1
|
Meyer C, Jeanbille M, Breuil MC, Bru D, Höfer K, Screpanti C, Philippot L. Dynamic response of soil microbial communities and network to hymexazol exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177557. [PMID: 39557169 DOI: 10.1016/j.scitotenv.2024.177557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Fungicides are an essential component of current agricultural practices, but their extensive use has raised concerns about their effects on non-target soil microorganisms, which carry out essential ecosystem functions. However, despite the complexity of microbial communities, many studies investigating their response to fungicides focus only on bacteria or fungi at one point in time. In this study, we used amplicon sequencing to assess the effect of the fungicide hymexazol on the diversity, composition, and co-occurrence network of soil bacteria, fungi, and protists at 7, 21, and 60 days after application. We found that hymexazol had very little effect on microbial alpha-diversity, but that microbial community composition and OTU differential abundance were altered over the duration of the experiment, even after hymexazol concentrations were undetectable. The co-occurrence patterns within and between microbial kingdoms were affected by hymexazol dose, suggesting that indirect effects may play a role in the microbial community response. Nitrogen cycling was also affected, with a transient hymexazol-associated increase in the abundance of ammonia-oxidizing microorganisms and soil nitrate concentration. These findings highlight that the effects of fungicides on soil microorganisms are dynamic and extensive, spanning several taxonomic kingdoms.
Collapse
Affiliation(s)
- Cara Meyer
- Université Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France; Syngenta Crop Protection Research Stein, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - Mathilde Jeanbille
- Université Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France
| | - Marie-Christine Breuil
- Université Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France
| | - David Bru
- Université Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France
| | - Kristin Höfer
- Syngenta Crop Protection Research Stein, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - Claudio Screpanti
- Syngenta Crop Protection Research Stein, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - Laurent Philippot
- Université Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France.
| |
Collapse
|
2
|
Bočaj V, Pongrac P, Grčman H, Šala M, Likar M. Rhizobiome diversity of field-collected hyperaccumulating Noccaea sp. BMC PLANT BIOLOGY 2024; 24:922. [PMID: 39358696 PMCID: PMC11448065 DOI: 10.1186/s12870-024-05605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Hyperaccumulating plants are able to (hyper)accumulate high concentrations of metal(loid)s in their above-ground tissues without any signs of toxicity. Studies on the root-associated microbiome have been previously conducted in relation to hyperaccumulators, yet much remains unknown about the interactions between hyperaccumulating hosts and their microbiomes, as well as the dynamics within these microbial communities. Here, we assess the impact of the plant host on shaping microbial communities of three naturally occurring populations of Noccaea species in Slovenia: Noccaea praecox and co-occurring N. caerulescens from the non-metalliferous site and N. praecox from the metalliferous site. We investigated the effect of metal enrichment on microbial communities and explored the interactions within microbial groups and their environment. The abundance of bacterial phyla was more homogeneous than fungal classes across all three Noccaea populations and across the three root-associated compartments (roots, rhizosphere, and bulk soil). While most fungal and bacterial Operational Taxonomic Units (OTUs) were found at both sites, the metalliferous site comprised more unique OTUs in the root and rhizosphere compartments than the non-metalliferous site. In contrast to fungi, bacteria exhibited differentially significant abundance between the metalliferous and non-metalliferous sites as well as statistically significant correlations with most of the soil parameters. Results revealed N. caerulescens had the highest number of negative correlations between the bacterial phyla, whereas the population from the metalliferous site had the fewest. This decrease was accompanied by a big perturbation in the bacterial community at the metalliferous site, indicating increased selection between the bacterial taxa and the formation of potentially less stable rhizobiomes. These findings provide fundamentals for future research on the dynamics between hyperaccumulators and their associated microbiome.
Collapse
Affiliation(s)
- Valentina Bočaj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Paula Pongrac
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
- Jožef Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia
| | - Helena Grčman
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia
| | - Martin Šala
- National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI-1000, Slovenia
| | - Matevž Likar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
3
|
Meyer C, Jeanbille M, Breuil MC, Bru D, Höfer K, Screpanti C, Philippot L. Soil microbial community fragmentation reveals indirect effects of fungicide exposure mediated by biotic interactions between microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134231. [PMID: 38598881 DOI: 10.1016/j.jhazmat.2024.134231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Fungicides are used worldwide to improve crop yields, but they can affect non-target soil microorganisms which are essential for ecosystem functioning. Microorganisms form complex communities characterized by a myriad of interspecies interactions, yet it remains unclear to what extent non-target microorganisms are indirectly affected by fungicides through biotic interactions with sensitive taxa. To quantify such indirect effects, we fragmented a soil microbial community by filtration to alter biotic interactions and compared the effect of the fungicide hymexazol between fractions in soil microcosms. We postulated that OTUs which are indirectly affected would exhibit a different response to the fungicide across the fragmented communities. We found that hymexazol primarily affected bacterial and fungal communities through indirect effects, which were responsible for more than 75% of the shifts in relative abundance of the dominant microbial OTUs after exposure to an agronomic dose of hymexazol. However, these indirect effects decreased for the bacterial community when hymexazol doses increased. Our results also suggest that N-cycling processes such as ammonia oxidation can be impacted indirectly by fungicide application. This work sheds light on the indirect impact of fungicide exposure on soil microorganisms through biotic interactions, which underscores the need for higher-tier risk assessment. ENVIRONMENTAL IMPLICATION: In this study, we used a novel approach based on the fragmentation of the soil microbial community to determine to which extent fungicide application could indirectly affect fungi and bacteria through biotic interactions. To assess off-target effects of fungicide on soil microorganisms, we selected hymexazol, which is used worldwide to control a variety of fungal plant pathogens, and exposed arable soil to the recommended field rate, as well as to higher rates. Our findings show that at least 75% of hymexazol-impacted microbial OTUs were indirectly affected, therefore emphasizing the importance of tiered risk assessment.
Collapse
Affiliation(s)
- Cara Meyer
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France; Syngenta Crop Protection Research Stein, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - Mathilde Jeanbille
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France
| | - Marie-Christine Breuil
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France
| | - David Bru
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France
| | - Kristin Höfer
- Syngenta Crop Protection Research Stein, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - Claudio Screpanti
- Syngenta Crop Protection Research Stein, Schaffhauserstrasse 101, 4332 Stein, Switzerland
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, 17 rue Sully, 21000 Dijon, France.
| |
Collapse
|
4
|
Chen X, Yang Y, Wang J, Pan C, Zhang Z, Chen S, Xie S. Impacts of o-cresol spill on composition and function of river sediment and soil microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31978-31988. [PMID: 38641693 DOI: 10.1007/s11356-024-33043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
o-Cresol is a toxic substance with strong irritating and corrosive effects on skin and mucous membranes. To date, information on the effects of o-cresol on microbial communities in the natural environment is very limited. In the present study, 16S rRNA sequencing and metagenomic technique were carried out to elucidate the effects of the o-cresol spill on microbial communities in river sediments and nearby soils. o-Cresol spill induced the increase in the relative abundance of phyla Planctomycetes and Gemmatimonadetes, suggesting their resilience to o-cresol-induced stress. Uncultured Gemmatimonadetes genera and the MND1 genus exhibited enrichment, while the Pseudomonas genus dominated across all samples, indicating their potential pivotal roles in adapting to the o-cresol spill. Moreover, o-cresol spill impaired the metabolic functions of microbes but triggered their defense mechanisms. Under o-cresol pressure, microbial functions related to carbon fixation were upregulated and functions associated with sulfur metabolism were downregulated. In addition, the o-cresol spill led to an increase in functional genes related to the conversion of o-cresol to 3-methylcatechol. Several genes involved in the degradation of aromatic compounds were also identified, potentially contributing to the biodegradation of o-cresol. This study provides fresh insights into the repercussions of an abrupt o-cresol spill on microbial communities in natural environments, shedding light on their adaptability, defense mechanisms, and biodegradation potential.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yuyin Yang
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Ji Wang
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Chaoyi Pan
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Zhengke Zhang
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China.
| | - Sili Chen
- Ministry of Ecology and Environment (MEE), South China Institute of Environmental Sciences (SCIES), Guangzhou, 510655, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Raiyani NM, Singh SP. Microbial community and predictive functionalities associated with the marine sediment of Coastal Gujarat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43245-43266. [PMID: 36650368 DOI: 10.1007/s11356-023-25196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Marine sediments are complex ecosystems where structures and functions constantly change due to natural and anthropogenic influences. In this investigation, a comprehensive and comparative analysis of the bacterial communities and their functional potential of the pristine and polluted marine sediments were carried out using MiSeq. The phylum Proteobacteria was dominant in all study sites. Other phyla were Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Chloroflexi, Nitrospirae, Cyanobacteria, Verrucomicrobia, Tenericutes, and Chlorobi. Interestingly, about 50% of genera belong to the unclassified categories. The key genera were identified as Acinetobacter, Bacillus, Pseudomona, Idiomarina, Thalassospira, and Marinobacter, Halomonas, Planctomyces, Psychrobacter, and Vogesella. PICRUSt analysis revealed that major functions are associated with the metabolism category. Additionally, metabolism related to amino acids, carbohydrates, energy generation, xenobiotics degradation, nitrogen, sulfate, and methane were prominent. Similarly, the predicted metabolisms by COG and KEGG were observed in the microbial communities of the marine sediments. To date, a comprehensive description of the microbial life with metabolic potential in these study sites has not been investigated. This study therefore significantly adds to our understanding of the microbiome and its functional attributes of marine sediments.
Collapse
Affiliation(s)
- Nirali M Raiyani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360 005, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, 360 005, Gujarat, India.
| |
Collapse
|
6
|
de Araujo JE, Taketani RG, Pylro VS, Leite LR, Pereira E Silva MDC, Lemos LN, de Mello Lourenço MV, Andreote FD. Genomic analysis reveals the potential for hydrocarbon degradation of Rhodopirellula sp. MGV isolated from a polluted Brazilian mangrove. Braz J Microbiol 2021; 52:1397-1404. [PMID: 33852152 DOI: 10.1007/s42770-021-00483-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022] Open
Abstract
Planctomycetes are bacteria found in several environments, such as mangroves. In the coastline of the State of Sao Paulo (Brazilian Southeast), mangroves occur in different stages of environmental contamination, promoted by the proximity to the city and industrial activities. One of these mangroves (located in the city of Bertioga) is characterized by the high impact due to past petroleum and ongoing urban contamination. We isolated five bacteria affiliated to Planctomycetes from this mangrove and further subjected them to phenotypical and genetic analysis. The tolerance for salinity was demonstrated by the cultivation under distinct concentrations of NaCl. The ability of this bacterium to use diverse carbon sources was revealed by the use of 30 C-sources from a total of 31 tests. We found the isolate Rhodopirellula sp. MGV very closely affiliated to species of the genus Rhodopirellula, harboring a genome with 7.16 Mbp and 55.3% of GC. The annotation of the 77 contigs resulted in 6.284 CDS, with a remarkable occurrence of sequences associated with aromatic carbon metabolism. In conclusion, we present the isolation and characterization of a Planctomycetes from mangroves, suggesting its participation in the degradation of hydrocarbons present in the contaminated mangroves studied.
Collapse
Affiliation(s)
- Juliana Eschholz de Araujo
- Department of Soil Science, Soil Microbiology Laboratory, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo-ESALQ/USP, Av Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil.
| | - Rodrigo Gouvêa Taketani
- Department of Soil Science, Soil Microbiology Laboratory, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo-ESALQ/USP, Av Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Victor Satler Pylro
- Department of Biology, Microbiology Sector, Federal University of Lavras, DBI-University Campus, Lavras, MG, 37200000, Brazil
| | - Laura Rabelo Leite
- Biosystems Informatics and Genomics Group, René Rachou Research Center, Belo Horizonte, Minas Gerais, Brazil
| | - Michele de Cássia Pereira E Silva
- Department of Soil Science, Soil Microbiology Laboratory, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo-ESALQ/USP, Av Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Leandro Nascimento Lemos
- Laboratory of Cellular and Molecular Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Marcus Venícius de Mello Lourenço
- Department of Soil Science, Soil Microbiology Laboratory, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo-ESALQ/USP, Av Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, Soil Microbiology Laboratory, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo-ESALQ/USP, Av Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
7
|
Mehl C, Schoeman MC, Sanko TJ, Bezuidenhout C, Mienie CMS, Preiser W, Vosloo D. Wastewater treatment works change the intestinal microbiomes of insectivorous bats. PLoS One 2021; 16:e0247475. [PMID: 33657147 PMCID: PMC7928523 DOI: 10.1371/journal.pone.0247475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
Mammals, born with a near-sterile intestinal tract, are inoculated with their mothers’ microbiome during birth. Thereafter, extrinsic and intrinsic factors shape their intestinal microbe assemblage. Wastewater treatment works (WWTW), sites synonymous with pollutants and pathogens, receive influent from domestic, agricultural and industrial sources. The high nutrient content of wastewater supports abundant populations of chironomid midges (Diptera), which transfer these toxicants and potential pathogens to their predators, such as the banana bat Neoromicia nana (Vespertilionidae), thereby influencing their intestinal microbial assemblages. We used next generation sequencing and 16S rRNA gene profiling to identify and compare intestinal bacteria of N. nana at two reference sites and two WWTW sites. We describe the shared intestinal microbiome of the insectivorous bat, N. nana, consisting of seven phyla and eleven classes. Further, multivariate analyses revealed that location was the most significant driver (sex, body size and condition were not significant) of intestinal microbiome diversity. Bats at WWTW sites exhibited greater intestinal microbiota diversity than those at reference sites, likely due to wastewater exposure, stress and/or altered diet. Changes in their intestinal microbiota assemblages may allow these bats to cope with concomitant stressors.
Collapse
Affiliation(s)
- Calvin Mehl
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - M. Corrie Schoeman
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tomasz J. Sanko
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Charlotte M. S. Mienie
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, South Africa
- National Health Laboratory Service (NHLS), Tygerberg Hospital, Tygerberg, South Africa
| | - Dalene Vosloo
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- * E-mail:
| |
Collapse
|
8
|
Marinho MDC, Diogo BS, Lage OM, Antunes SC. Ecotoxicological evaluation of fungicides used in viticulture in non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43958-43969. [PMID: 32748361 DOI: 10.1007/s11356-020-10245-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The effect of fungicides, commonly used in vine cultures, on the health of terrestrial and aquatic ecosystems has been poorly studied. The objective of this study was to evaluate the toxicity of three viticulture fungicides (myclobutanil, cymoxanil, and azoxystrobin) on non-target organisms, the bacteria Rhodopirellula rubra, Escherichia coli, Pseudomonas putida, and Arthrobacter sp., the microalgae Raphidocelis subcapitata, and the macrophyte Lemna minor. Fungicide toxicity was performed in acute cell viability assay for bacteria; 72-h and 7-day growth inhibition tests for R. subcapitata and L. minor, respectively. Contents of photosynthetic pigments and lipid peroxidation in L. minor were evaluated. Arthrobacter sp. and P. putida showed resistance to these fungicides. Even though azoxystrobin affected R. rubra and E. coli cell viability, this effect was due to the solvent used, acetone. Cell viability decrease was obtained for R. rubra exposed to cymoxanil and E. coli exposed to myclobutanil (30 min of exposure at 10 mg/L and 240 min of exposure at 46 mg/L, respectively). R. subcapitata showed about 10-fold higher sensitivity to azoxystrobin (EC50-72h = 0.25 mg/L) and cymoxanil (EC50-72h = 0.36 mg/L) than L. minor to azoxystrobin and myclobutanil (EC50-72h = 1.53 mg/L and EC50-72h = 1.89 mg/L, respectively). No lipid peroxidation was observed in L. minor after fungicide exposure, while changes of total chlorophyll were induced by azoxystrobin and myclobutanil. Our results showed that non-target aquatic organisms of different trophic levels are affected by fungicides used in viticulture.
Collapse
Affiliation(s)
- Maria da Conceição Marinho
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Bárbara Salazar Diogo
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal
| | - Olga Maria Lage
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Sara Cristina Antunes
- Departamento de Biologia da Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007, Porto, Portugal.
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
9
|
Song B, Gong J, Tang W, Zeng G, Chen M, Xu P, Shen M, Ye S, Feng H, Zhou C, Yang Y. Influence of multi-walled carbon nanotubes on the microbial biomass, enzyme activity, and bacterial community structure in 2,4-dichlorophenol-contaminated sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136645. [PMID: 31955106 DOI: 10.1016/j.scitotenv.2020.136645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The rise in manufacture and use of carbon nanotubes has aroused the concern about their potential risks associated with coexisting pollutants in the aquatic environment. 2,4-dichlorophenol (2,4-DCP), with a high toxicity to many aquatic organisms, is a widespread pollutant resulting from the extensive use of pesticides and preservatives. In this article, the adsorption of 2,4-DCP by riverine sediment and the responses of sediment microbial community to 2,4-DCP were studied in the presence of multi-walled carbon nanotubes (MWCNTs). Adding MWCNTs significantly increased the adsorption amount of sediment for 2,4-DCP from 0.541 to 1.44 mg/g as the MWCNT concentration increased from 0 to 15 mg/g. The responses of sediment microbial community were determined after one-month exposure to MWCNTs at different concentrations (0.05, 0.5, 5, and 50 mg/g). The microbial biomass carbon in the sediment contaminated with 2,4-DCP increased in the presence of 5 mg/g of MWCNTs (from 0.06 to 0.11 mg/g), but not significantly changed at other MWCNT concentrations. For the sediments contaminated with 2,4-DCP, the presence of MWCNTs made no difference to urease activity, while the dehydrogenase activity slightly increased with the addition of 5 mg/g of MWCNTs and decreased in the presence of 50 mg/g of MWCNTs. The changes of sediment bacterial communities were further determined by 16S rRNA gene sequencing. Based on the weighted UniFrac distance between communities, the clustering analysis suggested that the contamination of 2,4-DCP affected the bacterial community structure in a greater degree than that caused by MWCNTs at relatively low concentrations (≤5 mg/g). Bacteroidetes, Planctomycetes, and Nitrospirae were feature bacterial phyla to reflect the effects of MWCNTs and 2,4-DCP on sediment bacterial community. These results may contribute to the understanding of microbial community response to co-exposure of MWCNTs and 2,4-DCP and the assessment of associated ecological risks.
Collapse
Affiliation(s)
- Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
10
|
Chen J, McIlroy SE, Archana A, Baker DM, Panagiotou G. A pollution gradient contributes to the taxonomic, functional, and resistome diversity of microbial communities in marine sediments. MICROBIOME 2019; 7:104. [PMID: 31307536 PMCID: PMC6632204 DOI: 10.1186/s40168-019-0714-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/17/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Coastal marine environments are one of the most productive ecosystems on Earth. However, anthropogenic impacts exert significant pressure on coastal marine biodiversity, contributing to functional shifts in microbial communities and human health risk factors. However, relatively little is known about the impact of eutrophication-human-derived nutrient pollution-on the marine microbial biosphere. RESULTS Here, we tested the hypothesis that benthic microbial diversity and function varies along a pollution gradient, with a focus on human pathogens and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG annotation revealed that zinc, lead, total volatile solids, and ammonia nitrogen were correlated with microbial diversity and function. We propose several microbes, including Planctomycetes and sulfate-reducing microbes as candidates to reflect pollution concentration. Annotation of antibiotic resistance genes showed that the highest abundance of efflux pumps was found at the most polluted site, corroborating the relationship between pollution and human health risk factors. This result suggests that sediments at polluted sites harbor microbes with a higher capacity to reduce intracellular levels of antibiotics, heavy metals, or other environmental contaminants. CONCLUSIONS Our findings suggest a correlation between pollution and the marine sediment microbiome and provide insight into the role of high-turnover microbial communities as well as potential pathogenic organisms as real-time indicators of water quality, with implications for human health and demonstrate the inner functional shifts contributed by the microcommunities.
Collapse
Affiliation(s)
- Jiarui Chen
- Systems Biology & Bioinformatics Group, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Shelby E McIlroy
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, China
| | - Anand Archana
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China
| | - David M Baker
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, China.
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China.
| | - Gianni Panagiotou
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Beutenbergstrasse 11a, Jena, 07745, Germany.
- Department of Microbiology Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Systems Biology & Bioinformatics Group, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|