1
|
Forterre P. The Last Universal Common Ancestor of Ribosome-Encoding Organisms: Portrait of LUCA. J Mol Evol 2024; 92:550-583. [PMID: 39158619 DOI: 10.1007/s00239-024-10186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024]
Abstract
The existence of LUCA in the distant past is the logical consequence of the binary mechanism of cell division. The biosphere in which LUCA and contemporaries were living was the product of a long cellular evolution from the origin of life to the second age of the RNA world. A parsimonious scenario suggests that the molecular fabric of LUCA was much simpler than those of modern organisms, explaining why the evolutionary tempo was faster at the time of LUCA than it was during the diversification of the three domains. Although LUCA was possibly equipped with a RNA genome and most likely lacked an ATP synthase, it was already able to perform basic metabolic functions and to produce efficient proteins. However, the proteome of LUCA and its inferred metabolism remains to be correctly explored by in-depth phylogenomic analyses and updated datasets. LUCA was probably a mesophile or a moderate thermophile since phylogenetic analyses indicate that it lacked reverse gyrase, an enzyme systematically present in all hyperthermophiles. The debate about the position of Eukarya in the tree of life, either sister group to Archaea or descendants of Archaea, has important implications to draw the portrait of LUCA. In the second alternative, one can a priori exclude the presence of specific eukaryotic features in LUCA. In contrast, if Archaea and Eukarya are sister group, some eukaryotic features, such as the spliceosome, might have been present in LUCA and later lost in Archaea and Bacteria. The nature of the LUCA virome is another matter of debate. I suggest here that DNA viruses only originated during the diversification of the three domains from an RNA-based LUCA to explain the odd distribution pattern of DNA viruses in the tree of life.
Collapse
|
2
|
Marcos CN, Bach A, Gutiérrez-Rivas M, González-Recio O. The oral microbiome as a proxy for feed intake in dairy cattle. J Dairy Sci 2024; 107:5881-5896. [PMID: 38522834 DOI: 10.3168/jds.2024-24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
Genetic material from rumen microorganisms can be found within the oral cavity, and hence there is potential in using the oral microbiome as a proxy of the ruminal microbiome. Feed intake (FI) influences the composition of rumen microbiota and might directly influence the oral microbiome in dairy cattle. Ruminal content samples (RS) from 29 cows were collected at the beginning of the study and also 42 d later (RS0 and RS42, respectively). Additionally, 18 oral samples were collected through buccal swabbing at d 42 (OS42) from randomly selected cows. Samples were used to characterize and compare the taxonomy and functionality of the oral microbiome using nanopore sequencing and to evaluate the feasibility of using the oral microbiome to estimate FI. Up to 186 taxonomical features were found differentially abundant (DA) between RS and OS42. Similar results were observed when comparing OS42 to RS collected on different days. Microorganisms associated with the liquid fraction of the rumen were less abundant in OS42 because these were probably swallowed after regurgitation. Up to 1,102 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were found to be DA between RS and OS42, and these results differed when comparing time of collection, but DA KEGG pathways were mainly associated with metabolism in both situations. Models based on the oral microbiome and rumen microbiome differed in their selection of microbial groups and biological pathways to predict FI. In the rumen, fiber-associated microorganisms are considered suitable indicators of FI. In contrast, biofilm formers like Gammaproteobacteria or Bacteroidia classes are deemed appropriate proxies for predicting FI from oral samples. Models from RS exhibited some predictive ability to estimate FI, but oral samples substantially outperformed them. The best lineal model to estimate FI was obtained with the relative abundance of taxonomical feature at genera level, achieving an average R2 = 0.88 within the training data, and a root mean square error of 3.46 ± 0.83 (±SD) kg of DM, as well as a Pearson correlation coefficient between observed and estimated FI of 0.48 ± 0.30 in the test data. The results from this study suggest that oral microbiome has potential to predict FI in dairy cattle, and it encourages validating this potential in other populations.
Collapse
Affiliation(s)
- C N Marcos
- Departamento de Producción Agraria, ETSIAAB, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC, 28040 Madrid, Spain.
| | - A Bach
- ICREA, 08007 Barcelona, Spain
| | - M Gutiérrez-Rivas
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC, 28040 Madrid, Spain; Blanca from the Pyrenees, Hostalets de Tost, 25795 Lleida, Spain
| | - O González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria - CSIC, 28040 Madrid, Spain
| |
Collapse
|
3
|
Gago JF, Viver T, Urdiain M, Ferreira E, Robledo P, Rossello-Mora R. Metagenomics of two aquifers with thermal anomalies in Mallorca Island, and proposal of new uncultivated taxa named following the rules of SeqCode. Syst Appl Microbiol 2024; 47:126506. [PMID: 38640749 DOI: 10.1016/j.syapm.2024.126506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Groundwater offers an intriguing blend of distinctive physical and chemical conditions, constituting a challenge for microbial life. In Mallorca, the largest island of Balearic archipelago, harbours a variety of thermal anomalies (i.e., geothermal manifestation where surface aquifers exhibiting temperatures exceeding the regional average). The metagenomes of two aquifers in the centre and southern of the island showed Pseudomonadota to be the most represented phylum when using extracted 16S rRNA gene sequences. However, the microbial structures within and between aquifers were remarkably diverse but similar in their metabolic profiles as revealed by the metagenome-assembled genomes (MAGs) pointing to a prevalence of aerobic chemolithoautotrophic and heterotrophic metabolisms, especially in the Llucmajor aquifer. Also, some evidences of anaerobic lifestyles were detected, which would indicate that these environments either could suffer episodes of oxygen depletion or the anaerobes had been transported from deeper waters. We believe that the local environmental factors (temperature, external inputs or chemistry) seem to be more relevant than the connection and, eventually, transport of microbial cells within the aquifer in determining the highly divergent structures. Notably, most of the reconstructed genomes belonged to undescribed bacterial lineages and from them two high-quality MAGs could be classified as novel taxa named following the rules of the Code for Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). Accordingly, we propose the new species and genus Costitxia debesea gen. nov., sp. nov., affiliated with the novel family Costitxiaceae fam. nov., order Costitxiales ord. nov. and class Costitxiia class. nov.; and the new new species and genus Lloretia debesea gen. nov. sp. nov. affiliated with the novel family Lloretiaceae fam. nov.
Collapse
Affiliation(s)
- Juan F Gago
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain; The Deep Blue Sea Enterprise S.L., Barcelona, Spain; Lipotrue S.L., Barcelona, Spain.
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain; Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Mercedes Urdiain
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Elaine Ferreira
- The Deep Blue Sea Enterprise S.L., Barcelona, Spain; Lipotrue S.L., Barcelona, Spain
| | - Pedro Robledo
- Unit of Geological and Mining Institute of Spain in Balearic Islands (IGME-CSIC), Palma de Mallorca, Spain
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.
| |
Collapse
|
4
|
Wurzbacher CE, Haufschild T, Hammer J, van Teeseling MCF, Kallscheuer N, Jogler C. Planctoellipticum variicoloris gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from wastewater of the aeration lagoon of a sugar processing plant in Northern Germany. Sci Rep 2024; 14:5741. [PMID: 38459238 PMCID: PMC10923784 DOI: 10.1038/s41598-024-56373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
In the present study, we characterise a strain isolated from the wastewater aeration lagoon of a sugar processing plant in Schleswig (Northern Germany) by Heinz Schlesner. As a pioneer in planctomycetal research, he isolated numerous strains belonging to the phylum Planctomycetota from aquatic habitats around the world. Phylogenetic analyses show that strain SH412T belongs to the family Planctomycetaceae and shares with 91.6% the highest 16S rRNA gene sequence similarity with Planctopirus limnophila DSM 3776T. Its genome has a length of 7.3 Mb and a G + C content of 63.6%. Optimal growth of strain SH412T occurs at pH 7.0-7.5 and 28 °C with its pigmentation depending on sunlight exposure. Strain SH412T reproduces by polar asymmetric division ("budding") and forms ovoid cells. The cell size determination was performed using a semi-automatic pipeline, which we first evaluated with the model species P. limnophila and then applied to strain SH412T. Furthermore, the data acquired during time-lapse analyses suggests a lifestyle switch from flagellated daughter cells to non-flagellated mother cells in the subsequent cycle. Based on our data, we suggest that strain SH412T represents a novel species within a novel genus, for which we propose the name Planctoellipticum variicoloris gen. nov., sp. nov., with strain SH412T (= CECT 30430T = STH00996T, the STH number refers to the Jena Microbial Resource Collection JMRC) as the type strain of the new species.
Collapse
Affiliation(s)
- Carmen E Wurzbacher
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Muriel C F van Teeseling
- Junior Research Group "Prokaryotic Cell Biology", Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
5
|
Liu N, Kivenson V, Peng X, Cui Z, Lankiewicz TS, Gosselin KM, English CJ, Blair EM, O'Malley MA, Valentine DL. Pontiella agarivorans sp. nov., a novel marine anaerobic bacterium capable of degrading macroalgal polysaccharides and fixing nitrogen. Appl Environ Microbiol 2024; 90:e0091423. [PMID: 38265213 PMCID: PMC10880615 DOI: 10.1128/aem.00914-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Marine macroalgae produce abundant and diverse polysaccharides, which contribute substantially to the organic matter exported to the deep ocean. Microbial degradation of these polysaccharides plays an important role in the turnover of macroalgal biomass. Various members of the Planctomycetes-Verrucomicrobia-Chlamydia (PVC) superphylum are degraders of polysaccharides in widespread anoxic environments. In this study, we isolated a novel anaerobic bacterial strain NLcol2T from microbial mats on the surface of marine sediments offshore Santa Barbara, CA, USA. Based on 16S ribosomal RNA (rRNA) gene and phylogenomic analyses, strain NLcol2T represents a novel species within the Pontiella genus in the Kiritimatiellota phylum (within the PVC superphylum). Strain NLcol2T is able to utilize various monosaccharides, disaccharides, and macroalgal polysaccharides such as agar and ɩ-carrageenan. A near-complete genome also revealed an extensive metabolic capacity for anaerobic degradation of sulfated polysaccharides, as evidenced by 202 carbohydrate-active enzymes (CAZymes) and 165 sulfatases. Additionally, its ability of nitrogen fixation was confirmed by nitrogenase activity detected during growth on nitrogen-free medium, and the presence of nitrogenases (nifDKH) encoded in the genome. Based on the physiological and genomic analyses, this strain represents a new species of bacteria that may play an important role in the degradation of macroalgal polysaccharides and with relevance to the biogeochemical cycling of carbon, sulfur, and nitrogen in marine environments. Strain NLcol2T (= DSM 113125T = MCCC 1K08672T) is proposed to be the type strain of a novel species in the Pontiella genus, and the name Pontiella agarivorans sp. nov. is proposed.IMPORTANCEGrowth and intentional burial of marine macroalgae is being considered as a carbon dioxide reduction strategy but elicits concerns as to the fate and impacts of this macroalgal carbon in the ocean. Diverse heterotrophic microbial communities in the ocean specialize in these complex polymers such as carrageenan and fucoidan, for example, members of the Kiritimatiellota phylum. However, only four type strains within the phylum have been cultivated and characterized to date, and there is limited knowledge about the metabolic capabilities and functional roles of related organisms in the environment. The new isolate strain NLcol2T expands the known substrate range of this phylum and further reveals the ability to fix nitrogen during anaerobic growth on macroalgal polysaccharides, thereby informing the issue of macroalgal carbon disposal.
Collapse
Affiliation(s)
- Na Liu
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Veronika Kivenson
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Xuefeng Peng
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, China
| | - Thomas S. Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Kelsey M. Gosselin
- Interdepartmental Graduate Program in Marine Science, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chance J. English
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Ecology Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
| | - Elaina M. Blair
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
- Biological Engineering Program, University of California, Santa Barbara, California, USA
| | - David L. Valentine
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Earth Science, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
6
|
Vitorino IR, Pinto E, Martín J, Mackenzie TA, Ramos MC, Sánchez P, de la Cruz M, Vicente F, Vasconcelos V, Reyes F, Lage OM. Uncovering the biotechnological capacity of marine and brackish water Planctomycetota. Antonie Van Leeuwenhoek 2024; 117:26. [PMID: 38261060 PMCID: PMC10805854 DOI: 10.1007/s10482-023-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
An appealing strategy for finding novel bioactive molecules in Nature consists in exploring underrepresented and -studied microorganisms. Here, we investigated the antimicrobial and tumoral anti-proliferative bioactivities of twenty-three marine and estuarine bacteria of the fascinating phylum Planctomycetota. This was achieved through extraction of compounds produced by the Planctomycetota cultured in oligotrophic medium followed by an antimicrobial screening against ten relevant human pathogens including Gram-positive and Gram-negative bacteria, and fungi. Cytotoxic effects of the extracts were also evaluated against five tumoral cell lines. Moderate to potent activities were obtained against Enterococcus faecalis, methicillin-sensitive and methicillin-resistant Staphylococcus aureus and vancomycin-sensitive and vancomycin-resistant Enterococcus faecium. Anti-fungal effects were observed against Trichophyton rubrum, Candida albicans and Aspergillus fumigatus. The highest cytotoxic effects were observed against human breast, pancreas and melanoma tumoral cell lines. Novipirellula caenicola and Rhodopirellula spp. strains displayed the widest spectrum of bioactivities while Rubinisphaera margarita ICM_H10T affected all Gram-positive bacteria tested. LC-HRMS analysis of the extracts did not reveal the presence of any known bioactive natural product, suggesting that the observed activities are most likely caused by novel molecules, that need identification. In summary, we expanded the scope of planctomycetal species investigated for bioactivities and demonstrated that various strains are promising sources of novel bioactive compounds, which reenforces the potential biotechnological prospects offered by Planctomycetota.
Collapse
Affiliation(s)
- Inês R Vitorino
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Eugénia Pinto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Jesús Martín
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Thomas A Mackenzie
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Maria C Ramos
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Pilar Sánchez
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Mercedes de la Cruz
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Vítor Vasconcelos
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Fernando Reyes
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
| |
Collapse
|
7
|
Kallscheuer N, Wurzbacher CE, Schmitz RA, Jogler C. In the footsteps of Heinz Schlesner and Peter Hirsch: Exploring the untapped diversity of the phylum Planctomycetota in isolates from the 1980s to the early 2000s. Syst Appl Microbiol 2024; 47:126486. [PMID: 38104493 DOI: 10.1016/j.syapm.2023.126486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Recent sampling and strain isolation campaigns have accelerated research on the bacterial phylum Planctomycetota. The contribution of more than 100 novel isolates to the open collection of currently 123 described planctomycetal species in the last decade benefited greatly from pioneering work conducted in the second half of the last century. One of those pioneers was Heinz Schlesner, who investigated budding and prosthecate bacteria from habitats world-wide during his time at Christian-Albrechts-University Kiel. An outcome of his research was a strain collection with more than 500 isolates belonging to different bacterial phyla, many of which are uncharacterised members of the phylum Planctomycetota. Due to the lack of affordable genome sequencing techniques at the time of their isolation, most of them were characterised based on phenotypic features and DNA-DNA hybridisation experiments. After the retirement of Heinz Schlesner in 2002, the collection was stored for several years and transferred to Jena in 2019. To get a glimpse on the diversity of members from the phylum Planctomycetota in Schlesner's collection, we here summarised from his records and publications all available information about the collection regarding sampling habitat and phylogeny. Furthermore, we conducted an updated phylogenetic analysis for a representative excerpt of the collection based on the 16S rRNA gene sequence of 59 strains Schlesner deposited in the NCBI database during strain characterisation studies published in the 1980s until the early 2000s. The results support that strains from his collection are still a valuable contribution to expand the cultivated diversity of the understudied phylum Planctomycetota.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Carmen E Wurzbacher
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Ruth A Schmitz
- Institute of General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
8
|
Rivas-Marin E, Moyano-Palazuelo D, Henriques V, Merino E, Devos DP. Essential gene complement of Planctopirus limnophila from the bacterial phylum Planctomycetes. Nat Commun 2023; 14:7224. [PMID: 37940686 PMCID: PMC10632474 DOI: 10.1038/s41467-023-43096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Planctopirus limnophila belongs to the bacterial phylum Planctomycetes, a relatively understudied lineage with remarkable cell biology features. Here, we report a genome-wide analysis of essential gene content in P. limnophila. We show that certain genes involved in peptidoglycan synthesis or cell division, which are essential in most other studied bacteria, are not essential for growth under laboratory conditions in this species. We identify essential genes likely involved in lipopolysaccharide biosynthesis, consistent with the view of Planctomycetes as diderm bacteria, and highlight other essential genes of unknown functions. Furthermore, we explore potential stages of evolution of the essential gene repertoire in Planctomycetes and the related phyla Verrucomicrobia and Chlamydiae. Our results provide insights into the divergent molecular and cellular biology of Planctomycetes.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain.
| | - David Moyano-Palazuelo
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain
| | - Valentina Henriques
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain
| | - Enrique Merino
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Sevilla, Spain.
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, University of Lille, Lille, France.
| |
Collapse
|
9
|
Rekadwad BN, Shouche YS, Jangid K. Investigation of tRNA-based relatedness within the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum: a comparative analysis. Arch Microbiol 2023; 205:366. [PMID: 37917352 DOI: 10.1007/s00203-023-03694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
The PVC superphylum is a diverse group of prokaryotes that require stringent growth conditions. RNA is a fascinating molecule to find evolutionary relatedness according to the RNA World Hypothesis. We conducted tRNA gene analysis to find evolutionary relationships in the PVC phyla. The analysis of genomic data (P = 9, V = 4, C = 8) revealed that the number of tRNA genes varied from 28 to 90 in Planctomycetes and Chlamydia, respectively. Verrucomicrobia has whole genomes and the longest scaffold (3 + 1), with tRNA genes ranging from 49 to 53 in whole genomes and 4 in the longest scaffold. Most tRNAs in the E. coli genome clustered with homologs, but approximately 43% clustered with tRNAs encoding different amino acids. Planctomyces, Akkermansia, Isosphaera, and Chlamydia were similar to E. coli tRNAs. In a phylum, tRNAs coding for different amino acids clustered at a range of 8 to 10%. Further analysis of these tRNAs showed sequence similarity with Cyanobacteria, Proteobacteria, Viridiplantae, Ascomycota and Basidiomycota (Eukaryota). This indicates the possibility of horizontal gene transfer or, otherwise, a different origin of tRNA in PVC bacteria. Hence, this work proves its importance for determining evolutionary relatedness and potentially identifying bacteria using tRNA. Thus, the analysis of these tRNAs indicates that primitive RNA may have served as the genetic material of LUCA before being replaced by DNA. A quantitative analysis is required to test these possibilities that relate the evolutionary significance of tRNA to the origin of life.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Saviribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, Maharashtra, India.
- Microbe AI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India.
| | - Yogesh S Shouche
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Saviribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, Maharashtra, India
- Gut Microbiology Research Division, SKAN Research Trust, Bangalore, 560034, Karnataka, India
| | - Kamlesh Jangid
- Bioenergy Group, DST-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, Maharashtra, India
| |
Collapse
|
10
|
Fekry M, Dave KK, Badgujar D, Hamnevik E, Aurelius O, Dobritzsch D, Danielson UH. The Crystal Structure of Tyrosinase from Verrucomicrobium spinosum Reveals It to Be an Atypical Bacterial Tyrosinase. Biomolecules 2023; 13:1360. [PMID: 37759761 PMCID: PMC10526336 DOI: 10.3390/biom13091360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tyrosinases belong to the type-III copper enzyme family, which is involved in melanin production in a wide range of organisms. Despite similar overall characteristics and functions, their structures, activities, substrate specificities and regulation vary. The tyrosinase from the bacterium Verrucomicrobium spinosum (vsTyr) is produced as a pre-pro-enzyme in which a C-terminal extension serves as an inactivation domain. It does not require a caddie protein for copper ion incorporation, which makes it similar to eukaryotic tyrosinases. To gain an understanding of the catalytic machinery and regulation of vsTyr activity, we determined the structure of the catalytically active "core domain" of vsTyr by X-ray crystallography. The analysis showed that vsTyr is an atypical bacterial tyrosinase not only because it is independent of a caddie protein but also because it shows the highest structural (and sequence) similarity to plant-derived members of the type-III copper enzyme family and is more closely related to fungal tyrosinases regarding active site features. By modelling the structure of the pre-pro-enzyme using AlphaFold, we observed that Phe453, located in the C-terminal extension, is appropriately positioned to function as a "gatekeeper" residue. Our findings raise questions concerning the evolutionary origin of vsTyr.
Collapse
Affiliation(s)
- Mostafa Fekry
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Khyati K. Dave
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - Dilip Badgujar
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - Emil Hamnevik
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | | | - Doreen Dobritzsch
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - U. Helena Danielson
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
- Science for Life Laboratory, Drug Discovery & Development Platform, Uppsala University, SE 751 23 Uppsala, Sweden
| |
Collapse
|
11
|
Ferrelli ML, Pidre ML, García-Domínguez R, Alberca LN, Del Saz-Navarro DM, Santana-Molina C, Devos DP. Prokaryotic membrane coat - like proteins: An update. J Struct Biol 2023; 215:107987. [PMID: 37343709 DOI: 10.1016/j.jsb.2023.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Membrane coat proteins are essential players in the eukaryotic endomembrane traffic system. Previous work identified proteins with the membrane-coat architecture in prokaryotes, specifically in the Planctomycetes, Verrucomicrobia and Chlamydiae (PVC) superphylum, bacteria that display the most developed prokaryotic endomembrane system. Hence, the membrane coat-like (MCL) proteins are predicted to play a central role in this system but their actual function is still unknown. In this work we strengthened previous structure predictions for these prokaryotic MCL proteins. We also detected new putative MCL proteins in the Planctomycete Gemmata obscuriglobus. Structural analysis of these revealed the presence of additional domains apart from the β-propeller and α-solenoid combination, characteristic of the membrane-coat architecture. Functions associated with these domains include some related to carbohydrate or membrane/lipid binding. Using homology-based methods, we found MCL proteins in other bacterial phyla, but the most abundant hits are still restricted to Planctomycetes and Verrucomicrobia. Detailed inspection of neighbouring genes of MCL in G. obscuriglobus supports the idea that the function of these proteins is related to membrane manipulation. No significant hits were found in Archaea, including Asgard archaea. More than 10 years after their original detection, PVC bacteria are still uniquely linked to eukaryotes through the structure of the MCL proteins sustaining their endomembrane system.
Collapse
Affiliation(s)
- M Leticia Ferrelli
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - Matías L Pidre
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - Ruben García-Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - Lucas N Alberca
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - DMaría Del Saz-Navarro
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), 41013 Seville, Spain.
| |
Collapse
|
12
|
Tang Y, Hardy TJ, Yoon JY. Receptor-based detection of microplastics and nanoplastics: Current and future. Biosens Bioelectron 2023; 234:115361. [PMID: 37148803 DOI: 10.1016/j.bios.2023.115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Plastic pollution is an emerging environmental concern, gaining significant attention worldwide. They are classified into microplastics (MP; defined from 1 μm to 5 mm) and smaller nanoplastics (NP; <1 μm). NPs may pose higher ecological risks than MPs. Various microscopic and spectroscopic techniques have been used to detect MPs, and the same methods have occasionally been used for NPs. However, they are not based on receptors, which provide high specificity in most biosensing applications. Receptor-based micro/nanoplastics (MNP) detection can provide high specificity, distinguishing MNPs from the environmental samples and, more importantly, identifying the plastic types. It can also offer a low limit of detection (LOD) required for environmental screening. Such receptors are expected to detect NPs specifically at the molecular level. This review categorizes the receptors into cells, proteins, peptides, fluorescent dyes, polymers, and micro/nanostructures. Detection techniques used with these receptors are also summarized and categorized. There is plenty of room for future research to test for broader classes of environmental samples and many plastic types, to lower the LOD, and to apply the current techniques for NPs. Portable and handheld MNP detection should also be demonstrated for field use since the current demonstrations primarily utilized laboratory instruments. Detection on microfluidic platforms will also be crucial in miniaturizing and automating the assay and, eventually, collecting an extensive database to support machine learning-based classification of MNP types.
Collapse
Affiliation(s)
- Yisha Tang
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Trinity J Hardy
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
13
|
Dharamshi JE, Köstlbacher S, Schön ME, Collingro A, Ettema TJG, Horn M. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat Microbiol 2023; 8:40-54. [PMID: 36604515 PMCID: PMC9816063 DOI: 10.1038/s41564-022-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Chlamydiae is a bacterial phylum composed of obligate animal and protist endosymbionts. However, other members of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum are primarily free living. How Chlamydiae transitioned to an endosymbiotic lifestyle is still largely unresolved. Here we reconstructed Planctomycetes-Verrucomicrobia-Chlamydiae species relationships and modelled superphylum genome evolution. Gene content reconstruction from 11,996 gene families suggests a motile and facultatively anaerobic last common Chlamydiae ancestor that had already gained characteristic endosymbiont genes. Counter to expectations for genome streamlining in strict endosymbionts, we detected substantial gene gain within Chlamydiae. We found that divergence in energy metabolism and aerobiosis observed in extant lineages emerged later during chlamydial evolution. In particular, metabolic and aerobic genes characteristic of the more metabolically versatile protist-infecting chlamydiae were gained, such as respiratory chain complexes. Our results show that metabolic complexity can increase during endosymbiont evolution, adding an additional perspective for understanding symbiont evolutionary trajectories across the tree of life.
Collapse
Affiliation(s)
- Jennah E Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria.
| |
Collapse
|
14
|
Ancient origin and constrained evolution of the division and cell wall gene cluster in Bacteria. Nat Microbiol 2022; 7:2114-2127. [PMID: 36411352 DOI: 10.1038/s41564-022-01257-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
The division and cell wall (dcw) gene cluster in Bacteria comprises 17 genes encoding key steps in peptidoglycan synthesis and cytokinesis. To understand the origin and evolution of this cluster, we analysed its presence in over 1,000 bacterial genomes. We show that the dcw gene cluster is strikingly conserved in both gene content and gene order across all Bacteria and has undergone only a few rearrangements in some phyla, potentially linked to cell envelope specificities, but not directly to cell shape. A large concatenation of the 12 most conserved dcw cluster genes produced a robust tree of Bacteria that is largely consistent with recent phylogenies based on frequently used markers. Moreover, evolutionary divergence analyses show that the dcw gene cluster offers advantages in defining high-rank taxonomic boundaries and indicate at least two main phyla in the Candidate Phyla Radiation (CPR) matching a sharp dichotomy in dcw gene cluster arrangement. Our results place the origin of the dcw gene cluster in the Last Bacterial Common Ancestor and show that it has evolved vertically for billions of years, similar to major cellular machineries such as the ribosome. The strong phylogenetic signal, combined with conserved genomic synteny at large evolutionary distances, makes the dcw gene cluster a robust alternative set of markers to resolve the ever-growing tree of Bacteria.
Collapse
|
15
|
Vitorino IR, Klimek D, Calusinska M, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Stieleria sedimenti sp. nov., a Novel Member of the Family Pirellulaceae with Antimicrobial Activity Isolated in Portugal from Brackish Sediments. Microorganisms 2022; 10:2151. [PMID: 36363743 PMCID: PMC9692418 DOI: 10.3390/microorganisms10112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/23/2023] Open
Abstract
The phylum Planctomycetota is known for having uncommon biological features. Recently, biotechnological applications of its members have started to be explored, namely in the genus Stieleria. Here, we formally describe a novel Stieleriaisolate designated as strain ICT_E10.1T, obtained from sediments collected in the Tagus estuary (Portugal). Strain ICT_E10.1T is pink-pigmented, spherical to ovoid in shape, and 1.7 µm ± 0.3 × 1.4 µm ± 0.3 in size. Cells cluster strongly in aggregates or small chains, divide by budding, and have prominent fimbriae. Strain ICT_E10.1T is heterotrophic and aerobic. Growth occurs from 20 to 30 °C, from 0.5 to 3% (w/v) NaCl, and from pH 6.5 to 11.0. The analysis of the 16S rRNA gene sequence placed strain ICT_E10.1T into the genus Stieleria with Stieleria neptunia Enr13T as the closest validly described relative. The genome size is 9,813,311 bp and the DNA G+C content is 58.8 mol%. Morphological, physiological, and genomic analyses support the separation of this strain into a novel species, for which we propose the name Stieleria sedimenti represented by strain ICT_E10.1T as the type of strain (=CECT 30514T= DSM 113784T). Furthermore, this isolate showed biotechnological potential by displaying relevant biosynthetic gene clusters and potent activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Dominika Klimek
- The Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
- The Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Magdalena Calusinska
- The Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
16
|
Chung JH, Lee JY, Choi GH, Won M, Yeon J, Yoon Y, An SH, Kim DY, Park I, Kim YE, Ahn JH. Horticoccus luteus gen. nov., sp. nov., A Novel Member of the Phylum Verrucomicrobia Isolated from a Dichlorodiphenyltrichloroethane (DDT)-Contaminated Orchard Soil. Curr Microbiol 2022; 79:340. [PMID: 36209171 DOI: 10.1007/s00284-022-03036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Strain KSB-15 T was isolated from an orchard soil that had been contaminated with the insecticide dichlorodiphenyltrichloroethane for about 60 years. The 16S rRNA gene sequence of this strain showed the highest sequence similarities with those of Oleiharenicola alkalitolerans NVTT (95.3%), Opitutus terrae PB90-1 T (94.8%), and Oleiharenicola lentus TWA-58 T (94.7%) among type strains, which are members of the family Opitutaceae within the phylum Verrucomicrobia. Strain KSB-15 T was an obligate aerobe, Gram-negative, non-motile, coccoid or short rod with the cellular dimensions of 0.37-0.62 μm width and 0.43-0.72 μm length. The strain grew at temperatures between 15-37 °C (optimum, 25 °C), at a pH range of 5.0-11.0 (optimum, pH 6.0), and at a NaCl concentration of 0-3% (w/v) (optimum, 0%). It contained menaquinone-7 (MK-7) as the major isoprenoid quinone (94.1%), and iso-C15:0 (34.9%) and anteiso-C15:0 (29.0%) as the two major fatty acids. The genome of strain KSB-15 T was composed of one chromosome with a total size of 4,320,198 bp, a G + C content of 64.3%, 3,393 coding genes (CDS), 14 pseudogenes, and 52 RNA genes. The OrthoANIu values, In silico DDH values and average amino acid identities between strain KSB-15 T and the members of the family Opitutaceae were 71.6 ~ 73.0%, 19.0 ~ 19.9%, and 55.9 ~ 62.0%, respectively. On the basis of our polyphasic taxonomic study, we conclude that strain KSB-15 T should be classified as a novel genus of the family Opitutaceae, for which the name Horticcoccus luteus gen. nov., sp. nov. is proposed.The type strain is KSB-15 T (= KACC 22271 T = DSM 113638 T).
Collapse
Affiliation(s)
- Joon-Hui Chung
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Ja-Yeon Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Geun-Hyung Choi
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Miyoung Won
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Jehyeong Yeon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Younggun Yoon
- College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Si-Hyun An
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Da-Yeon Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - InCheol Park
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Ye-Eun Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Jae-Hyung Ahn
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea.
| |
Collapse
|
17
|
Vitorino IR, Klimek D, Calusinska M, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Rhodopirellula aestuarii sp. nov., a novel member of the genus Rhodopirellula isolated from brackish sediments collected in the Tagus River estuary, Portugal. Syst Appl Microbiol 2022; 45:126360. [PMID: 36166947 DOI: 10.1016/j.syapm.2022.126360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species. 16S rRNA gene accession number: GenBank = OK001858. Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - Dominika Klimek
- Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg; The Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Luxemburg
| | - Magdalena Calusinska
- Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
18
|
Four
Lentisphaerae
Family Metagenome-Assembled Genomes from the South Atlantic Ocean. Microbiol Resour Announc 2022; 11:e0049622. [PMID: 35938833 PMCID: PMC9476954 DOI: 10.1128/mra.00496-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present four Lentisphaerae metagenome-assembled genomes (MAGs) from the South Atlantic Ocean. The medium-quality genomes, affiliated with the family of Lentisphaeraceae, ranged from 4.86 to 5.46 Mbp and harbored the genetic capacity to produce secondary metabolites. This resource provides a basis for investigating the functional attributes of this phylum.
Collapse
|
19
|
Anatilimnocola floriformis sp. nov., a novel member of the family Pirellulaceae from a boreal lake, and emended description of the genus Anatilimnocola. Antonie Van Leeuwenhoek 2022; 115:1253-1264. [DOI: 10.1007/s10482-022-01769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
20
|
Lhingjakim KL, Smita N, Kumar G, Jagadeeshwari U, Ahamad S, Sasikala C, Ramana CV. Paludisphaera rhizosphaereae sp. nov., a new member of the family Isosphaeraceae, isolated from the rhizosphere soil of Erianthus ravennae. Antonie Van Leeuwenhoek 2022; 115:1073-1084. [PMID: 35778640 DOI: 10.1007/s10482-022-01758-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Two axenic cultures of Planctomycetota were isolated from distinct geographical locations of India. Strain JC665T was isolated from a rhizosphere soil of Loktak lake, Manipur, whereas strain JC747 was isolated from a soil sediment at Pallikkara village, Kerala, India. The two closely related strains shared the highest 16S rRNA gene sequence identity (94.6%) with Paludisphaera borealis PX4T, while the 16S rRNA gene sequence identity between both strains was 100%. Both strains grow aerobically, stain Gram negative, colonies are light pink-coloured, cells are non-motile, spherical to oval-shaped and tolerate NaCl up to 2% (w/v). While strain JC665T grows well up to pH 9.0, strain JC747 grows only up to pH 8.0. The respiratory quinone in both strains is MK-6. C16:0, C18:1ω9c and C18:0 are the major fatty acids. Phosphatidylcholine, two unidentified glycolipids, seven unidentified lipids and two unidentified phospholipids made up the polar lipid composition of both strains. Both strains have genome sizes of about 8.0 Mb and a DNA G + C content of 66.4 mol%. Both strains contain genes coding for enzymes putatively involved in the production of lycopene-related carotenoids. The phylogenetic position together with the results of the analysis of morphological, physiological and genomic features support the classification of strain JC665T as a new species of the genus Paludisphaera, for which we propose the name Paludisphaera rhizosphaerae sp. nov. Strain JC665T (= KCTC 72671 T = NBRC 114305 T) and JC747 are the type and non-type strain of the new species, respectively.
Collapse
Affiliation(s)
- Khongsai L Lhingjakim
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Nandardhane Smita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Gaurav Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India.,Department of Microbiology, School of Sciences, ITM (SLS) Baroda University, Halol, Vadodara, Gujarat, 391510, India
| | - Uppada Jagadeeshwari
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad, 500085, India
| | - Shabbir Ahamad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad, 500085, India.
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, India.
| |
Collapse
|
21
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Vicente F, Lage OM. Isolation, diversity and antimicrobial activity of planctomycetes from the Tejo river estuary (Portugal). FEMS Microbiol Ecol 2022; 98:6609431. [PMID: 35709427 DOI: 10.1093/femsec/fiac066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The discovery of new bioactive compounds is an invaluable aid to the development of new drugs. Strategies for finding novel molecules can focus on the exploitation of less studied organisms and ecosystems such as planctomycetes and brackish habitats. The unique cell biology of the underexplored Planctomycetota mean it is of particular interest. In this study, we aimed to isolate planctomycetes from the estuary of the Tejo river (Portugal). To reach this goal, macroalgae, water and sediments were sampled and diverse media and isolation techniques applied. Sixty-nine planctomycetal strains were brought into pure culture. An analysis of the 16S rRNA genes found that the majority of the isolates were affiliated to the genus Rhodopirellula. Putative novel taxa belonging to genera Stieleria and Rhodopirellula were also isolated and characterized morphologically. Enterobacterial Repetitive Intergenic Consensus fingerprinting analyses showed higher diversity and different genotypes within close strains. Relevant biosynthetic gene clusters were found in most isolates and acetone extracts from representative strains exhibited mild antimicrobial activities against Escherichia coli and Staphylococcus aureus. Our work has not only enlarged the number and diversity of cultured planctomycetes but also shown the potential for the discovery of bioactive compounds from the novel taxa.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
22
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Rubinisphaera margarita sp. nov., a novel planctomycete isolated from marine sediments collected in the Portuguese north coast. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phylum
Planctomycetota
is constituted by bacteria with unique features that are well adapted to a vast range of habitats. Here, we describe a novel planctomycete isolated from marine sediments collected on a beach in Matosinhos (Portugal) using an iChip-based culturing technique. Strain ICM_H10T forms beige-coloured colonies in modified M14 medium and its cells are spherical to ovoid in shape, stalked, rosette-forming and showing motility in a phase of the life cycle. Transmission electron microscopy observations showed a typical planctomycetal cell plan and cell division by budding. This strain requires salt for growth and grows in the range of 2.0–5.0 % (w/v) NaCl, from 20 to 37 °C, within a pH of 6.0–9.0 and is able to use diverse nitrogen and carbon sources. It is heterotrophic, aerobic and capable of microaerobic growth. This strain has a genome size of approximately 6.0 Mb and a G+C content of 58.1 mol%. A 16S rRNA gene-based phylogenetic analysis supports the association of strain ICM_H10T to the phylum
Planctomycetota
and the family
Planctomycetaceae
, as it shares only 96.8 and 96.4% similarity to its closest relatives
Rubinisphaera italica
Pan54T and
Rubinisphaera brasiliensis
IFAM 1448T, respectively. Other phylogenetic markers also support the separation of this strain into a novel species. Morphological, physiological and genomic comparisons between strain ICM_H10T and its closest relatives strongly suggest that ICM_H10T represents a new species of the genus
Rubinisphaera
, for which we propose the name Rubinisphaera margarita sp. nov., with ICM_H10T (=CECT 30326T=LMG 32234T) as type strain.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Olga Maria Lage
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
23
|
Lodha T, Narvekar S, Karodi P. Classification of uncultivated anammox bacteria and Candidatus Uabimicrobium into new classes and provisional nomenclature as Candidatus Brocadiia classis nov. and Candidatus Uabimicrobiia classis nov. of the phylum Planctomycetes and novel family Candidatus Scalinduaceae fam. nov to accommodate the genus Candidatus Scalindua. Syst Appl Microbiol 2021; 44:126272. [PMID: 34735804 DOI: 10.1016/j.syapm.2021.126272] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
The phylum Planctomycetes is metabolically unique group of bacteria divided in two classes Planctomycetia and Phycisphaerae. Anaerobic ammonia-oxidizing (anammox) bacteria are the uncultured representatives of the phylum Planctomycetes. Anammox bacterial genera are placed in the family Candidatus (Ca.) Brocadiaceae of the order Ca. Brocadiales, assigned to the class Planctomycetia. Phylogenetic analysis, showed that the anammox bacteria and Ca. Uabimicrobium form a divergent clade from the rest of the cultured representatives of the phylum Planctomycetes. The phylogenetic study, pairwise distance and Average Amino acid Identity (AAI) showed that anammox bacteria don't belong to the classes Planctomycetia and Phycisphaerae. Anammox bacteria and Ca. Uabimicrobium form a deep-branching third clade in the phylogenetic analysis indicating that it is the most ancient third class within the phylum Planctomycetes. Phenotypic characters also separate anammox bacteria from classes Planctomycetia and Phycisphaerae. Therefore, based on phenotypic, phylogenetic, pairwise distance, AAI and phylogenomic analysis we propose a novel class Ca. Brocadiia to accommodate the order Ca. Brocadiales of anammox bacteria except Ca. Anammoximicrobium. Genera Ca. Jettenia, Ca. Anammoxoglobus, Ca. Kuenenia and Ca. Brocadia show their phylogenetic affiliation to the family Ca. Brocadiaceae. However, Ca. Scalindua showed a distant relationship with the family Ca. Brocadiaceae. Therefore, we suggest the exclusion of the genus Ca. Scalindua from the family Ca. Brocadiaceae; and propose its inclusion under a novel family with a provisional name as Ca. Scalinduaceae fam. nov. Similarly, Ca. Uabimicrobium amporphum showed distinct phylogenetic affiliation, therefore we propose a novel class Ca. Uabimicrobiia classis nov. to accommodate the genus Ca. Uabimicrobium.
Collapse
Affiliation(s)
- Tushar Lodha
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411021, India.
| | - Simran Narvekar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411021, India
| | - Prachi Karodi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411021, India
| |
Collapse
|
24
|
Kallscheuer N, Jogler C. The bacterial phylum Planctomycetes as novel source for bioactive small molecules. Biotechnol Adv 2021; 53:107818. [PMID: 34537319 DOI: 10.1016/j.biotechadv.2021.107818] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Extensive knowledge and methodological expertise on the bacterial cell biology have been accumulated over the last decades and bacterial cells have now become an integral part of several (bio-)technological processes. While it appears reasonable to focus on a relatively small number of fast-growing and genetically easily manipulable model bacteria as biotechnological workhorses, the for the most part untapped diversity of bacteria needs to be explored when it comes to bioprospecting for natural product discovery. Members of the underexplored and evolutionarily deep-branching phylum Planctomycetes have only recently gained increased attention with respect to the production of small molecules with biomedical activities, e.g. as a natural source of novel antibiotics. Next-generation sequencing and metagenomics can provide access to the genomes of uncultivated bacteria from sparsely studied phyla, this, however, should be regarded as an addition rather than a substitute for classical strain isolation approaches. Ten years ago, a large sampling campaign was initiated to isolate planctomycetes from their varied natural habitats and protocols were developed to address complications during cultivation of representative species in the laboratory. The characterisation of approximately 90 novel strains by several research groups in the recent years opened a detailed in silico look into the coding potential of individual members of this phylum. Here, we review the current state of planctomycetal research, focusing on diversity, small molecule production and potential future applications. Although the field developed promising, the time frame of 10 years illustrates that the study of additional promising bacterial phyla as sources for novel small molecules needs to start rather today than tomorrow.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany; Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
25
|
Devos DP. Reconciling Asgardarchaeota Phylogenetic Proximity to Eukaryotes and Planctomycetes Cellular Features in the Evolution of Life. Mol Biol Evol 2021; 38:3531-3542. [PMID: 34229349 PMCID: PMC8382908 DOI: 10.1093/molbev/msab186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The relationship between the three domains of life—Archaea, Bacteria, and Eukarya—is one of Biology’s greatest mysteries. Current favored models imply two ancestral domains, Bacteria and Archaea, with eukaryotes originating within Archaea. This type of models has been supported by the recent description of the Asgardarchaeota, the closest prokaryotic relatives of eukaryotes. However, there are many problems associated with any scenarios implying that eukaryotes originated from within the Archaea, including genome mosaicism, phylogenies, the cellular organization of the Archaea, and their ancestral character. By contrast, all models of eukaryogenesis fail to consider two relevant discoveries: the detection of membrane coat proteins, and of phagocytosis-related processes in Planctomycetes, which are among the bacteria with the most developed endomembrane system. Consideration of these often overlooked features and others found in Planctomycetes and related bacteria suggest an evolutionary model based on a single ancestral domain. In this model, the proximity of Asgard and eukaryotes is not rejected but instead, Asgard are considered as diverging away from a common ancestor instead of on the way toward the eukaryotic ancestor. This model based on a single ancestral domain solves most of the ambiguities associated with the ones based on two ancestral domains. The single-domain model is better suited to explain the origin and evolution of all three domains of life, blurring the distinctions between them. Support for this model as well as the opportunities that it presents not only for reinterpreting previous results, but also for planning future experiments, are explored.
Collapse
Affiliation(s)
- Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD) - CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Seville, 41013, Spain
| |
Collapse
|
26
|
Köstlbacher S, Collingro A, Halter T, Schulz F, Jungbluth SP, Horn M. Pangenomics reveals alternative environmental lifestyles among chlamydiae. Nat Commun 2021; 12:4021. [PMID: 34188040 PMCID: PMC8242063 DOI: 10.1038/s41467-021-24294-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Chlamydiae are highly successful strictly intracellular bacteria associated with diverse eukaryotic hosts. Here we analyzed metagenome-assembled genomes of the "Genomes from Earth's Microbiomes" initiative from diverse environmental samples, which almost double the known phylogenetic diversity of the phylum and facilitate a highly resolved view at the chlamydial pangenome. Chlamydiae are defined by a relatively large core genome indicative of an intracellular lifestyle, and a highly dynamic accessory genome of environmental lineages. We observe chlamydial lineages that encode enzymes of the reductive tricarboxylic acid cycle and for light-driven ATP synthesis. We show a widespread potential for anaerobic energy generation through pyruvate fermentation or the arginine deiminase pathway, and we add lineages capable of molecular hydrogen production. Genome-informed analysis of environmental distribution revealed lineage-specific niches and a high abundance of chlamydiae in some habitats. Together, our data provide an extended perspective of the variability of chlamydial biology and the ecology of this phylum of intracellular microbes.
Collapse
Affiliation(s)
- Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Tamara Halter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | | | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
"Candidatus Laterigemmans baculatus" gen. nov. sp. nov., the first representative of rod shaped planctomycetes with lateral budding in the family Pirellulaceae. Syst Appl Microbiol 2021; 44:126188. [PMID: 33647766 DOI: 10.1016/j.syapm.2021.126188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 01/27/2023]
Abstract
Two axenic cultures of Planctomycetes were isolated from distinct geographical regions of the east coast of India. The two closely related strains (JC640 and CH01) showed <93.3% 16S rRNA gene sequence identity with members of the genus Roseimaritima followed by Rhodopirellula (<91%). Both strains displayed non-canonical cell morphology of Planctomycetes, such as rod shaped cells with division by lateral budding. Both strains showed crateriform structures on their surfaces and cells lack fimbriae. The genomes have a size of about 5.76 Mb and DNA G+C content of 63.6mol%. Phylogenetic analysis based on 16S rRNA gene sequence and 92 core genes based RAxML phylogenetic tree place both the strains in the family Pirellulaceae and indicated Roseimaritima sediminicola as their closest relative. The AAI and POCP values differentiate both strains from rest of the members of the family Pirellulaceae. The axenic cultures of both strains were able to grow up to 8-10 passages and subsequently the cells became non-viable with pleomorphic shapes. Supported by genomic, phylogenetic and morphological differences, we conclude that both strains belong to a novel genus. However, since the new isolates lost their viability on passaging, we propose the novel genus as "Candidatus Laterigemmans" gen. nov. and the novel species as "Candidatus Laterigemmans baculatus" sp. nov.
Collapse
|
28
|
Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MSM, Boedeker C, Rohde M, Jogler C. Lignipirellula cremea gen. nov., sp. nov., a planctomycete isolated from wood particles in a brackish river estuary. Antonie Van Leeuwenhoek 2020; 113:1863-1875. [PMID: 32239303 PMCID: PMC7717058 DOI: 10.1007/s10482-020-01407-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023]
Abstract
A novel planctomycetal strain, designated Pla85_3_4T, was isolated from the surface of wood incubated at the discharge of a wastewater treatment plant in the Warnow river near Rostock, Germany. Cells of the novel strain have a cell envelope architecture resembling that of Gram-negative bacteria, are round to pear-shaped (length: 2.2 ± 0.4 µm, width: 1.2 ± 0.3 µm), form aggregates and divide by polar budding. Colonies have a cream colour. Strain Pla85_3_4T grows at ranges of 10-30 °C (optimum 26 °C) and at pH 6.5-10.0 (optimum 7.5), and has a doubling time of 26 h. Phylogenetically, strain Pla85_3_4T (DSM 103796T = LMG 29741T) is concluded to represent a novel species of a novel genus within the family Pirellulaceae, for which we propose the name Lignipirellula cremea gen. nov., sp. nov.
Collapse
Affiliation(s)
- Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Brunswick, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
29
|
Rivas-Marin E, Wiegand S, Kallscheuer N, Jogler M, Peeters SH, Heuer A, Jetten MSM, Boedeker C, Rohde M, Devos DP, Jogler C. Thalassoglobus polymorphus sp. nov., a novel Planctomycete isolated close to a public beach of Mallorca Island. Antonie Van Leeuwenhoek 2020; 113:1915-1926. [PMID: 32583191 PMCID: PMC7716918 DOI: 10.1007/s10482-020-01437-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Access to axenic cultures is crucial to extend the knowledge of the biology, lifestyle or metabolic capabilities of bacteria from different phyla. The phylum Planctomycetes is an excellent example since its members display an unusual cell biology and complex lifestyles. As a contribution to the current collection of axenic planctomycete cultures, here we describe strain Mal48T isolated from phytoplankton material sampled at the coast of S'Arenal close to Palma de Mallorca (Spain). The isolated strain shows optimal growth at pH 7.0-7.5 and 30 °C and exhibits typical features of Planctomycetes. Cells of the strain are spherical to pear-shaped, divide by polar budding with daughter cells showing the same shape as the mother cell, tend to aggregate, display a stalk and produce matrix or fimbriae. Strain Mal48T showed 95.8% 16S rRNA gene sequence similarity with the recently described Thalassoglobus neptunius KOR42T. The genome sequence of the novel isolate has a size of 6,357,355 bp with a G+C content of 50.3%. A total of 4874 protein-coding genes, 41 tRNA genes and 2 copies of the 16S rRNA gene are encoded in the genome. Based on phylogenetic, morphological and physiological analyses, we conclude that strain Mal48T (= DSM 100737T = LMG 29019T) should be classified as the type strain of a new species in the genus Thalassoglobus, for which the name Thalassoglobus polymorphus sp. nov. is proposed.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Christian Jogler
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Friedrich-Schiller University, Jena, Germany.
| |
Collapse
|
30
|
Salbreiter M, Waqqas M, Jogler M, Kallscheuer N, Wiegand S, Peeters SH, Heuer A, Jetten MSM, Boedeker C, Rast P, Rohde M, Jogler C. Three Planctomycetes isolated from biotic surfaces in the Mediterranean Sea and the Pacific Ocean constitute the novel species Symmachiella dynata gen. nov., sp. nov. and Symmachiella macrocystis sp. nov. Antonie Van Leeuwenhoek 2020; 113:1965-1977. [PMID: 32833165 PMCID: PMC7716862 DOI: 10.1007/s10482-020-01464-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Planctomycetes is a phylum of environmentally important bacteria, which also receive significant attention due to their fascinating cell biology. Access to axenic Planctomycete cultures is crucial to study cell biological features within this phylum in further detail. In this study, we characterise three novel strains, Mal52T, Pan258 and CA54T, which were isolated close to the coasts of the islands Mallorca (Spain) and Panarea (Italy), and from Monterey Bay, CA, USA. The three isolates show optimal growth at temperatures between 22 and 24 °C and at pH 7.5, divide by polar budding, lack pigmentation and form strong aggregates in liquid culture. Analysis of five phylogenetic markers suggests that the strains constitute two novel species within a novel genus in the family Planctomycetaceae. The strains Mal52T (DSM 101177T = VKM B-3432T) and Pan258 were assigned to the species Symmachiella dynata gen nov., sp. nov., while strain CA54T (DSM 104301T = VKM B-3450T) forms a separate species of the same genus, for which we propose the name Symmachiella macrocystis sp. nov.
Collapse
Affiliation(s)
- Markus Salbreiter
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany
| | - Muhammad Waqqas
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany
| | | | - Sandra Wiegand
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein- Leopoldshafen, Germany
| | - Stijn H Peeters
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands
| | | | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Friedrich-Schiller-University, Jena, Germany.
- Department of Microbiology, Radboud Universiteit, Nijmegen, The Netherlands.
| |
Collapse
|
31
|
Bringing the diversity of Planctomycetes into the light: Introduction to papers from the special issue on novel taxa of Planctomycetes. Antonie van Leeuwenhoek 2020; 113:1715-1726. [PMID: 33258053 DOI: 10.1007/s10482-020-01499-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
|
32
|
Collingro A, Köstlbacher S, Horn M. Chlamydiae in the Environment. Trends Microbiol 2020; 28:877-888. [PMID: 32591108 DOI: 10.1016/j.tim.2020.05.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Chlamydiae have been known for more than a century as major pathogens of humans. Yet they are also found ubiquitously in the environment where they thrive within protists and in an unmatched wide range of animals. This review summarizes recent advances in understanding chlamydial diversity and distribution in nature. Studying these environmental chlamydiae provides a novel perspective on basic chlamydial biology and evolution. A picture is beginning to emerge with chlamydiae representing one of the evolutionarily most ancient and successful groups of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Sousi M, Liu G, Salinas-Rodriguez SG, Chen L, Dusseldorp J, Wessels P, Schippers JC, Kennedy MD, van der Meer W. Multi-parametric assessment of biological stability of drinking water produced from groundwater: Reverse osmosis vs. conventional treatment. WATER RESEARCH 2020; 186:116317. [PMID: 32841931 DOI: 10.1016/j.watres.2020.116317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Although water produced by reverse osmosis (RO) filtration has low bacterial growth potential (BGP), post-treatment of RO permeate, which is necessary prior to distribution and human consumption, needs to be examined because of the potential re-introduction of nutrients/contaminants. In this study, drinking water produced from anaerobic groundwater by RO and post-treatment (ion exchange, calcite contactors, and aeration) was compared with that produced by conventional treatment comprising (dry) sand filtration, pellet softening, rapid sand filtration, activated carbon filtration, and UV disinfection. The multi-parametric assessment of biological stability included bacterial quantification, nutrient concentration and composition as well as bacterial community composition and diversity. Results showed that RO permeate remineralised in the laboratory has an extremely low BGP (50 ± 12 × 103 ICC/mL), which increased to 130 ± 10 × 103 ICC/mL after site post-treatment. Despite the negative impact of post-treatment, the BGP of the finished RO-treated water was >75% lower than that of conventionally treated water. Organic carbon limited bacterial growth in both RO-treated and conventionally treated waters. The increased BGP in RO-treated water was caused by the re-introduction of nutrients during post-treatment. Similarly, OTUs introduced during post-treatment, assigned to the phyla of Proteobacteria and Bacteroidetes (75-85%), were not present in the source groundwater. Conversely, conventionally treated water shared some OTUs with the source groundwater. It is clear that RO-based treatment achieved an extremely low BGP, which can be further improved by optimising post-treatment, such as using high purity calcite. The multi-parametric approach adopted in this study can offer insights into growth characteristics including limiting nutrients (why) and dominating genera growing (who), which is essential to manage microbiological water quality in water treatment and distribution systems.
Collapse
Affiliation(s)
- Mohaned Sousi
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, AX Delft 2611, the Netherlands; Faculty of Science and Technology, University of Twente, Drienerlolaan 5, NB Enschede 7522, the Netherlands
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Department of Water Management, Faculty of Civil Engineering and Geoscience, Delft University of Technology, Mekelweg 2, CD Delft 2628, the Netherlands.
| | - Sergio G Salinas-Rodriguez
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, AX Delft 2611, the Netherlands
| | - Lihua Chen
- Department of Water Management, Faculty of Civil Engineering and Geoscience, Delft University of Technology, Mekelweg 2, CD Delft 2628, the Netherlands
| | - Jos Dusseldorp
- Oasen Drinkwater, Nieuwe Gouwe O.Z. 3, SB Gouda 2801, the Netherlands
| | - Peter Wessels
- Oasen Drinkwater, Nieuwe Gouwe O.Z. 3, SB Gouda 2801, the Netherlands
| | - Jan C Schippers
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, AX Delft 2611, the Netherlands
| | - Maria D Kennedy
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, Westvest 7, AX Delft 2611, the Netherlands; Department of Water Management, Faculty of Civil Engineering and Geoscience, Delft University of Technology, Mekelweg 2, CD Delft 2628, the Netherlands
| | - Walter van der Meer
- Faculty of Science and Technology, University of Twente, Drienerlolaan 5, NB Enschede 7522, the Netherlands; Oasen Drinkwater, Nieuwe Gouwe O.Z. 3, SB Gouda 2801, the Netherlands
| |
Collapse
|
34
|
Stieleria varia sp. nov., isolated from wood particles in the Baltic Sea, constitutes a novel species in the family Pirellulaceae within the phylum Planctomycetes. Antonie van Leeuwenhoek 2020; 113:1953-1963. [PMID: 32797359 PMCID: PMC7717043 DOI: 10.1007/s10482-020-01456-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Species belonging to the bacterial phylum Planctomycetes are ubiquitous members of the microbial communities in aquatic environments and are frequently isolated from various biotic and abiotic surfaces in marine and limnic water bodies. Planctomycetes have large genomes of up to 12.4 Mb, follow complex lifestyles and display an uncommon cell biology; features which motivate the investigation of members of this phylum in greater detail. As a contribution to the current collection of axenic cultures of Planctomycetes, we here describe strain Pla52T isolated from wood particles in the Baltic Sea. Phylogenetic analysis places the strain in the family Pirellulaceae and suggests two species of the recently described genus Stieleria as current closest neighbours. Strain Pla52nT shows typical features of members of the class Planctomycetia, including division by polar budding and the presence of crateriform structures. Colonies of strain Pla52nT have a light orange colour, which is an unusual pigmentation compared to the majority of members in the phylum, which show either a pink to red pigmentation or entirely lack pigmentation. Optimal growth of strain Pla52nT at 33 °C and pH 7.5 indicates a mesophilic (i.e. with optimal growth between 20 and 45 °C) and neutrophilic growth profile. The strain is an aerobic heterotroph with motile daughter cells. Its genome has a size of 9.6 Mb and a G + C content of 56.0%. Polyphasic analyses justify delineation of the strain from described species within the genus Stieleria. Therefore, we conclude that strain Pla52nT = LMG 29463T = VKM B-3447T should be classified as the type strain of a novel species, for which we propose the name Stieleria varia sp. nov.
Collapse
|
35
|
Caulifigura coniformis gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from a red biofilm sampled in a hydrothermal area. Antonie van Leeuwenhoek 2020; 113:1927-1937. [PMID: 32583190 PMCID: PMC7717036 DOI: 10.1007/s10482-020-01439-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Pan44T, a novel strain belonging to the phylum Planctomycetes, was isolated from a red biofilm in a hydrothermal area close to the island Panarea in the Tyrrhenian Sea north of Sicily, Italy. The strain forms white colonies on solid medium and displays the following characteristics: cell division by budding, formation of rosettes, presence of matrix or fimbriae and long stalks. The cell surface has an interesting and characteristic texture made up of triangles and rectangles, which leads to a pine cone-like morphology of the strain. Strain Pan44T is mesophilic (temperature optimum 26 °C), slightly alkaliphilic (pH optimum 8.0), aerobic and heterotrophic. The strain has a genome size of 6.76 Mb with a G + C content of 63.2%. Phylogenetically, the strain is a member of the family Planctomycetaceae, order Planctomycetales, class Planctomycetia. Our analysis supports delineation of strain Pan44T from all known genera in this family, hence, we propose to assign it to a novel species within a novel genus, for which we propose the name Caulifigura coniformis gen. nov., sp. nov., represented by Pan44T (DSM 29405T = LMG 29788T) as the type strain.
Collapse
|
36
|
Rivas-Marin E, Peeters SH, Claret Fernández L, Jogler C, van Niftrik L, Wiegand S, Devos DP. Non-essentiality of canonical cell division genes in the planctomycete Planctopirus limnophila. Sci Rep 2020; 10:66. [PMID: 31919386 PMCID: PMC6952346 DOI: 10.1038/s41598-019-56978-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Most bacteria divide by binary fission using an FtsZ-based mechanism that relies on a multi-protein complex, the divisome. In the majority of non-spherical bacteria another multi-protein complex, the elongasome, is also required for the maintenance of cell shape. Components of these multi-protein assemblies are conserved and essential in most bacteria. Here, we provide evidence that at least three proteins of these two complexes are not essential in the FtsZ-less ovoid planctomycete bacterium Planctopirus limnophila which divides by budding. We attempted to construct P. limnophila knock-out mutants of the genes coding for the divisome proteins FtsI, FtsK, FtsW and the elongasome protein MreB. Surprisingly, ftsI, ftsW and mreB could be deleted without affecting the growth rate. On the other hand, the conserved ftsK appeared to be essential in this bacterium. In conclusion, the canonical bacterial cell division machinery is not essential in P. limnophila and this bacterium divides via budding using an unknown mechanism.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Stijn H Peeters
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Laura Claret Fernández
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain.,Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Christian Jogler
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands.,Institute of Microbiology, Department of Microbial Interactions, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Laura van Niftrik
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain.
| |
Collapse
|
37
|
Pillonel T, Tagini F, Bertelli C, Greub G. ChlamDB: a comparative genomics database of the phylum Chlamydiae and other members of the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum. Nucleic Acids Res 2020; 48:D526-D534. [PMID: 31665454 PMCID: PMC7145651 DOI: 10.1093/nar/gkz924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023] Open
Abstract
ChlamDB is a comparative genomics database containing 277 genomes covering the entire Chlamydiae phylum as well as their closest relatives belonging to the Planctomycetes-Verrucomicrobiae-Chlamydiae (PVC) superphylum. Genomes can be compared, analyzed and retrieved using accessions numbers of the most widely used databases including COG, KEGG ortholog, KEGG pathway, KEGG module, Pfam and InterPro. Gene annotations from multiple databases including UniProt (curated and automated protein annotations), KEGG (annotation of pathways), COG (orthology), TCDB (transporters), STRING (protein-protein interactions) and InterPro (domains and signatures) can be accessed in a comprehensive overview page. Candidate effectors of the Type III secretion system (T3SS) were identified using four in silico methods. The identification of orthologs among all PVC genomes allows users to perform large-scale comparative analyses and to identify orthologs of any protein in all genomes integrated in the database. Phylogenetic relationships of PVC proteins and their closest homologs in RefSeq, comparison of transmembrane domains and Pfam domains, conservation of gene neighborhood and taxonomic profiles can be visualized using dynamically generated graphs, available for download. As a central resource for researchers working on chlamydia, chlamydia-related bacteria, verrucomicrobia and planctomyces, ChlamDB facilitates the access to comprehensive annotations, integrates multiple tools for comparative genomic analyses and is freely available at https://chlamdb.ch/. Database URL: https://chlamdb.ch/.
Collapse
Affiliation(s)
- Trestan Pillonel
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland
| | - Florian Tagini
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Bugnon 48, 1011 Lausanne, Switzerland
| |
Collapse
|
38
|
Dedysh SN, Ivanova AA. Planctomycetes in boreal and subarctic wetlands: diversity patterns and potential ecological functions. FEMS Microbiol Ecol 2019; 95:5195516. [PMID: 30476049 DOI: 10.1093/femsec/fiy227] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022] Open
Abstract
Members of the phylum Planctomycetes are common inhabitants of boreal Sphagnum peat bogs and lichen-dominated tundra wetlands. These bacteria colonize both oxic and anoxic peat layers and reach the population size of 107 cells per gram of wet peat. The 16S rRNA gene sequences from planctomycetes comprise 5%-22% of total 16S rRNA gene reads retrieved from peat samples. Most abundant peat-inhabiting planctomycetes affiliate with the families Isosphaeraceae and Gemmataceae, and with as-yet-uncultured Phycisphaera-related group WD2101. The use of metatranscriptomics to assess the functional role of planctomycetes in peatlands suggested the presence of versatile hydrolytic capabilities in these bacteria. This evidence was further confirmed by the analysis of genome-encoded capabilities of isolates from wetlands. Large (up to 12 Mbp) genomes of planctomycetes encode wide repertoires of carbohydrate-active enzymes including many unclassified putative glycoside hydrolases, which suggests the presence of extremely high glycolytic potential in these bacteria. Experimental tests confirmed their ability to grow on xylan, pectin, starch, lichenan, cellulose, chitin and polysaccharides of microbial origin. These results provide an insight into the ecological roles of peat-inhabiting planctomycetes and suggest their participation in degradation of plant-derived polymers, exoskeletons of peat-inhabiting arthropods as well as exopolysaccharides produced by other bacteria.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Leninsky prospect 33-2, Russia
| | - Anastasia A Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Leninsky prospect 33-2, Russia
| |
Collapse
|
39
|
Jogler C, Wiegand S, Devos DP. Commentary: Manifold Routes to a Nucleus. Front Microbiol 2019; 10:1198. [PMID: 31214141 PMCID: PMC6554331 DOI: 10.3389/fmicb.2019.01198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Christian Jogler
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Sandra Wiegand
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| |
Collapse
|
40
|
Antibiotic susceptibility of marine Planctomycetes. Antonie van Leeuwenhoek 2019; 112:1273-1280. [DOI: 10.1007/s10482-019-01259-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
41
|
Naumoff DG, Dedysh SN. Bacteria from Poorly Studied Phyla as a Potential Source of New Enzymes: β-Galactosidases from Planctomycetes and Verrucomicrobia. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Bordin N, González-Sánchez JC, Devos DP. PVCbase: an integrated web resource for the PVC bacterial proteomes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4985508. [PMID: 29718141 PMCID: PMC5915940 DOI: 10.1093/database/bay042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/05/2018] [Indexed: 11/13/2022]
Abstract
Interest in the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum is growing within the microbiology community. These organisms do not have a specialized web resource that gathers in silico predictions in an integrated fashion. Hence, we are providing the PVC community with PVCbase, a specialized web resource that gathers in silico predictions in an integrated fashion. PVCbase integrates protein function annotations obtained through sequence analysis and tertiary structure prediction for 39 representative PVC proteomes (PVCdb), a protein feature visualizer (Foundation) and a custom BLAST webserver (PVCBlast) that allows to retrieve the annotation of a hit directly from the DataTables. We display results from various predictors, encompassing most functional aspects, allowing users to have a more comprehensive overview of protein identities. Additionally, we illustrate how the application of PVCdb can be used to address biological questions from raw data. Database URL: PVCbase is freely accessible at www.pvcbacteria.org/pvcbase
Collapse
Affiliation(s)
- Nicola Bordin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, Seville 41013, Spain
| | - Juan Carlos González-Sánchez
- CellNetworks, BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, Seville 41013, Spain
| |
Collapse
|
43
|
Wiegand S, Jogler M, Jogler C. On the maverick Planctomycetes. FEMS Microbiol Rev 2018; 42:739-760. [DOI: 10.1093/femsre/fuy029] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Mareike Jogler
- Leibniz Institute DSMZ, Inhoffenstraße 7b, 38124 Braunschweig, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Lage OM, Devos DP. Introduction to papers from the third meeting on the Planctomycetes-Verrucomicrobia-Chlamydiae bacteria: new model organisms in the omics era. Antonie van Leeuwenhoek 2018; 111:783-784. [DOI: 10.1007/s10482-018-1089-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
|