1
|
Kajsikova M, Kajsik M, Bocanova L, Papayova K, Drahovska H, Bukovska G. Endolysin EN572-5 as an alternative to treat urinary tract infection caused by Streptococcus agalactiae. Appl Microbiol Biotechnol 2024; 108:79. [PMID: 38189950 PMCID: PMC10774192 DOI: 10.1007/s00253-023-12949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen causing urinary tract infection (UTI). Endolysin EN572-5 was identified in prophage KMB-572-E of the human isolate Streptococcus agalactiae KMB-572. The entire EN572-5 gene was cloned into an expression vector and the corresponding recombinant protein EN572-5 was expressed in Escherichia coli in a soluble form, isolated by affinity chromatography, and characterized. The isolated protein was highly active after 30 min incubation in a temperature range of - 20 °C to 37 °C and in a pH range of 5.5-8.0. The endolysin EN572-5 lytic activity was tested on different Streptococcus spp. and Lactobacillus spp. The enzyme lysed clinical GBS (n = 31/31) and different streptococci (n = 6/8), and also exhibited moderate lytic activity against UPEC (n = 4/4), but no lysis of beneficial vaginal lactobacilli (n = 4) was observed. The ability of EN572-5 to eliminate GBS during UTI was investigated using an in vitro model of UPSA. After the administration of 3 μM EN572-5, a nearly 3-log decrease of urine bacterial burden was detected within 3 h. To date, no studies have been published on the use of endolysins against S. agalactiae during UTI. KEY POINTS: • A lytic protein, EN572-5, from a prophage of a human GBS isolate has been identified. • This protein is easily produced, simple to prepare, and stable after lyophilization. • The bacteriolytic activity of EN572-5 was demonstrated for the first time in human urine.
Collapse
Affiliation(s)
- Maria Kajsikova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Michal Kajsik
- Comenius University Science Park, Ilkovicova 8, 841 04, Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Kristina Papayova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15, Bratislava, Slovakia
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
2
|
Coppolino F, Berbiglia A, Lentini G, Famà A, Pietrocola G, Teti G, Beninati C, De Gaetano GV. Role of the SaeRS Two-Component Regulatory System in Group B Streptococcus Biofilm Formation on Human Fibrinogen. Microorganisms 2024; 12:2096. [PMID: 39458405 PMCID: PMC11510217 DOI: 10.3390/microorganisms12102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus or GBS, is a commensal colonizer of human vaginal and gastrointestinal tracts that can also be a deadly pathogen for newborns, pregnant women, and the elderly. The SaeRS two-component regulatory system (TCS) positively regulates the expression of two GBS adhesins genes, but its role in the formation of biofilm, an important step in pathogenesis, has not been investigated. In the present study, we set up a novel model of GBS biofilm formation using surfaces coated with human fibrinogen (hFg). Biofilm mass and structure were analyzed by crystal violet staining and three-dimensional fluorescence microscopy, respectively. GBS growth on hFg resulted in the formation of a mature and abundant biofilm composed of bacterial cells and an extracellular matrix containing polysaccharides, proteins, and extracellular DNA (eDNA). Enzymatic and genetic analysis showed that GBS biofilm formation on hFg is dependent on proteins and eDNA in the extracellular matrix and on the presence of covalently linked cell wall proteins on the bacterial surface but not on the type-specific capsular polysaccharide. In the absence of the SaeR regulator of the SaeRS TCS, there was a significant reduction in biomass formation, with reduced numbers of bacterial cells, reduced eDNA content, and disruption of the biofilm architecture. Overall, our data suggest that GBS binding to hFg contributes to biofilm formation and that the SaeRS TCS plays an important role in this process.
Collapse
Affiliation(s)
- Francesco Coppolino
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Alessia Berbiglia
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Germana Lentini
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Agata Famà
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | | | | | - Concetta Beninati
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
- Scylla Biotech S.r.l., 98168 Messina, Italy
| | - Giuseppe Valerio De Gaetano
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| |
Collapse
|
3
|
Egbule OS, Enwa OF, Omenogor PK, Odum EI, Iweriebor BC, Obi CL. Multidrug Resistant Group B Streptococcus Isolates from Pregnant Women in Delta State, Nigeria. Pak J Biol Sci 2024; 27:447-454. [PMID: 39415553 DOI: 10.3923/pjbs.2024.447.454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
<b>Background and Objective:</b> Group B <i>Streptococci</i> (GBS) are globally recognized as a major risk factor for neonatal infections and various obstetric complications. More so, biofilm formation has been suggested to be important for GBS pathogenesis. The aim of this study was to determine the prevalence and antibiotic susceptibility pattern of GBS among pregnant women and their capacity to form biofilm. <b>Materials and Methods:</b> A total of 87 pregnant women at 34 to 37 weeks' gestation aged 17-45 years were recruited from 3 healthcare centres in Delta State, Nigeria. Cultures for the isolation of GBS were carried out using recto-vaginal swabs, according to standard microbiological methods. All strains isolated were used for susceptibility tests to various antibiotics as recommended by CLSI using the disk-diffusion method. <b>Results:</b> The overall prevalence of GBS colonization among pregnant women was 43.6% (38/87). The <u><</u>30 age group had the highest rate of GBS colonization. Resistance to erythromycin and vancomycin was 48.2 and 66.4%, respectively. The fluoroquinolones had the lowest resistant rates with no isolate showing resistance to ofloxacin. Multidrug resistance (MDR) (<u>></u>3 drug classes) was detected in 73.7% (28/38) of the GBS isolates. All GBS isolated in this study were either strong, moderate or weak biofilm producers. However, most 28 (73.7%) were strong biofilm producers. Resistance of GBS isolates to erythromycin and vancomycin, drugs used for treating GBS infection was high. <b>Conclusion:</b> This suggested the importance of testing antimicrobial susceptibilities in GBS colonized pregnant women in order to guide antibiotic therapy and minimize newborn infection and co-morbidity.
Collapse
|
4
|
Anandan V, Bao L, Zhu Z, Bradley J, Assi VF, Chavda H, Kitten T, Xu P. A novel infective endocarditis virulence factor related to multiple functions for bacterial survival in blood was discovered in Streptococcus sanguinis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601854. [PMID: 39005390 PMCID: PMC11244957 DOI: 10.1101/2024.07.03.601854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We identified the role of a conserved hypothetical protein (SSA_0451) in S. sanguinis that is involved in the virulence of infective endocarditis. An in vitro whole blood killing assay and rabbit endocarditis model studies revealed that the SSA_0451 mutant (ΔSSA_0451) was significantly less virulent than the wild-type (SK36) and its complementation mutant (ΔSSA_0451C). The mechanism underlying the SSA_0451 mutant's reduced virulence in infective endocarditis was evidentially linked to oxidative stress and environmental stress. The genes related to the survival of S. sanguinis in an oxidative stress environment were downregulated in ΔSSA_0451, which affected its survival in blood. Our findings suggest that SSA_0451 is a novel IE virulence factor and a new target for drug discovery against IE.
Collapse
Affiliation(s)
- Vysakh Anandan
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Liang Bao
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Zan Zhu
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Jennifer Bradley
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Valery-Francine Assi
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Henna Chavda
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Todd Kitten
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
| | - Ping Xu
- The Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
6
|
Yan T, Li M, Wang Q, Wang M, Liu L, Ma C, Xiang X, Zhou Q, Liu Z, Gong Z. Structures, functions, and regulatory networks of universal stress proteins in clinically relevant pathogenic Bacteria. Cell Signal 2024; 116:111032. [PMID: 38185228 DOI: 10.1016/j.cellsig.2023.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Universal stress proteins are a class of proteins widely present in bacteria, archaea, plants, and invertebrates, playing essential roles in bacterial adaptation to various environmental stresses. The functions of bacterial universal stress proteins are versatile, including resistance to oxidative stress, maintenance of cell wall integrity, DNA damage repair, regulation of cell division and growth, among others. When facing stresses such as temperature changes, pH shifts, fluctuations in oxygen concentration, and exposure to toxins, these proteins can bind to specific DNA sequences and rapidly adjust bacterial metabolic pathways and gene expression patterns to adapt to the new environment. In summary, bacterial universal stress proteins play a crucial role in bacterial adaptability and survival. A comprehensive understanding of bacterial stress response mechanisms and the development of new antibacterial strategies are of great significance. This review summarizes the research progress on the structure, function, and regulatory factors of universal stress proteins in clinically relevant bacteria, aiming to facilitate deeper investigations by clinicians and researchers into universal stress proteins.
Collapse
Affiliation(s)
- Tao Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiuyan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengcheng Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Zhen Gong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Cai X, Yang S, Peng Y, Tan K, Xu P, Wu Z, Kwan KY, Jian J. Regulation of PhoB on biofilm formation and hemolysin gene hlyA and ciaR of Streptococcus agalactiae. Vet Microbiol 2024; 289:109961. [PMID: 38147806 DOI: 10.1016/j.vetmic.2023.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
PhoB is a response regulator protein that plays a key role in the PhoBR two-component signal transduction system. In this study, we used transcriptome and proteomics techniques to evaluate the detect the gene network regulated by PhoB of Streptococcus agalactiae. The results showed that expression of biofilm formation and virulence-related genes were changed after phoB deficiency. Crystal violet and CLSM assay confirmed that the deletion of the phoB increased the thickness of S. agalactiae biofilm. The results of lacZ reporter and the bacterial one-hybridization method showed that PhoB could directly bind to the promoter regions of hemolysin A and ciaR genes but not to the promoter regions of cylE and hemolysin III. Through the construction of an 18-base pair deoxyribose nucleic acid (DNA) random fragment library and the bacterial one-hybridization system, it was found that the conservative sequence of PhoB binding was TTGGAGAA(G/T). Our research has uncovered the virulence potential of the PhoBR two-component system of S. agalactiae. The findings of this study provide the theoretical foundation for in-depth research on the pathogenic mechanism of S. agalactiae.
Collapse
Affiliation(s)
- Xiaohui Cai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Shaoyu Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yinhui Peng
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Kianann Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Peng Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China.
| |
Collapse
|
8
|
Roux AE, Robert S, Bastat M, Rosinski-Chupin I, Rong V, Holbert S, Mereghetti L, Camiade E. The Role of Regulator Catabolite Control Protein A (CcpA) in Streptococcus agalactiae Physiology and Stress Response. Microbiol Spectr 2022; 10:e0208022. [PMID: 36264242 PMCID: PMC9784791 DOI: 10.1128/spectrum.02080-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Streptococcus agalactiae is a leading cause of infections in neonates. This opportunistic pathogen colonizes the vagina, where it has to cope with acidic pH and hydrogen peroxide produced by lactobacilli. Thus, in the host, this bacterium possesses numerous adaptation mechanisms in which the pleiotropic regulators play a major role. The transcriptional regulator CcpA (catabolite control protein A) has previously been shown to be the major regulator involved in carbon catabolite repression in Gram-positive bacteria but is also involved in other functions. By transcriptomic analysis, we characterized the CcpA-dependent gene regulation in S. agalactiae. Approximately 13.5% of the genome of S. agalactiae depends on CcpA for regulation and comprises genes involved in sugar uptake and fermentation, confirming the role of CcpA in carbon metabolism. We confirmed by electrophoretic mobility shift assays (EMSAs) that the DNA binding site called cis-acting catabolite responsive element (cre) determined for other streptococci was effective in S. agalactiae. We also showed that CcpA is of capital importance for survival under acidic and oxidative stresses and is implicated in macrophage survival by regulating several genes putatively or already described as involved in stress response. Among them, we focused our study on SAK_1689, which codes a putative UspA protein. We demonstrated that SAK_1689, highly downregulated by CcpA, is overexpressed under oxidative stress conditions, this overexpression being harmful for the bacterium in a ΔccpA mutant. IMPORTANCE Streptococcus agalactiae is a major cause of disease burden leading to morbidity and mortality in neonates worldwide. Deciphering its adaptation mechanisms is essential to understand how this bacterium manages to colonize its host. Here, we determined the regulon of the pleiotropic regulator CcpA in S. agalactiae. Our findings reveal that CcpA is not only involved in carbon catabolite repression, but is also important for acidic and oxidative stress resistance and survival in macrophages.
Collapse
Affiliation(s)
| | | | | | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | | | | | - Laurent Mereghetti
- ISP, Université de Tours, INRAE, Tours, France
- CHRU Tours, Service de Bactériologie-Virologie-Hygiène, Tours, France
| | | |
Collapse
|
9
|
Pieranski MK, Rychlowski M, Grinholc M. Optimization of Streptococcus agalactiae Biofilm Culture in a Continuous Flow System for Photoinactivation Studies. Pathogens 2021; 10:1212. [PMID: 34578244 PMCID: PMC8465167 DOI: 10.3390/pathogens10091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus agalactiae is a relevant cause of neonatal mortality. It can be transferred to infants via the vaginal tract and cause meningitis, pneumonia, arthritis, or sepsis, among other diseases. The cause of therapy ineffectiveness and infection recurrence is the growth of bacteria as biofilms. To date, several research teams have attempted to find a suitable medium for the cultivation of S. agalactiae biofilms. Among others, simulated vaginal fluid has been used; however, biofilm production in this medium has been found to be lower than that in tryptic soy broth. We have previously shown that S. agalactiae can be successfully eradicated by photoinactivation in planktonic culture, but there have been no studies on biofilms. The aim of this study was to optimize S. agalactiae biofilm culture conditions to be used in photoinactivation studies. We compared biofilm production by four strains representing the most common serotypes in four different broth media with crystal violet staining. Then, we evaluated stationary biofilm culture in microtiter plates and biofilm growth in a CDC Biofilm Reactor® (BioSurface Technologies, Bozeman, MT, USA) under continuous flow conditions. Subsequently, we applied Rose Bengal-mediated photoinactivation to both biofilm models. We have shown that photoinactivation is efficient in biofilm eradication and is not cyto/phototoxic to human keratinocytes. We found conditions allowing for stable and repetitive S. agalactiae biofilm growth in continuous flow conditions, which can be successfully utilized in photoinactivation assays and potentially in all other antibacterial studies.
Collapse
Affiliation(s)
- Michal K. Pieranski
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Michal Rychlowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland;
| |
Collapse
|
10
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
11
|
Silvestre I, Borrego MJ, Jordão L. Biofilm formation by ST17 and ST19 strains of Streptococcus agalactiae. Res Microbiol 2020; 171:311-318. [PMID: 32896574 DOI: 10.1016/j.resmic.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/26/2022]
Abstract
Bacterial biofilms are an important virulence factor with a vital role in evasion from the host immune system, colonization and infection. The aim of the present study was to evaluate in vitro the effects of three environmental factors (H+, glucose and human plasma) in biofilm formation, by carrier and invasive Streptococcus agalactiae strains of ST17 and ST19 sequence types, including DNase producers and non-producers. Bacteria ability to assemble biofilms was classified based on crystal violet assay. Biofilm formation was also monitored by scanning electron microscopy. Depending on the growth medium used, each bacterial isolate could fit in different biofilm production categories. Our data showed that optimal conditions for S. agalactiae biofilm assembly were reached after 48 h incubation at pH 7.6 in the presence of glucose and inactivated human plasma. In the presence of inactivated human plasma, the biofilm biomass of ST19 strains experienced a higher increase than ST17 strains. The composition of the extracellular polymeric matrix of the three strongest biofilm producers (all from ST17) was accessed by enzymatic digestion of mature biofilms and proteins were shown to be the predominant component. The detailed identification of the extracellular protein components should contribute to the development of new therapeutic strategies to fight S. agalactiae infections.
Collapse
Affiliation(s)
- Inês Silvestre
- Department of Life Sciences, UCIBIO, Nova School of Science and Technology, 2829-516 Caparica, Portugal; Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| | - Maria José Borrego
- Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| | - Luísa Jordão
- Department of Environmental Health, Research and Development Unit, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
12
|
Petersen I, Schlüter R, Hoff KJ, Liebscher V, Bange G, Riedel K, Pané-Farré J. Non-invasive and label-free 3D-visualization shows in vivo oligomerization of the staphylococcal alkaline shock protein 23 (Asp23). Sci Rep 2020; 10:125. [PMID: 31924851 PMCID: PMC6954212 DOI: 10.1038/s41598-019-56907-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/04/2019] [Indexed: 11/26/2022] Open
Abstract
Fluorescence-tags, commonly used to visualize the spatial distribution of proteins within cells, can influence the localization of the tagged proteins by affecting their stability, interaction with other proteins or the induction of oligomerization artifacts. To circumvent these obstacles, a protocol was developed to generate 50 nm thick serial sections suitable for immunogold labeling and subsequent reconstruction of the spatial distribution of immuno-labeled native proteins within individual bacterial cells. Applying this method, we show a cellular distribution of the staphylococcal alkaline shock protein 23 (Asp23), which is compatible with filament formation, a property of Asp23 that we also demonstrate in vitro.
Collapse
Affiliation(s)
- Inga Petersen
- University of Greifswald, Institute of Microbiology, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany.,Center for Functional Genomics of Microbes, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Rabea Schlüter
- University of Greifswald, Imaging Center of the Department of Biology, Friedrich-Ludwig-Jahn-Str. 15, 17489, Greifswald, Germany
| | - Katharina J Hoff
- University of Greifswald, Institute of Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany.,Center for Functional Genomics of Microbes, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Volkmar Liebscher
- University of Greifswald, Institute of Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany
| | - Gert Bange
- Philipps-University Marburg, SYNMIKRO Research Center and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany
| | - Katharina Riedel
- University of Greifswald, Institute of Microbiology, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany.,Center for Functional Genomics of Microbes, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Jan Pané-Farré
- University of Greifswald, Institute of Microbiology, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany. .,Center for Functional Genomics of Microbes, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany. .,Philipps-University Marburg, SYNMIKRO Research Center and Department of Chemistry, Hans-Meerwein-Strasse 6, C07, 35043, Marburg, Germany.
| |
Collapse
|
13
|
Benmouna Z, Dalache F, Zadi-Karam H, Karam NE, Vuotto C. Ability of Three Lactic Acid Bacteria to Grow in Sessile Mode and to Inhibit Biofilm Formation of Pathogenic Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1282:105-114. [PMID: 32034730 DOI: 10.1007/5584_2020_495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we explored the effect of three lactic acid bacteria (LAB), i.e. Enterococcus sp CM9, Enterococcus sp CM18 and Enterococcus faecium H3, and their supernatants, on seven biofilm-forming pathogenic strains isolated from human urinary tract or nose infections. By quantitative biofilm production assay, a strong adherence ability of Enterococcus sp CM9 and Enterococcus sp CM18 was revealed while E. faecium H3 resulted to be moderately adherent. Inhibition tests demonstrated an antimicrobial activity of LAB against pathogens.The presence of cell free supernatant (CFS) of CM9 and CM18 strains significantly decreased the adhesion of S. aureus 10,850, S. epidermidis 4,296 and E. coli FSL24. The CFS of H3 strain was effective against S. epidermidis 4,296 and P. aeruginosa PA1FSL biofilms only. Biofilm formation of K. pneumoniae Kp20FSL, A. baumannii AB8FSL and ESBL+ E. coli FS101570 have not been affected by any CSF while P. aeruginosa PA1FSL biofilm increase in presence of CM9 and CM18 CFS.Confocal Laser Scanning Microscopy revealed that K. pneumoniae Kp20FSL biofilm was inhibited by Enterococcus sp CM9, when grown together.Our results suggest that the LAB strains and/or their bacteriocins can be considered as potential tools to control biofilm formation of some bacterial pathogens.
Collapse
Affiliation(s)
- Z Benmouna
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria
| | - F Dalache
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria.,Department of Biology, Faculty of Natural Sciences and Life, University of Mostaganem Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - H Zadi-Karam
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria
| | - N-E Karam
- Laboratory of Micro-organisms Biology and Biotechnology, Department of Biotechnology, Faculty of Natural Sciences and Life, University of Oran, Oran, Algeria
| | - C Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
14
|
Bonsaglia ECR, Latosinski GS, Rossi RS, Rossi BF, Possebon FS, Pantoja JCF, Fernandes Júnior A, Rall VLM. Biofilm production under different atmospheres and growth media by Streptococcus agalactiae isolated from milk of cows with subclinical mastitis. Arch Microbiol 2019; 202:209-212. [PMID: 31482327 DOI: 10.1007/s00203-019-01727-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Different methods to analyze Streptococcus agalactiae biofilm formation have been investigated, but standardized protocols have not been developed. We compared S. agalactiae biofilm production among different atmospheres and growth media. Biofilm formation was studied in 32 isolates from bovine mastitis cases grown in Tryptone Soy Broth (TSB), Todd Hewitt Broth (THB), Luria Bertani Broth (LB) and Brain Heart Infusion (BHI), under two atmospheres, aerobic and 5% CO2. Regardless of the culture medium, growth under 5% CO2 resulted in a greater proportion of biofilm formation (65.63%), as compared with aerobic conditions (39.84%). Regardless of the atmosphere, the chances of biofilm formation were greater for isolates grown in TSB, as compared with THB [Odds ratio (OR) = 3.02], BHI (OR = 4.57), or LB (OR = 10.20). Thus, we suggest the use of 5% CO2 atmosphere and TSB in biofilm formation assays by Group-B streptococci (GBS) isolated from intramammary infections.
Collapse
Affiliation(s)
- Erika C R Bonsaglia
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University (UNESP), Postal Office Box 510, Botucatu, SP, 18618-970, Brazil.
| | - Giulia S Latosinski
- Department of Veterinary Hygiene and Public Health, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rodolfo S Rossi
- Department of Veterinary Hygiene and Public Health, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Bruna F Rossi
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University (UNESP), Postal Office Box 510, Botucatu, SP, 18618-970, Brazil
| | - Fábio S Possebon
- Department of Veterinary Hygiene and Public Health, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - José Carlos F Pantoja
- Department of Veterinary Hygiene and Public Health, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ary Fernandes Júnior
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University (UNESP), Postal Office Box 510, Botucatu, SP, 18618-970, Brazil
| | - Vera L M Rall
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University (UNESP), Postal Office Box 510, Botucatu, SP, 18618-970, Brazil.
| |
Collapse
|
15
|
Alvim DCSS, Ferreira AFM, Leal MA, Oliveira LMA, Botelho AMN, Botelho ACN, Figueiredo AMS, Fracalanzza SEL, Teixeira LM, Pinto TCA. Biofilm production and distribution of pilus variants among Streptococcus agalactiae isolated from human and animal sources. BIOFOULING 2019; 35:938-944. [PMID: 31646898 DOI: 10.1080/08927014.2019.1678592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is a major pathogen in humans and animals. Pili and biofilm may be important virulence factors in this bacterial species. Here, biofilm production and the distribution of pilus variants among 134 GBS isolates from human and animal sources were evaluated. Biofilm production was significantly enhanced in 1% glucose-supplemented medium (p < 0.05). Using this medium, most GBS strains were strong biofilm producers. Biomass was mainly composed of proteins, followed by extracellular DNA, while polysaccharides represented a minor portion. All GBS strains presented at least one pilus variant. PI-2a was the most common among human GBS while PI-2b was the most common among animal isolates. Human GBS harboring PI-2b and animal GBS harboring PI-2a presented significantly reduced biofilm production (p = 0.0033). In conclusion, strong biofilm production seems to be a common characteristic in GBS, and association of the clinical source with the pilus variant may be crucial for this.
Collapse
Affiliation(s)
| | | | - Matheus Amaral Leal
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio De Janeiro, Rio De Janeiro, Brazil
| | | | - Ana Maria Nunes Botelho
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio De Janeiro, Rio De Janeiro, Brazil
| | - Ana Caroline Nunes Botelho
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio De Janeiro, Rio De Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio De Janeiro, Rio De Janeiro, Brazil
| | | | - Lucia Martins Teixeira
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio De Janeiro, Rio De Janeiro, Brazil
| | - Tatiana Castro Abreu Pinto
- Instituto de Microbiologia Paulo de Goes, Universidade Federal Do Rio De Janeiro, Rio De Janeiro, Brazil
| |
Collapse
|
16
|
Ma'ayeh M, Rood KM, Walker HC, Oliver EA, Gee SE, Iams JD. Vaginal progesterone is associated with decreased group B streptococcus colonisation at term: a retrospective cohort study. BJOG 2019; 126:1141-1147. [DOI: 10.1111/1471-0528.15801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2019] [Indexed: 11/28/2022]
Affiliation(s)
- M Ma'ayeh
- Department of Obstetrics and Gynecology The Ohio State University College of Medicine Columbus OH USA
| | - KM Rood
- Department of Obstetrics and Gynecology The Ohio State University College of Medicine Columbus OH USA
| | - HC Walker
- Department of Obstetrics and Gynecology The Ohio State University College of Medicine Columbus OH USA
| | - EA Oliver
- Department of Obstetrics and Gynecology The Ohio State University College of Medicine Columbus OH USA
| | - SE Gee
- Department of Obstetrics and Gynecology The Ohio State University College of Medicine Columbus OH USA
| | - JD Iams
- Department of Obstetrics and Gynecology The Ohio State University College of Medicine Columbus OH USA
| |
Collapse
|
17
|
Yang Y, Luo M, Zhou H, Li C, Luk A, Zhao G, Fung K, Ip M. Role of Two-Component System Response Regulator bceR in the Antimicrobial Resistance, Virulence, Biofilm Formation, and Stress Response of Group B Streptococcus. Front Microbiol 2019; 10:10. [PMID: 30728810 PMCID: PMC6351488 DOI: 10.3389/fmicb.2019.00010] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/07/2019] [Indexed: 01/31/2023] Open
Abstract
Group B Streptococcus (GBS; Streptococcus agalactiae) is a leading cause of sepsis in neonates and pregnant mothers worldwide. Whereas the hyper-virulent serogroup III clonal cluster 17 has been associated with neonatal disease and meningitis, serogroup III ST283 was recently implicated in invasive disease among non-pregnant adults in Asia. Here, through comparative genome analyses of invasive and non-invasive ST283 strains, we identified a truncated DNA-binding regulator of a two-component system in a non-invasive strain that was homologous to Bacillus subtilis bceR, encoding the bceRSAB response regulator, which was conserved among GBS strains. Using isogenic knockout and complementation mutants of the ST283 strain, we demonstrated that resistance to bacitracin and the human antimicrobial peptide cathelicidin LL-37 was reduced in the ΔbceR strain with MICs changing from 64 and 256 μg/ml to 0.25 and 64 μg/ml, respectively. Further, the ATP-binding cassette transporter was upregulated by sub-inhibitory concentrations of bacitracin in the wild-type strain. Upregulation of dltA in the wild-type strain was also observed and thought to explain the increased resistance to antimicrobial peptides. DltA, an enzyme involved in D-alanylation during the synthesis of wall teichoic acids, which mediates reduced antimicrobial susceptibility, was previously shown to be regulated by the bceR-type regulator in Staphylococcus aureus. In a murine infection model, we found that the ΔbceR mutation significantly reduced the mortality rate compared to that with the wild-type strain (p < 0.01). Moreover, this mutant was more susceptible to oxidative stress compared to the wild-type strain (p < 0.001) and was associated with reduced biofilm formation (p < 0.0001). Based on 2-DGE and mass spectrometry, we showed that downregulation of alkyl hydroperoxide reductase (AhpC), a Gls24 family stress protein, and alcohol dehydrogenase (Adh) in the ΔbceR strain might explain the attenuated virulence and compromised stress response. Together, we showed for the first time that the bceR regulator in GBS plays an important role in bacitracin and antimicrobial peptide resistance, virulence, survival under oxidative stress, and biofilm formation.
Collapse
Affiliation(s)
- Ying Yang
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mingjing Luo
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Haokui Zhou
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carmen Li
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alison Luk
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - GuoPing Zhao
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kitty Fung
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
18
|
Tavares GC, Carvalho AF, Pereira FL, Rezende CP, Azevedo VAC, Leal CAG, Figueiredo HCP. Transcriptome and Proteome of Fish-Pathogenic Streptococcus agalactiae Are Modulated by Temperature. Front Microbiol 2018; 9:2639. [PMID: 30450092 PMCID: PMC6224512 DOI: 10.3389/fmicb.2018.02639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus agalactiae is one of the most important pathogens associated with streptococcosis outbreaks in Nile tilapia farms worldwide. High water temperature (above 27°C) has been described as a predisposing factor for the disease in fish. At low temperatures (below 25°C), fish mortalities are not usually observed in farms. Temperature variation can modulate the expression of genes and proteins involved in metabolism, adaptation, and bacterial pathogenicity, thus increasing or decreasing the ability to infect the host. This study aimed to evaluate the transcriptome and proteome of a fish-pathogenic S. agalactiae strain SA53 subjected to in vitro growth at different temperatures using a microarray and label-free shotgun LC-HDMSE approach. Biological triplicates of isolates were cultured in BHIT broth at 22 or 32°C for RNA and protein isolation and submitted for transcriptomic and proteomic analyses. In total, 1,730 transcripts were identified in SA53, with 107 genes being differentially expressed between the temperatures evaluated. A higher number of genes related to metabolism, mainly from the phosphotransferase system (PTS) and ATP-binding cassette (ABC) transport system, were upregulated at 32°C. In the proteome analysis, 1,046 proteins were identified in SA53, of which 81 were differentially regulated between 22 and 32°C. Proteins involved in defense mechanisms, lipid transport and metabolism, and nucleotide transport and metabolism were upregulated at 32°C. A higher number of interactions were observed in proteins involved in nucleotide transport and metabolism. We observed a low correlation between the transcriptome and proteome datasets. Our study indicates that the transcriptome and proteome of a fish-adapted S. agalactiae strain are modulated by temperature, particularly showing differential expression of genes/proteins involved in metabolism, virulence factors, and adaptation.
Collapse
Affiliation(s)
- Guilherme C Tavares
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alex F Carvalho
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Felipe L Pereira
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana P Rezende
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A C Azevedo
- LGCM-Laboratory of Cellular and Molecular Genetics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos A G Leal
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Henrique C P Figueiredo
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
19
|
Nie S, Lu X, Hu YW, Zheng L, Wang Q. Influence of environmental and genotypic factors on biofilm formation by clinical isolates of group B streptococci. Microb Pathog 2018; 121:45-50. [DOI: 10.1016/j.micpath.2018.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022]
|
20
|
Vollmer AC, Bark SJ. Twenty-Five Years of Investigating the Universal Stress Protein: Function, Structure, and Applications. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:1-36. [PMID: 29680123 DOI: 10.1016/bs.aambs.2017.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the initial discovery of universal stress protein A (UspA) 25 years ago, remarkable advances in molecular and biochemical technologies have revolutionized our understanding of biology. Many studies using these technologies have focused on characterization of the uspA gene and Usp-type proteins. These studies have identified the conservation of Usp-like proteins across bacteria, archaea, plants, and even some invertebrate animals. Regulation of these proteins under diverse stresses has been associated with different stress-response genes including spoT and relA in the stringent response and the dosR two-component signaling pathways. These and other foundational studies suggest Usps serve regulatory and protective roles to enable adaptation and survival under external stresses. Despite these foundational studies, many bacterial species have multiple paralogs of genes encoding these proteins and ablation of the genes does not provide a distinct phenotype. This outcome has limited our understanding of the biochemical functions of these proteins. Here, we summarize the current knowledge of Usps in general and UspA in particular across different genera as well as conclusions about their functions from seminal studies in diverse organisms. Our objective has been to organize the foundational studies in this field to identify the significant impediments to further understanding of Usp functions at the molecular level. We propose ideas and experimental approaches that may overcome these impediments and drive future development of molecular approaches to understand and target Usps as central regulators of stress adaptation and survival. Despite the fact that the full functions of Usps are still not known, creative many applications have already been proposed, tested, and used. The complementary approaches of basic research and applications, along with new technology and analytic tools, may yield the elusive yet critical functions of universal stress proteins in diverse systems.
Collapse
|
21
|
Shabayek S, Spellerberg B. Acid Stress Response Mechanisms of Group B Streptococci. Front Cell Infect Microbiol 2017; 7:395. [PMID: 28936424 PMCID: PMC5594096 DOI: 10.3389/fcimb.2017.00395] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Group B streptococcus (GBS) is a leading cause of neonatal mortality and morbidity in the United States and Europe. It is part of the vaginal microbiota in up to 30% of pregnant women and can be passed on to the newborn through perinatal transmission. GBS has the ability to survive in multiple different host niches. The pathophysiology of this bacterium reveals an outstanding ability to withstand varying pH fluctuations of the surrounding environments inside the human host. GBS host pathogen interations include colonization of the acidic vaginal mucosa, invasion of the neutral human blood or amniotic fluid, breaching of the blood brain barrier as well as survival within the acidic phagolysosomal compartment of macrophages. However, investigations on GBS responses to acid stress are limited. Technologies, such as whole genome sequencing, genome-wide transcription and proteome mapping facilitate large scale identification of genes and proteins. Mechanisms enabling GBS to cope with acid stress have mainly been studied through these techniques and are summarized in the current review
Collapse
Affiliation(s)
- Sarah Shabayek
- Institute of Medical Microbiology and Hygiene, University of UlmUlm, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal UniversityIsmailia, Egypt
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of UlmUlm, Germany
| |
Collapse
|
22
|
Kurz E, Davis D. Routine culture-based screening versus risk-based management for the prevention of early-onset group B streptococcus disease in the neonate: a systematic review. ACTA ACUST UNITED AC 2015; 13:206-46. [PMID: 26447057 DOI: 10.11124/jbisrir-2015-1876] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 10/31/2022]
Abstract
BACKGROUND Early-onset group B streptococcus disease, recognized as the most common cause of early onset neonatal sepsis in developed countries, is transmitted vertically from the group B streptococcus carrier mother to the neonate in the peripartum. Accordingly, early-onset group B streptococcus disease is prevented by halting the transmission of the microorganism from the mother to the infant. Two main methods, routine culture-based screening and risk-based management, may be used in the identification of mothers requiring intrapartum antibiotic prophylaxis in labor. While there are advantages and disadvantages to each, there is limited high level evidence available as to which method is superior. OBJECTIVES To identify the effectiveness of risk-based management versus routine culture-based screening in the prevention of early-onset group B streptococcus disease in the neonate. INCLUSION CRITERIA TYPES OF PARTICIPANTS This review considered studies which treated pregnant women with intrapartum antibiotic prophylaxis following risk- and culture-based protocols for the prevention of early-onset group B streptococcus disease in the neonate. Types of intervention: This review considered studies that evaluated risk-based management against routine culture-based screening for the prevention of early-onset group B streptococcus disease in the neonate. Types of studies: This review looked for highest evidence available which in this case consisted of one quasi experimental study and eight comparative cohort studies with historical or concurrent control groups. Types of outcomes: Incidence of early-onset group B streptococcus disease in neonates as measured by positive group B streptococcus culture from an otherwise sterile site. Secondary outcomes include neonatal death due to group B streptococcus sepsis and percentage of women who received intrapartum antibiotic prophylaxis. SEARCH STRATEGY A multi-step search strategy was used to find studies which were limited to the English language and published between January 2000 and June 2013. METHODOLOGICAL QUALITY The quality of the eligible studies was assessed independently by two reviewers using the Joanna Briggs Institute quality assessment tool for observational studies. DATA COLLECTION Data was extracted using a standardized extraction tool from the Joanna Briggs Institute. DATA SYNTHESIS Quantitative papers were, where possible, pooled for meta-analysis using Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument effect sizes expressed as odds ratio and their 95% confidence intervals were calculated. Heterogeneity was assessed statistically using the standard Chi-square. RESULTS The results of this review come from nine studies published in peer reviewed journals. The treatment group consists of those screened as per the culture-based protocol, the control group the risk-based protocol. For combined term and preterm infants the odds of early-onset group B streptococcus disease for the treatment vs control groups is 0.45 (95% CI 0.37 to 0.53). The odds ratio in term infants is 0.45 (95% CI 0.36 to 0.57). Preterm infants are four times (OR 4.20 [95% CI 3.36 to 5.24]) more likely to develop early-onset group B streptococcus disease than term infants regardless of prevention technique. One study provides information on neonatal mortality in which there is one neonatal death in the risk-based cohort and none in the culture-based. The TRUNCATED AT 500 WORDS.
Collapse
Affiliation(s)
- Ella Kurz
- Faculty of Health, University of Canberra, Australia
| | - Deborah Davis
- 1. Faculty of Health, University of Canberra, Australia.,2. ACT Government Health Directorate, Australia
| |
Collapse
|
23
|
Rosini R, Margarit I. Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors. Front Cell Infect Microbiol 2015; 5:6. [PMID: 25699242 PMCID: PMC4316791 DOI: 10.3389/fcimb.2015.00006] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an important human pathogen that colonizes the urogenital and/or the lower gastro-intestinal tract of up to 40% of healthy women of reproductive age and is a leading cause of sepsis and meningitis in the neonates. GBS can also infect the elderly and immuno-compromised adults, and is responsible for mastitis in bovines. Like other Gram-positive bacteria, GBS can form biofilm-like three-dimensional structures that could enhance its ability to colonize and persist in the host. Biofilm formation by GBS has been investigated in vitro and appears tightly controlled by environmental conditions. Several adhesins have been shown to play a role in the formation of GBS biofilm-like structures, among which are the protein components of pili protruding outside the bacterial surface. Remarkably, antibodies directed against pilus proteins can prevent the formation of biofilms. The implications of biofilm formation in the context of GBS asymptomatic colonization and dissemination to cause invasive disease remain to be investigated in detail.
Collapse
|
24
|
Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system. J Microbiol Methods 2014; 109:160-6. [PMID: 25555820 DOI: 10.1016/j.mimet.2014.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/25/2014] [Accepted: 12/27/2014] [Indexed: 01/23/2023]
Abstract
Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system.
Collapse
|
25
|
Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence. Vet Microbiol 2014; 170:135-43. [PMID: 24594355 DOI: 10.1016/j.vetmic.2014.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 11/22/2022]
Abstract
Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new diagnostic markers and help to understand the pathogenesis of S. agalactiae.
Collapse
|
26
|
Acidic pH strongly enhances in vitro biofilm formation by a subset of hypervirulent ST-17 Streptococcus agalactiae strains. Appl Environ Microbiol 2014; 80:2176-85. [PMID: 24487536 DOI: 10.1128/aem.03627-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30 to 76% of the cases of neonatal meningitis. In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low-, and non-biofilm-forming strains, and to facilitate interpretation of data. This protocol was used to screen the biofilm-forming abilities of 366 GBS clinical isolates from pregnant women and from neonatal infections of different serotypes in relation to medium composition and pH. The results identified a subset of isolates of serotypes III and V that formed strong biofilms under acidic conditions. Importantly, the best biofilm formers belonged to serotype III hypervirulent clone ST-17. Moreover, the abilities of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm initiation and contribute to biofilm structural stability.
Collapse
|
27
|
Xue LY, Ouyang Q, Zhou XG, Huang ZH, Chen W, Chen M, Yu LM. Bacterial immune interaction in experimental colitis. J Dig Dis 2013; 14:526-35. [PMID: 23734583 DOI: 10.1111/1751-2980.12079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This study aimed to analyze the effects of 5-aminosalicylic acid (5-ASA) on intestinal microbiota and immune regulation in inflammatory bowel disease (IBD) and to investigate the correlation between intestinal microbiota and immune factors. METHODS Colitis in mice was induced by oxazolone. The community composition of luminal and mucosal microbiota was analyzed by a terminal restriction fragment length polymorphism. The expression of occludin, toll-like receptor (TLR)-2, TLR-4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 proteins were measured by immunohistochemistry and Western blot. Linear correlation between intestinal microbial community and the severity of the colitis or intestinal microbial community and expressions of immune factors were determined. RESULTS Protective bacteria decreased while aggressive bacteria increased in the colitis group. The richness and diversity of both luminal and mucosal microbiota decreased in the colitis group the decrease was enhanced in the 5-ASA-treated group. The diversity of mucosal microbiota significantly correlated with the extent of the colitis. Expressions of occludin, TLR-2, TLR-4, tumor necrosis factor-α and NF-κB p65 were significantly correlated with the diversity of mucosal microbiota. CONCLUSIONS Mucosal microbiota are important in the pathogenesis of IBD. 5-ASA increases protective bacteria but decreases aggressive bacteria, thus inducing the new intestinal microbial homeostasis.
Collapse
Affiliation(s)
- Lin Yun Xue
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | | | | | | | | | | | | |
Collapse
|