayumi Tanimura
- Research Division of Microbial Sciences, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Center, Koyadai, Tuskuba, Ibaraki 305-0074, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Rikiya Endoh
- Japan Collection of Microorganisms, RIKEN BioResource Center, Koyadai, Tuskuba, Ibaraki 305-0074, Japan
| | - Minako Kikukawa
- Research Division of Microbial Sciences, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shino Yamaguchi
- Research Division of Microbial Sciences, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eiji Sakuradani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Shima
- Research Division of Microbial Sciences, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|