1
|
Chen X, Xu G, Xiong P, Peng J, Fang K, Wan S, Wang B, Gu F, Li J, Xiong H. Dry and wet seasonal variations of the sediment fungal community composition in the semi-arid region of the Dali River, Northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123694-123709. [PMID: 37993647 DOI: 10.1007/s11356-023-31042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Microbial communities play an important role in water quality regulation and biogeochemical cycling in freshwater ecosystems. However, there has been a lack of research on the seasonal variation of sediment microorganisms in the sediments of small river basins in typical semi-arid region. In this study, high-throughput DNA sequencing was used to investigate the fungal community and its influencing factors in the sediment of the Dali River in the dry and wet seasons. The results showed that there were obvious seasonal differences in fungal alpha diversity. The diversity and richness of fungi in the dry season were greater than that in the wet season, but the evenness of fungi in the dry season was lower than that in the wet season. In addition, Ascomycota and Basidiomycota were the most important phyla in the Dali River fungal community, but their distributions showed clear seasonal differences. In the dry season, the relative abundance of Ascomycota and Basidiomycota were 12.34-46.42% and 17.59-27.20%, respectively. In the wet season, the relative abundances of these two phyla were 24.33-36.56% and 5.75-12.26%, respectively. PICRUSt2 was used to predict the metabolic function of fungal community in the sediment, and it was found that at the first level, the proportion of biosynthesis in the dry season was higher than that in the wet season. The ecological network structure showed that the fungal community in the wet season was more complex and stable than that in the dry season. The characteristic fungi in the dry season sediment were chytrid fungi in the family Rhizophydiaceae and the order Rhizophydiales, whereas those in the wet season sediment were in the orders Eurotiales and Saccharomycetales. Canonical correspondence analysis (CCA) showed that the physicochemical properties of water and sediment together explained a greater proportion of the dry-season fungal community changes than of the wet-season changes. In the dry season, temperature and ammonia nitrogen in the water were the main factors affecting the change of fungal community, whereas in the wet season, total nitrogen concentration of the water, electrical conductivity, total organic carbon and available phosphorus of the sediment, pH, and temperature were the main factors affecting the changes in fungal community composition. The results of this study enhanced our understanding of microbial communities in semi-arid river ecosystems, and highlight the importance of the management and protection in river ecosystems.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Guoce Xu
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.
| | - Ping Xiong
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Jianbo Peng
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Kang Fang
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Shun Wan
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Bin Wang
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Fengyou Gu
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Jing Li
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Haijing Xiong
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| |
Collapse
|
2
|
Seder-Colomina M, Mangeret A, Bauda P, Brest J, Stetten L, Merrot P, Julien A, Diez O, Barker E, Billoir E, Poupin P, Thouvenot A, Cazala C, Morin G. Influence of microorganisms on uranium release from mining-impacted lake sediments under various oxygenation conditions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1830-1843. [PMID: 36082760 DOI: 10.1039/d2em00104g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbial processes can be involved in the remobilization of uranium (U) from reduced sediments under O2 reoxidation events such as water table fluctuations. Such reactions could be typically encountered after U-bearing sediment dredging operations. Solid U(IV) species may thus reoxidize into U(VI) that can be released in pore waters in the form of aqueous complexes with organic and inorganic ligands. Non-uraninite U(IV) species may be especially sensitive to reoxidation and remobilization processes. Nevertheless, little is known regarding the effect of microbially mediated processes on the behaviour of U under these conditions.
Collapse
Affiliation(s)
- Marina Seder-Colomina
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Arnaud Mangeret
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Jessica Brest
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS-Sorbonne Université -MNHN-IRD, case 115, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Lucie Stetten
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS-Sorbonne Université -MNHN-IRD, case 115, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Pauline Merrot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS-Sorbonne Université -MNHN-IRD, case 115, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Anthony Julien
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Olivier Diez
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Evelyne Barker
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Elise Billoir
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Pascal Poupin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | | - Charlotte Cazala
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Guillaume Morin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS-Sorbonne Université -MNHN-IRD, case 115, 4 place Jussieu, 75252 Paris Cedex 5, France
| |
Collapse
|
3
|
Lv J, Yuan R, Wang S. Water diversion induces more changes in bacterial and archaeal communities of river sediments than seasonality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112876. [PMID: 34098351 DOI: 10.1016/j.jenvman.2021.112876] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Previous studies have demonstrated that seasonal variation is often the most important factor affecting aquatic bacterial assemblages. Whether anthropogenic activities can dominate community dynamics remains unknown. Based on 16S rRNA high-throughput sequencing technology, this study revealed and compared the relative influence of water diversions and seasonality on bacterial and archaeal communities in river sediments from a region with obvious seasonality. The results indicate that the influence of water diversion on bacteria and archaea in water-receiving river sediments exceeded the influence of seasonal variation. Water diversion affected microbes by increasing EC, salinity, water flow rate, and organic matter carbon and nitrogen contents. Seasonal variations affected microbes by altering water temperature. Diversion responders but no season responders were classified by statistical methods in the microbial community. Diversion responder numbers were related to nitrogen concentrations, complex organic carbon contents and EC values, which were mainly affected by water diversion. With the joint impact of water diversion and seasonality, the correlations of bacterial and archaeal numbers with environmental factors were obviously weakened due to the increases in the ecological niche breadths of microorganisms. Natural seasonal changes in bacterial and archaeal communities were totally altered by changes in salinity, nutrients, and hydrological conditions induced by anthropogenic water diversions. These results highlight that human activity may be a stronger driver than natural seasonality in the alteration of bacterial and archaeal communities.
Collapse
Affiliation(s)
- Jiali Lv
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China; Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 101408, China; Sino-Danish Centre for Education and Research, Beijing, 101408, China
| | - Ruiqiang Yuan
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China.
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| |
Collapse
|
4
|
Lv J, Niu Y, Yuan R, Wang S. Different Responses of Bacterial and Archaeal Communities in River Sediments to Water Diversion and Seasonal Changes. Microorganisms 2021; 9:microorganisms9040782. [PMID: 33917984 PMCID: PMC8068392 DOI: 10.3390/microorganisms9040782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, different responses of archaea and bacteria to environmental changes have attracted increasing scientific interest. In the mid-latitude region, Fen River receives water transferred from the Yellow River, electrical conductivity (EC), concentrations of Cl- and Na+ in water, total phosphorus (TP), and Olsen phosphorus (OP) in sediments were significantly affected by water transfer. Meanwhile, temperature and oxidation-reduction potential (ORP) of water showed significant seasonal variations. Based on 16S rRNA high-throughput sequencing technology, the composition of bacteria and archaea in sediments was determined in winter and summer, respectively. Results showed that the dominance of bacterial core flora decreased and that of archaeal core flora increased after water diversion. The abundance and diversity of bacterial communities in river sediments were more sensitive to anthropogenic and naturally induced environmental changes than that of archaeal communities. Bacterial communities showed greater resistance than archaeal communities under long-term external disturbances, such as seasonal changes, because of rich species composition and complex community structure. Archaea were more stable than bacteria, especially under short-term drastic environmental disturbances, such as water transfer, due to their insensitivity to environmental changes. These results have important implications for understanding the responses of bacterial and archaeal communities to environmental changes in river ecosystems affected by water diversion.
Collapse
Affiliation(s)
- Jiali Lv
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China;
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yangdan Niu
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
| | - Ruiqiang Yuan
- School of Environment and Natural Resources, Shanxi University, Taiyuan 030006, China; (J.L.); (Y.N.)
- Correspondence:
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China;
| |
Collapse
|
5
|
Najafi A, Moradinasab M, Seyedabadi M, Haghighi MA, Nabipour I. First Molecular Identification of Symbiotic Archaea in a Sponge Collected from the Persian Gulf, Iran. Open Microbiol J 2018; 12:323-332. [PMID: 30450139 PMCID: PMC6198412 DOI: 10.2174/1874285801812010323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 11/22/2022] Open
Abstract
Background Marine sponges are associated with numerically vast and phylogenetically diverse microbial communities at different geographical locations. However, little is known about the archaeal diversity of sponges in the Persian Gulf. The present study was aimed to identify the symbiotic archaea with a sponge species gathered from the Persian Gulf, Iran. Methods Sponge sample was collected from a depth of 3 m offshore Bushehr, Persian Gulf, Iran. Metagenomic DNA was extracted using a hexadecyl trimethyl ammonium bromide (CTAB) method. The COI mtDNA marker was used for molecular taxonomy identification of sponge sample. Also, symbiotic archaea were identified using the culture-independent analysis of the 16S rRNA gene and PCR- cloning. Results In this study, analysis of multilocus DNA marker and morphological characteristics revealed that the sponge species belonged to Chondrilla australiensis isolate PG_BU4. PCR cloning and sequencing showed that all of the sequences of archaeal 16S rRNA gene libraries clustered into the uncultured archaeal group. Conclusion The present study is the first report of the presence of the genus of Chondrilla in the Persian Gulf. Traditional taxonomy methods, when used along with molecular techniques, could play a significant role in the accurate taxonomy of sponges. Also, the uncultured archaea may promise a potential source for bioactive compounds. Further functional studies are needed to explore the role of the sponge-associated uncultured archaea as a part of the marine symbiosis.
Collapse
Affiliation(s)
- Akram Najafi
- The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Moradinasab
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad A Haghighi
- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
6
|
Fuchsman CA, Collins RE, Rocap G, Brazelton WJ. Effect of the environment on horizontal gene transfer between bacteria and archaea. PeerJ 2017; 5:e3865. [PMID: 28975058 PMCID: PMC5624296 DOI: 10.7717/peerj.3865] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/08/2017] [Indexed: 01/24/2023] Open
Abstract
Background Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted). Results We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007), to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits) and transferred genes (identified by DarkHorse) were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. Conclusions Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of genes from the archaea to the bacteria. In general, these transfers are from archaea that live in similar oxygen and temperature conditions as the bacteria that receive the genes. Potential hotspots of horizontal gene transfer between archaea and bacteria include hot springs, marine sediments, and oil wells. Cold spots for horizontal transfer included dilute, aerobic, mesophilic environments such as marine and freshwater surface waters.
Collapse
Affiliation(s)
- Clara A Fuchsman
- School of Oceanography, University of Washington, Seattle, WA, United States of America
| | - Roy Eric Collins
- School of Oceanography, University of Washington, Seattle, WA, United States of America.,College of Fisheries and Ocean Sciences, University of Alaska-Fairbanks, Fairbanks, AK, United States of America
| | - Gabrielle Rocap
- School of Oceanography, University of Washington, Seattle, WA, United States of America
| | - William J Brazelton
- School of Oceanography, University of Washington, Seattle, WA, United States of America.,Department of Biology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|