1
|
Konecka E, Szymkowiak P. Wolbachia supergroup A in Enoplognatha latimana (Araneae: Theridiidae) in Poland as an example of possible horizontal transfer of bacteria. Sci Rep 2024; 14:7486. [PMID: 38553514 PMCID: PMC10980700 DOI: 10.1038/s41598-024-57701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Wolbachia (phylum Pseudomonadota, class Alfaproteobacteria, order Rickettsiales, family Ehrlichiaceae) is a maternally inherited bacterial symbiont infecting more than half of arthropod species worldwide and constituting an important force in the evolution, biology, and ecology of invertebrate hosts. Our study contributes to the limited knowledge regarding the presence of intracellular symbiotic bacteria in spiders. Specifically, we investigated the occurrence of Wolbachia infection in the spider species Enoplognatha latimana Hippa and Oksala, 1982 (Araneae: Theridiidae) using a sample collected in north-western Poland. To the best of our knowledge, this is the first report of Wolbachia infection in E. latimana. A phylogeny based on the sequence analysis of multiple genes, including 16S rRNA, coxA, fbpA, ftsZ, gatB, gltA, groEL, hcpA, and wsp revealed that Wolbachia from the spider represented supergroup A and was related to bacterial endosymbionts discovered in other spider hosts, as well as insects of the orders Diptera and Hymenoptera. A sequence unique for Wolbachia supergroup A was detected for the ftsZ gene. The sequences of Wolbachia housekeeping genes have been deposited in publicly available databases and are an important source of molecular data for comparative studies. The etiology of Wolbachia infection in E. latimana is discussed.
Collapse
Affiliation(s)
- Edyta Konecka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Paweł Szymkowiak
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
2
|
Lamichhane B, Brockway C, Evasco K, Nicholson J, Neville PJ, Levy A, Smith D, Imrie A. Metatranscriptomic Sequencing of Medically Important Mosquitoes Reveals Extensive Diversity of RNA Viruses and Other Microbial Communities in Western Australia. Pathogens 2024; 13:107. [PMID: 38392845 PMCID: PMC10892203 DOI: 10.3390/pathogens13020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Mosquitoes harbor a wide diversity of microorganisms, including viruses that are human pathogens, or that are insect specific. We used metatranscriptomics, an unbiased high-throughput molecular approach, to describe the composition of viral and other microbial communities in six medically important mosquito species from across Western Australia: Aedes vigilax, Culex annulirostris, Cx. australicus, Cx. globocoxitus, Cx. pipiens biotype molestus, and Cx. quinquefasciatus. We identified 42 viral species, including 13 novel viruses, from 19 families. Culex mosquitoes exhibited a significantly higher diversity of viruses than Aedes mosquitoes, and no virus was shared between the two genera. Comparison of mosquito populations revealed a heterogenous distribution of viruses between geographical regions and between closely related species, suggesting that geography and host species may play a role in shaping virome composition. We also detected bacterial and parasitic microorganisms, among which Wolbachia bacteria were detected in three members of the Cx. pipiens complex, Cx. australicus, Cx. pipiens biotype molestus, and Cx. quinquefasciatus. In summary, our unbiased metatranscriptomics approach provides important insights into viral and other microbial diversity in Western Australian mosquitoes that vector medically important viruses.
Collapse
Affiliation(s)
- Binit Lamichhane
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Craig Brockway
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Kimberly Evasco
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Jay Nicholson
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Peter J. Neville
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Avram Levy
- PathWest Laboratory Medicine, Nedlands, WA 6009, Australia; (A.L.); (D.S.)
| | - David Smith
- PathWest Laboratory Medicine, Nedlands, WA 6009, Australia; (A.L.); (D.S.)
- UWA Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Allison Imrie
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| |
Collapse
|
3
|
Nzelu CO, Meneses C, Bowhay C, Coutinho-Abreu IV, Bennett E, Bahrami S, Bonilla B, Kamhawi S, Valenzuela JG, Peters NC. Disentangling detrimental sand fly-mite interactions in a closed laboratory sand fly colony: implications for vector-borne disease studies and guidelines for overcoming severe mite infestations. Parasit Vectors 2024; 17:11. [PMID: 38183132 PMCID: PMC10768091 DOI: 10.1186/s13071-023-06074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Vector sand fly colonies are a critical component of studies aimed at improving the understanding of the neglected tropical disease leishmaniasis and alleviating its global impact. However, among laboratory-colonized arthropod vectors of infectious diseases, the labor-intensive nature of sand fly rearing coupled with the low number of colonies worldwide has generally discouraged the widespread use of sand flies in laboratory settings. Among the different factors associated with the low productivity of sand fly colonies, mite infestations are a significant factor. Sand fly colonies are prone to infestation by mites, and the physical interactions between sand flies and mites and metabolites have a negative impact on sand fly larval development. METHODS Mites were collected from sand fly larval rearing pots and morphologically identified using taxonomic keys. Upon identification, they were photographed with a scanning electron microscope. Several mite control measures were adopted in two different laboratories, one at the Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases-National Institutes of Health (Rockville, MD, USA), and the other at the University of Calgary (Calgary, AB, Canada). RESULTS The mite species associated with sand fly colonies in the two laboratories were morphologically identified as Tyrophagus sp. and Stratiolaelaps scimitus. While complete eradication of mites in sand fly colonies is considered unrealistic, drastically reducing their population has been associated with higher sand fly productivity. CONCLUSIONS We report a case of detrimental interaction between sand flies and Tyrophagus sp. and S. scimitus in a closed laboratory sand fly colony, discuss their impact on sand fly production and provide guidelines for limiting the mite population size in a closed laboratory colony leading to improved sand fly yields.
Collapse
Affiliation(s)
- Chukwunonso O Nzelu
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Claudio Meneses
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Christina Bowhay
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Emily Bennett
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Somayeh Bahrami
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Brian Bonilla
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Nathan C Peters
- Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Trouche B, Schrieke H, Duron O, Eren AM, Reveillaud J. Wolbachia populations across organs of individual Culex pipiens: highly conserved intra-individual core pangenome with inter-individual polymorphisms. ISME COMMUNICATIONS 2024; 4:ycae078. [PMID: 38915450 PMCID: PMC11195471 DOI: 10.1093/ismeco/ycae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
Wolbachia is a maternally inherited intracellular bacterium that infects a wide range of arthropods including mosquitoes. The endosymbiont is widely used in biocontrol strategies due to its capacity to modulate arthropod reproduction and limit pathogen transmission. Wolbachia infections in Culex spp. are generally assumed to be monoclonal but the potential presence of genetically distinct Wolbachia subpopulations within and between individual organs has not been investigated using whole genome sequencing. Here we reconstructed Wolbachia genomes from ovary and midgut metagenomes of single naturally infected Culex pipiens mosquitoes from Southern France to investigate patterns of intra- and inter-individual differences across mosquito organs. Our analyses revealed a remarkable degree of intra-individual conservancy among Wolbachia genomes from distinct organs of the same mosquito both at the level of gene presence-absence signal and single-nucleotide polymorphisms (SNPs). Yet, we identified several synonymous and non-synonymous substitutions between individuals, demonstrating the presence of some level of genomic heterogeneity among Wolbachia that infect the same C. pipiens field population. Overall, the absence of genetic heterogeneity within Wolbachia populations in a single individual confirms the presence of a dominant Wolbachia that is maintained under strong purifying forces of evolution.
Collapse
Affiliation(s)
- Blandine Trouche
- IRD, MIVEGEC, University of Montpellier, INRAE, CNRS, 34394 Montpellier, France
| | - Hans Schrieke
- IRD, MIVEGEC, University of Montpellier, INRAE, CNRS, 34394 Montpellier, France
| | - Olivier Duron
- IRD, MIVEGEC, University of Montpellier, INRAE, CNRS, 34394 Montpellier, France
| | - A Murat Eren
- Marine Biological Laboratory, Woods Hole, MA 02543, United States
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, 26129 Oldenburg, Germany
| | - Julie Reveillaud
- IRD, MIVEGEC, University of Montpellier, INRAE, CNRS, 34394 Montpellier, France
| |
Collapse
|
5
|
Du XY, Zhang PF, Gong SR, Liang YS, Huang YH, Li HS, Pang H. Discovery of a novel circulation route of free-living Serratiasymbiotica mediated by predatory ladybird beetles. FEMS Microbiol Ecol 2023; 99:fiad133. [PMID: 37852673 DOI: 10.1093/femsec/fiad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
Horizontal transmission of bacteria to varied hosts can maintain and even expand microbial niches. We previously found that the aphid gut bacterium Serratia symbiotica strain SsMj can be transmitted to ladybird beetles via predation, but whether the predator is a new host, a reservoir or a dead end of this bacterium is unknown. This study aims to provide a clear picture of SsMj circulation from aphids to plants and predators. We first found that SsMj in aphids and ladybirds was abundantly distributed not only in digestive tracts but also in droppings. We found no evidence for vertical transmission of SsMj to aphid offspring. Instead, we showed that it could be transmitted to conspecific aphids by sharing the same plant or contacting honeydews. The key finding of this study is that SsMj was transmitted from aphids to ladybirds through predation, while ladybirds could also transfer SsMj back to aphids, possibly through feces. Together, this evidence suggests that SsMj is able to survive in the digestive tracts and droppings of insects and to expand its host range with plants and predators as reservoirs.
Collapse
Affiliation(s)
- Xue-Yong Du
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Pei-Fang Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Sen-Rui Gong
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan-Sen Liang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Hao Huang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao-Sen Li
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Life Sciences / School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Guo Y, Shao J, Wu Y, Li Y. Using Wolbachia to control rice planthopper populations: progress and challenges. Front Microbiol 2023; 14:1244239. [PMID: 37779725 PMCID: PMC10537216 DOI: 10.3389/fmicb.2023.1244239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Wolbachia have been developed as a tool for protecting humans from mosquito populations and mosquito-borne diseases. The success of using Wolbachia relies on the facts that Wolbachia are maternally transmitted and that Wolbachia-induced cytoplasmic incompatibility provides a selective advantage to infected over uninfected females, ensuring that Wolbachia rapidly spread through the target pest population. Most transinfected Wolbachia exhibit a strong antiviral response in novel hosts, thus making it an extremely efficient technique. Although Wolbachia has only been used to control mosquitoes so far, great progress has been made in developing Wolbachia-based approaches to protect plants from rice pests and their associated diseases. Here, we synthesize the current knowledge about the important phenotypic effects of Wolbachia used to control mosquito populations and the literature on the interactions between Wolbachia and rice pest planthoppers. Our aim is to link findings from Wolbachia-mediated mosquito control programs to possible applications in planthoppers.
Collapse
Affiliation(s)
| | | | | | - Yifeng Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
7
|
Hanson MA, Grollmus L, Lemaitre B. Ecology-relevant bacteria drive the evolution of host antimicrobial peptides in Drosophila. Science 2023; 381:eadg5725. [PMID: 37471548 DOI: 10.1126/science.adg5725] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
Antimicrobial peptides are host-encoded immune effectors that combat pathogens and shape the microbiome in plants and animals. However, little is known about how the host antimicrobial peptide repertoire is adapted to its microbiome. Here, we characterized the function and evolution of the Diptericin antimicrobial peptide family of Diptera. Using mutations affecting the two Diptericins (Dpt) of Drosophila melanogaster, we reveal the specific role of DptA for the pathogen Providencia rettgeri and DptB for the gut mutualist Acetobacter. The presence of DptA- or DptB-like genes across Diptera correlates with the presence of Providencia and Acetobacter in their environment. Moreover, DptA- and DptB-like sequences predict host resistance against infection by these bacteria across the genus Drosophila. Our study explains the evolutionary logic behind the bursts of rapid evolution of an antimicrobial peptide family and reveals how the host immune repertoire adapts to changing microbial environments.
Collapse
Affiliation(s)
- M A Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Disease Ecology and Evolution, Biosciences, University of Exeter, Penryn, United Kingdom
| | - L Grollmus
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - B Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
8
|
Beliavskaia A, Tan KK, Sinha A, Husin NA, Lim FS, Loong SK, Bell-Sakyi L, Carlow CKS, AbuBakar S, Darby AC, Makepeace BL, Khoo JJ. Metagenomics of culture isolates and insect tissue illuminate the evolution of Wolbachia, Rickettsia and Bartonella symbionts in Ctenocephalides spp. fleas. Microb Genom 2023; 9:mgen001045. [PMID: 37399133 PMCID: PMC10438800 DOI: 10.1099/mgen.0.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
While fleas are often perceived simply as a biting nuisance and a cause of allergic dermatitis, they represent important disease vectors worldwide, especially for bacterial zoonoses such as plague (transmitted by rodent fleas) and some of the rickettsioses and bartonelloses. The cosmopolitan cat (Ctenocephalides felis ) and dog (Ctenocephalides canis ) fleas, as well as Ctenocephalides orientis (restricted to tropical and subtropical Asia), breed in human dwellings and are vectors of cat-scratch fever (caused by Bartonella spp.) and Rickettsia spp., including Rickettsia felis (agent of flea-borne spotted fever) and Rickettsia asembonensis , a suspected pathogen. These Rickettsia spp. are members of a phylogenetic clade known as the ‘transitional group’, which includes both human pathogens and arthropod-specific endosymbionts. The relatively depauperate flea microbiome can also contain other endosymbionts, including a diverse range of Wolbachia strains. Here, we present circularized genome assemblies for two C. orientis -derived pathogens (Bartonella clarridgeiae and R. asembonensis ) from Malaysia, a novel Wolbachia strain (w Cori), and the C. orientis mitochondrion; all were obtained by direct metagenomic sequencing of flea tissues. Moreover, we isolated two Wolbachia strains from Malaysian C. felis into tick cell culture and recovered circularized genome assemblies for both, one of which (w CfeF) is newly sequenced. We demonstrate that the three Wolbachia strains are representatives of different major clades (‘supergroups’), two of which appear to be flea-specific. These Wolbachia genomes exhibit unique combinations of features associated with reproductive parasitism or mutualism, including prophage WO, cytoplasmic incompatibility factors and the biotin operon of obligate intracellular microbes. The first circularized assembly for R. asembonensis includes a plasmid with a markedly different structure and gene content compared to the published plasmid; moreover, this novel plasmid was also detected in cat flea metagenomes from the USA. Analysis of loci under positive selection in the transitional group revealed genes involved in host–pathogen interactions that may facilitate host switching. Finally, the first B. clarridgeiae genome from Asia exhibited large-scale genome stability compared to isolates from other continents, except for SNPs in regions predicted to mediate interactions with the vertebrate host. These findings highlight the paucity of data on the genomic diversity of Ctenocephalides -associated bacteria and raise questions regarding how interactions between members of the flea microbiome might influence vector competence.
Collapse
Affiliation(s)
- Alexandra Beliavskaia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Amit Sinha
- New England Biolabs, Ipswich, Massachusetts, 01938, USA
| | - Nurul Aini Husin
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fang Shiang Lim
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | | | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Alistair C. Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Jing Jing Khoo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| |
Collapse
|
9
|
Rodrigues J, Lefoulon E, Gavotte L, Perillat-Sanguinet M, Makepeace B, Martin C, D'Haese CA. Wolbachia springs eternal: symbiosis in Collembola is associated with host ecology. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230288. [PMID: 37266040 PMCID: PMC10230187 DOI: 10.1098/rsos.230288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Wolbachia are endosymbiotic alpha-proteobacteria infecting a wide range of arthropods and nematode hosts with diverse interactions, from reproductive parasites to obligate mutualists. Their taxonomy is defined by lineages called supergroups (labelled by letters of the alphabet), while their evolutionary history is complex, with multiple horizontal transfers and secondary losses. One of the least recently derived, supergroup E, infects springtails (Collembola), widely distributed hexapods, with sexual and/or parthenogenetic populations depending on species. To better characterize the diversity of Wolbachia infecting springtails, the presence of Wolbachia was screened in 58 species. Eleven (20%) species were found to be positive, with three Wolbachia genotypes identified for the first time in supergroup A. The novel genotypes infect springtails ecologically and biologically different from those infected by supergroup E. To root the Wolbachia phylogeny, rather than distant other Rickettsiales, supergroup L infecting plant-parasitic nematodes was used here. We hypothesize that the ancestor of Wolbachia was consumed by soil-dwelling nematodes, and was transferred horizontally via plants into aphids, which then infected edaphic arthropods (e.g. springtails and oribatid mites) before expanding into most clades of terrestrial arthropods and filarial nematodes.
Collapse
Affiliation(s)
- Jules Rodrigues
- UMR7245, MCAM, Museum national d'Histoire naturelle, Paris, France
| | - Emilie Lefoulon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | | | | - Benjamin Makepeace
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Coralie Martin
- UMR7245, MCAM, Museum national d'Histoire naturelle, Paris, France
| | - Cyrille A D'Haese
- UMR7179 MECADEV, Museum national d'Histoire naturelle, Paris, France
| |
Collapse
|
10
|
Li T, Wei Y, Zhao C, Li S, Gao S, Zhang Y, Wu Y, Lu C. Facultative symbionts are potential agents of symbiont-mediated RNAi in aphids. Front Microbiol 2022; 13:1020461. [PMID: 36504780 PMCID: PMC9727308 DOI: 10.3389/fmicb.2022.1020461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Aphids are major crop pests, and they can be controlled through the application of the promising RNA interference (RNAi) techniques. However, chemical synthesis yield of dsRNA for RNAi is low and costly. Another sustainable aphid pest control strategy takes advantage of symbiont-mediated RNAi (SMR), which can generate dsRNA by engineered microbes. Aphid host the obligate endosymbiont Buchnera aphidicola and various facultative symbionts that not only have a wide host range but are also vertically and horizontally transmitted. Thus, we described the potential of facultative symbionts in aphid pest control by SMR. We summarized the community and host range of these facultative symbionts, and then reviewed their probable horizontal transmitted routes and ecological functions. Moreover, recent advances in the cultivation and genetic engineering of aphid facultative symbionts were discussed. In addition, current legislation of dsRNA-based pest control strategies and their safety assessments were reviewed.
Collapse
Affiliation(s)
- Tong Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control /College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shaojian Li
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Suxia Gao
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanchen Zhang
- College of Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chuantao Lu
- Institute of Plant Protection, Henan Key Laboratory of Crop Pest Control/Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Academy of Agricultural Sciences, Zhengzhou, China,Chuantao Lu
| |
Collapse
|
11
|
Gomes TMFF, Wallau GL, Loreto ELS. Multiple long-range host shifts of major Wolbachia supergroups infecting arthropods. Sci Rep 2022; 12:8131. [PMID: 35581290 PMCID: PMC9114371 DOI: 10.1038/s41598-022-12299-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Wolbachia is a genus of intracellular bacterial endosymbionts found in 20–66% of all insect species and a range of other invertebrates. It is classified as a single species, Wolbachia pipientis, divided into supergroups A to U, with supergroups A and B infecting arthropods exclusively. Wolbachia is transmitted mainly via vertical transmission through female oocytes, but can also be transmitted across different taxa by host shift (HS): the direct transmission of Wolbachia cells between organisms without involving vertically transmitted gametic cells. To assess the HS contribution, we recovered 50 orthologous genes from over 1000 Wolbachia genomes, reconstructed their phylogeny and calculated gene similarity. Of 15 supergroup A Wolbachia lineages, 10 have similarities ranging from 95 to 99.9%, while their hosts’ similarities are around 60 to 80%. For supergroup B, four out of eight lineages, which infect diverse and distantly-related organisms such as Acari, Hemiptera and Diptera, showed similarities from 93 to 97%. These results show that Wolbachia genomes have a much higher similarity when compared to their hosts’ genes, which is a major indicator of HS. Our comparative genomic analysis suggests that, at least for supergroups A and B, HS is more frequent than expected, occurring even between distantly-related species.
Collapse
Affiliation(s)
- Tiago M F F Gomes
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel L Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Elgion L S Loreto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil. .,Biochemistry and Molecular Biology Department, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, RS, CEP 97105.900, Brazil.
| |
Collapse
|
12
|
Fernandez Goya L, Lanteri AA, Confalonieri VA, Rodriguero MS. New host-parasitoid interactions in Naupactus cervinus (Coleoptera, Curculionidae) raise the question of Wolbachia horizontal transmission. Symbiosis 2022. [DOI: 10.1007/s13199-022-00838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Konecka E. Fifty shades of bacterial endosymbionts and some of them still remain a mystery: Wolbachia and Cardinium in oribatid mites (Acari: Oribatida). J Invertebr Pathol 2022; 189:107733. [DOI: 10.1016/j.jip.2022.107733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
|
14
|
Hill T, Unckless RL, Perlmutter JI. Positive Selection and Horizontal Gene Transfer in the Genome of a Male-Killing Wolbachia. Mol Biol Evol 2022; 39:msab303. [PMID: 34662426 PMCID: PMC8763111 DOI: 10.1093/molbev/msab303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wolbachia are a genus of widespread bacterial endosymbionts in which some strains can hijack or manipulate arthropod host reproduction. Male killing is one such manipulation in which these maternally transmitted bacteria benefit surviving daughters in part by removing competition with the sons for scarce resources. Despite previous findings of interesting genome features of microbial sex ratio distorters, the population genomics of male-killers remain largely uncharacterized. Here, we uncover several unique features of the genome and population genomics of four Arizonan populations of a male-killing Wolbachia strain, wInn, that infects mushroom-feeding Drosophila innubila. We first compared the wInn genome with other closely related Wolbachia genomes of Drosophila hosts in terms of genome content and confirm that the wInn genome is largely similar in overall gene content to the wMel strain infecting D. melanogaster. However, it also contains many unique genes and repetitive genetic elements that indicate lateral gene transfers between wInn and non-Drosophila eukaryotes. We also find that, in line with literature precedent, genes in the Wolbachia prophage and Octomom regions are under positive selection. Of all the genes under positive selection, many also show evidence of recent horizontal transfer among Wolbachia symbiont genomes. These dynamics of selection and horizontal gene transfer across the genomes of several Wolbachia strains and diverse host species may be important underlying factors in Wolbachia's success as a male-killer of divergent host species.
Collapse
Affiliation(s)
- Tom Hill
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | | |
Collapse
|
15
|
Sanaei E, Lin YP, Cook LG, Engelstädter J. Wolbachia in scale insects: a distinct pattern of infection frequencies and potential transfer routes via ant associates. Environ Microbiol 2021; 24:1326-1339. [PMID: 34792280 DOI: 10.1111/1462-2920.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Wolbachia is one of the most successful endosymbiotic bacteria of arthropods. Known as the 'master of manipulation', Wolbachia can induce a wide range of phenotypes in its host that can have far-reaching ecological and evolutionary consequences and may be exploited for disease and pest control. However, our knowledge of Wolbachia's distribution and the infection rate is unevenly distributed across arthropod groups such as scale insects. We fitted a distribution of within-species prevalence of Wolbachia to our data and compared it to distributions fitted to an up-to-date dataset compiled from surveys across all arthropods. The estimated distribution parameters indicate a Wolbachia infection frequency of 43.6% (at a 10% prevalence threshold) in scale insects. Prevalence of Wolbachia in scale insects follows a distribution similar to exponential decline (most species are predicted to have low prevalence infections), in contrast to the U-shaped distribution estimated for other taxa (most species have a very low or very high prevalence). We observed no significant associations between Wolbachia infection and scale insect traits. Finally, we screened for Wolbachia in scale insect's ecological associates. We found a positive correlation between Wolbachia infection in scale insects and their ant associates, pointing to a possible route of horizontal transfer of Wolbachia.
Collapse
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Yen-Po Lin
- Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi City, 60004, Taiwan
| | - Lyn G Cook
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
16
|
Gupta M, Kaur R, Gupta A, Raychoudhury R. Are ecological communities the seat of endosymbiont horizontal transfer and diversification? A case study with soil arthropod community. Ecol Evol 2021; 11:14490-14508. [PMID: 34765121 PMCID: PMC8571607 DOI: 10.1002/ece3.8108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
Maternally inherited endosymbionts of arthropods are one of the most abundant and diverse group of bacteria. These bacterial endosymbionts also show extensive horizontal transfer to taxonomically unrelated hosts and widespread recombination in their genomes. Such horizontal transfers can be enhanced when different arthropod hosts come in contact like in an ecological community. Higher rates of horizontal transfer can also increase the probability of recombination between endosymbionts, as they now share the same host cytoplasm. However, reports of community-wide endosymbiont data are rare as most studies choose few host taxa and specific ecological interactions among the hosts. To better understand endosymbiont spread within host populations, we investigated the incidence, diversity, extent of horizontal transfer, and recombination of three endosymbionts (Wolbachia, Cardinium, and Arsenophonus) in a specific soil arthropod community. Wolbachia strains were characterized with MLST genes whereas 16S rRNA gene was used for Cardinium and Arsenophonus. Among 3,509 individual host arthropods, belonging to 390 morphospecies, 12.05% were infected with Wolbachia, 2.82% with Cardinium and 2.05% with Arsenophonus. Phylogenetic incongruence between host and endosymbiont indicated extensive horizontal transfer of endosymbionts within this community. Three cases of recombination between Wolbachia supergroups and eight incidences of within-supergroup recombination were also found. Statistical tests of similarity indicated supergroup A Wolbachia and Cardinium show a pattern consistent with extensive horizontal transfer within the community but not for supergroup B Wolbachia and Arsenophonus. We highlight the importance of extensive community-wide studies for a better understanding of the spread of endosymbionts across global arthropod communities.
Collapse
Affiliation(s)
- Manisha Gupta
- Indian Institute of Science Education and ResearchMohali (IISER‐Mohali)ManauliIndia
| | - Rajbir Kaur
- Indian Institute of Science Education and ResearchMohali (IISER‐Mohali)ManauliIndia
- Indian Institute of ScienceBengaluruIndia
| | - Ankita Gupta
- ICAR‐ National Bureau of Agricultural Insect Resources (NBAIR)BengaluruIndia
| | | |
Collapse
|
17
|
Deng J, Assandri G, Chauhan P, Futahashi R, Galimberti A, Hansson B, Lancaster LT, Takahashi Y, Svensson EI, Duplouy A. Wolbachia-driven selective sweep in a range expanding insect species. BMC Ecol Evol 2021; 21:181. [PMID: 34563127 PMCID: PMC8466699 DOI: 10.1186/s12862-021-01906-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Background Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. Method The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). Results Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years. Conclusions Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.
Collapse
Affiliation(s)
- Junchen Deng
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.,Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| | - Giacomo Assandri
- Area per l'Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPA), Via Ca' Fornacetta 9, 40064, Ozzano Emilia, BO, Italy
| | - Pallavi Chauhan
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advance Industrial Science and Technology (AIST), Trukuba, Ibaraki, 305-8566, Japan
| | - Andrea Galimberti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Bengt Hansson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Yuma Takahashi
- Graduate School of Science, Chiba University, Chiba, Japan
| | - Erik I Svensson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Anne Duplouy
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden. .,Insect Symbiosis Ecology and Evolution Lab, Organismal and Evolutionary Biology Research Program, The University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland.
| |
Collapse
|
18
|
Wolbachia prevalence in the vector species Culex pipiens and Culex torrentium in a Sindbis virus-endemic region of Sweden. Parasit Vectors 2021; 14:428. [PMID: 34446060 PMCID: PMC8390198 DOI: 10.1186/s13071-021-04937-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Wolbachia pipientis are endosymbiotic bacteria present in a large proportion of terrestrial arthropods. The species is known to sometimes affect the ability of its host to transmit vector-borne pathogens. Central Sweden is endemic for Sindbis virus (SINV), where it is mainly transmitted by the vector species Culex pipiens and Culex torrentium, with the latter established as the main vector. In this study we investigated the Wolbachia prevalence in these two vector species in a region highly endemic for SINV. Methods Culex mosquitoes were collected using CDC light traps baited with carbon dioxide over 9 years at 50 collection sites across the River Dalälven floodplains in central Sweden. Mosquito genus was determined morphologically, while a molecular method was used for reliable species determination. The presence of Wolbachia was determined through PCR using general primers targeting the wsp gene and sequencing of selected samples. Results In total, 676 Cx. pipiens and 293 Cx. torrentium were tested for Wolbachia. The prevalence of Wolbachia in Cx. pipiens was 97% (95% CI 94.8–97.6%), while only 0.7% (95% CI 0.19–2.45%) in Cx. torrentium. The two Cx. torrentium mosquitoes that were infected with Wolbachia carried different types of the bacteria. Conclusions The main vector of SINV in the investigated endemic region, Cx. torrentium, was seldom infected with Wolbachia, while it was highly prevalent in the secondary vector, Cx. pipiens. The presence of Wolbachia could potentially have an impact on the vector competence of these two species. Furthermore, the detection of Wolbachia in Cx. torrentium could indicate horizontal transmission of the endosymbiont between arthropods of different species. Graphical abstract ![]()
Collapse
|
19
|
Towett-Kirui S, Morrow JL, Close S, Royer JE, Riegler M. Host-endoparasitoid-endosymbiont relationships: concealed Strepsiptera provide new twist to Wolbachia in Australian tephritid fruit flies. Environ Microbiol 2021; 23:5587-5604. [PMID: 34390609 DOI: 10.1111/1462-2920.15715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022]
Abstract
Wolbachia are widespread endosymbionts that affect arthropod reproduction and fitness. Mostly maternally inherited, Wolbachia are occasionally transferred horizontally. Previously, two Wolbachia strains were reported at low prevalence and titres across seven Australian tephritid species, possibly indicative of frequent horizontal transfer. Here, we performed whole-genome sequencing of field-caught Wolbachia-positive flies. Unexpectedly, we found complete mitogenomes of an endoparasitic strepsipteran, Dipterophagus daci, suggesting that Wolbachia in the flies are linked to concealed parasitization. We performed the first genetic characterization of D. daci and detected D. daci in Wolbachia-positive flies not visibly parasitized, and most but not all Wolbachia-negative flies were D. daci-negative, presumably reflecting polymorphism for the Wolbachia infections in D. daci. We dissected D. daci from stylopized flies and confirmed that Wolbachia infects D. daci, but also found Wolbachia in stylopized fly tissues, likely somatic, horizontally transferred, non-heritable infections. Furthermore, no Wolbachia cif and wmk genes were detected and very low mitogenomic variation in D. daci across its distribution. Therefore, Wolbachia may influence host fitness without reproductive manipulation. Our study of 13 tephritid species highlights that concealed early stages of strepsipteran parasitization led to the previous incorrect assignment of Wolbachia co-infections to tephritid species, obscuring ecological studies of this common endosymbiont and its horizontal transmission by parasitoids.
Collapse
Affiliation(s)
- Sharon Towett-Kirui
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Shannon Close
- Queensland Department of Agriculture and Fisheries, EcoSciences Precinct, Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Jane E Royer
- Queensland Department of Agriculture and Fisheries, EcoSciences Precinct, Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
20
|
Wang J, Que SQ, Liu X, Jin M, Xin TR, Zou ZW, Xia B. Characteristic and expression of Hsp70 and Hsp90 genes from Tyrophagus putrescentiae and their response to thermal stress. Sci Rep 2021; 11:11672. [PMID: 34083669 PMCID: PMC8175703 DOI: 10.1038/s41598-021-91206-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/24/2021] [Indexed: 11/09/2022] Open
Abstract
The development of insects is critically affected by temperature, which therefore plays an important role in the control of stored grain pests. Extreme temperature stress conditions lead to biological responses in mites, such as the synthesis of heat shock proteins. Tyrophagus putrescentiae (Tp) is a pest mite in stored grain that has negative effects on both economy and health. Since T. putrescentiae population dynamics are strongly influenced by temperature, in the present study we have cloned the cDNA of HSP70 and HSP90 (referred to as TpHSP70-1, TpHSP70-2 and TpHSP90) and determined their expression by fluorescence real time quantitative PCR. TpHSP70 and TpHSP90 showed high homology with similar genes in other species and the open reading frames of TpHSP70-1, TpHSP70-2 and TpHSP90 encoded proteins of 665, 661 and 718 amino acid residues, respectively. Under thermal stress, expression of TpHsp70-1 and TpHsp90 was up-regulated at higher temperatures, suggesting their role in the defense against thermal stress.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Sheng-Quan Que
- Institute of Forest Pest, Jiangxi Academy of Forestry, Nanchang, 330013, China
| | - Xinyu Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Mengru Jin
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Tian-Rong Xin
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Zhi-Wen Zou
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Bin Xia
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
21
|
Wolfe TM, Bruzzese DJ, Klasson L, Corretto E, Lečić S, Stauffer C, Feder JL, Schuler H. Comparative genome sequencing reveals insights into the dynamics of Wolbachia in native and invasive cherry fruit flies. Mol Ecol 2021; 30:6259-6272. [PMID: 33882628 PMCID: PMC9290052 DOI: 10.1111/mec.15923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
Wolbachia is a maternally inherited obligate endosymbiont that can induce a wide spectrum of effects in its host, ranging from mutualism to reproductive parasitism. At the genomic level, recombination within and between strains, transposable elements, and horizontal transfer of strains between host species make Wolbachia an evolutionarily dynamic bacterial system. The invasive cherry fruit fly Rhagoletis cingulata arrived in Europe from North America ~40 years ago, where it now co‐occurs with the native cherry pest R. cerasi. This shared distribution has been proposed to have led to the horizontal transfer of different Wolbachia strains between the two species. To better understand transmission dynamics, we performed a comparative genome study of the strain wCin2 in its native United States and invasive European populations of R. cingulata with wCer2 in European R. cerasi. Previous multilocus sequence genotyping (MLST) of six genes implied that the source of wCer2 in R. cerasi was wCin2 from R. cingulata. However, we report genomic evidence discounting the recent horizontal transfer hypothesis for the origin of wCer2. Despite near identical sequences for the MLST markers, substantial sequence differences for other loci were found between wCer2 and wCin2, as well as structural rearrangements, and differences in prophage, repetitive element, gene content, and cytoplasmic incompatibility inducing genes. Our study highlights the need for whole‐genome sequencing rather than relying on MLST markers for resolving Wolbachia strains and assessing their evolutionary dynamics.
Collapse
Affiliation(s)
- Thomas M Wolfe
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel J Bruzzese
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erika Corretto
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - Sonja Lečić
- Department of Evolutionary Biology, Ludwig-Maximilians University, Munich, Germany
| | - Christian Stauffer
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy.,Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| |
Collapse
|
22
|
Zimmermann BL, Cardoso GM, Bouchon D, Pezzi PH, Palaoro AV, Araujo PB. Supergroup F Wolbachia in terrestrial isopods: Horizontal transmission from termites? Evol Ecol 2021; 35:165-182. [PMID: 33500597 PMCID: PMC7819146 DOI: 10.1007/s10682-021-10101-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022]
Abstract
Horizontal transmission between distantly related species has been used to explain how Wolbachia infect multiple species at astonishing rates despite the selection for resistance. Recently, a terrestrial isopod species was found to be infected by an unusual strain of supergroup F Wolbachia. However, only Wolbachia of supergroup B is typically found in isopods. One possibility is that these isopods acquired the infection because of their recurrent contact with termites—a group with strong evidence of infection by supergroup F Wolbachia. Thus, our goals were: (1) check if the infection was an isolated case in isopods, or if it revealed a broader pattern; (2) search for Wolbachia infection in the termites within Brazil; and (3) look for evidence consistent with horizontal transmission between isopods and termites. We collected Neotroponiscus terrestrial isopods and termites along the Brazilian coastal Atlantic forest. We sequenced and identified the Wolbachia strains found in these groups using coxA, dnaA, and fpbA genes. We constructed phylogenies for both bacteria and host taxa and tested for coevolution. We found the supergroup F Wolbachia in other species and populations of Neotroponiscus, and also in Nasutitermes and Procornitermes termites. The phylogenies showed that, despite the phylogenetic distance between isopods and termites, the Wolbachia strains clustered together. Furthermore, cophylogenetic analyses showed significant jumps of Wolbachia between terrestrial isopods and termites. Thus, our study suggests that the horizontal transmission of supergroup F Wolbachia between termites and terrestrial isopods is likely. Our study also helps understanding the success and worldwide distribution of this symbiont.
Collapse
Affiliation(s)
- Bianca Laís Zimmermann
- Instituto Federal de Ciências e Tecnologia do Rio Grande Do Sul. Rua Nelsi Ribas Fritsch, 1111, Bairro Esperança, Ibirubá, Rio Grande Do Sul CEP 98200-000 Brazil
| | - Giovanna M Cardoso
- Centro de Estudos em Biologia Subterrânea, Departamento de Biologia, Programa de Pós-Graduação em Ecologia Aplicada, Universidade Federal de Lavras, Campus Universitário, CP 3037, Lavras, Minas Gerais CEP 37200-900 Brazil
| | - Didier Bouchon
- CNRS UMR 7267, Laboratoire Ecologie Et Biologie Des Interactions, Université de Poitiers, 5 Rue Albert Turpain, Batiment B8-B35, TSA 51106, 86073 Poitiers, France
| | - Pedro H Pezzi
- Departamento de Zoologia, Laboratório de Carcinologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande Do Sul CEP 91501-970 Brazil
| | - Alexandre V Palaoro
- LUTA do, Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Artur Riedel, 275, Bairro Eldorado, Diadema, São Paulo CEP 09972-270 Brazil
| | - Paula B Araujo
- Departamento de Zoologia, Laboratório de Carcinologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande Do Sul CEP 91501-970 Brazil
| |
Collapse
|
23
|
Inácio da Silva LM, Dezordi FZ, Paiva MHS, Wallau GL. Systematic Review of Wolbachia Symbiont Detection in Mosquitoes: An Entangled Topic about Methodological Power and True Symbiosis. Pathogens 2021; 10:39. [PMID: 33419044 PMCID: PMC7825316 DOI: 10.3390/pathogens10010039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Wolbachia is an endosymbiotic bacterium that naturally infects several arthropods and nematode species. Wolbachia gained particular attention due to its impact on their host fitness and the capacity of specific Wolbachia strains in reducing pathogen vector and agricultural pest populations and pathogens transmission. Despite the success of mosquito/pathogen control programs using Wolbachia-infected mosquito release, little is known about the abundance and distribution of Wolbachia in most mosquito species, a crucial knowledge for planning and deployment of mosquito control programs and that can further improve our basic biology understanding of Wolbachia and host relationships. In this systematic review, Wolbachia was detected in only 30% of the mosquito species investigated. Fourteen percent of the species were considered positive by some studies and negative by others in different geographical regions, suggesting a variable infection rate and/or limitations of the Wolbachia detection methods employed. Eighty-three percent of the studies screened Wolbachia with only one technique. Our findings highlight that the assessment of Wolbachia using a single approach limited the inference of true Wolbachia infection in most of the studied species and that researchers should carefully choose complementary methodologies and consider different Wolbachia-mosquito population dynamics that may be a source of bias to ascertain the correct infectious status of the host species.
Collapse
Affiliation(s)
- Luísa Maria Inácio da Silva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
| | - Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Ciências da Vida, Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste-Rodovia BR-104, km 59-Nova Caruaru, Caruaru 55002-970, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Av. Professor Moraes Rego, s/n, Campus da UFPE, Cidade Universitária, Recife 50740-465, Brazil; (L.M.I.d.S.); (F.Z.D.)
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ), Recife 50670-420, Brazil
| |
Collapse
|
24
|
Sanaei E, Charlat S, Engelstädter J. Wolbachia
host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol Rev Camb Philos Soc 2020; 96:433-453. [DOI: 10.1111/brv.12663] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Lyon 1, CNRS, UMR 5558 43 boulevard du 11 novembre 1918 Villeurbanne F‐69622 France
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| |
Collapse
|
25
|
Madhav M, Brown G, Morgan JA, Asgari S, McGraw EA, Munderloh UG, Kurtti TJ, James P. Wolbachia successfully replicate in a newly established horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae) cell line. PEST MANAGEMENT SCIENCE 2020; 76:2441-2452. [PMID: 32058670 DOI: 10.1002/ps.5785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Haematobia spp., horn flies (HF) and buffalo flies (BF), are economically important ectoparasites of dairy and beef cattle. Control of these flies relies mainly on treating cattle with chemical insecticides. However, the development of resistance to commonly used compounds is compromising the effectiveness of these treatments and alternative methods of control are required. Wolbachia are maternally transmitted endosymbiotic bacteria of arthropods that cause various reproductive distortions and fitness effects, making them a potential candidate for use in the biological control of pests. The first step towards this is the establishment and adaptation of xenobiotic infections of Wolbachia in target host cell lines. RESULTS Here, we report the successful establishment of a continuous HF cell line (HIE-18) from embryonic cells and its stable transinfection with Wolbachia strains wAlbB native to mosquitoes, and wMel and wMelPop native to Drosophila melanogaster. HIE-18 cells were typically round and diploid with ten chromosomes (2n = 10) or tetraploid with 20 chromosomes (4n = 20), with a doubling time of 67.2 h. Wolbachia density decreased significantly in HIE-18 cells in the first 48 h of infection, possibly due to overexpression of antimicrobial peptides through the Imd immune signalling pathway. However, density recovered after this time and HIE-18 cell lines stably infected with the three strains of Wolbachia have now each been subcultured more than 50 times as persistently infected lines. CONCLUSION The amenability of HF cells to infection with different strains of Wolbachia and the establishment of stable sustaining infections suggest the potential for use of Wolbachia in novel approaches for the control of Haematobia spp. Further, the availability of the HIE-18 cell line will provide an important resource for the study of genetics, host-parasite interactions and chemical resistance in Haematobia populations. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mukund Madhav
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Geoff Brown
- Department of Agriculture and Fisheries, Brisbane, Australia
| | - Jess At Morgan
- Department of Agriculture and Fisheries, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Elizabeth A McGraw
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | | | - Timothy J Kurtti
- Department of Entomology, University of Minnesota, Minneapolis, MN, USA
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Konecka E, Olszanowski Z, Jagiełło A. First report of Wolbachia in Damaeus onustus (Acari: Oribatida). ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01581-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Little is known about the distribution and phylogeny of bacterial endosymbionts in oribatid mites (Acari: Oribatida). Thus, we undertook the issue of occurrence of these microbial symbionts in this arthropod group.
Methods
We used PCR technique for detection of Wolbachia in Damaeus onustus. Phylogenetic analysis of the bacterium was conducted based on the 16S rDNA sequence.
Results
To the best of our knowledge, we present a novel finding of Wolbachia infection in the sexually reproducing oribatid mite, D. onustus. The presence of uninfected individuals (ca. 93%) suggests that the bacteria do not function as primary symbionts. A comparison of the bacterial 710-bp 16S rDNA sequence detected in the oribatid mite with the sequences deposited in GenBank revealed its 92–93% similarity to the 16S rDNA sequences of Wolbachia identified in some springtails (Collembola) and Bryobia sp. mite. Bacteria from D. onustus showed phylogenetic relationships with Wolbachia from springtails, Megalothorax minimus and Neelus murinus, which were included by other authors into a separate Wolbachia clade.
Conclusion
Our finding suggests that the strains of Wolbachia from D. onustus may form a new Wolbachia supergroup.
Collapse
|
27
|
López-Madrigal S, Duarte EH. Titer regulation in arthropod-Wolbachia symbioses. FEMS Microbiol Lett 2020; 366:5637388. [PMID: 31750894 DOI: 10.1093/femsle/fnz232] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Symbiosis between intracellular bacteria (endosymbionts) and animals are widespread. The alphaproteobacterium Wolbachia pipientis is known to maintain a variety of symbiotic associations, ranging from mutualism to parasitism, with a wide range of invertebrates. Wolbachia infection might deeply affect host fitness (e.g. reproductive manipulation and antiviral protection), which is thought to explain its high prevalence in nature. Bacterial loads significantly influence both the infection dynamics and the extent of bacteria-induced host phenotypes. Hence, fine regulation of bacterial titers is considered as a milestone in host-endosymbiont interplay. Here, we review both environmental and biological factors modulating Wolbachia titers in arthropods.
Collapse
Affiliation(s)
| | - Elves H Duarte
- Instituto Gulbenkian de Ciência. Rua da Quinta Grande, 6. 2780-156 Oeiras, Portugal.,Departamento de Ciências e Tecnologia, Universidade de Cabo Verde. Palmarejo, CP 279 - Praia, Cabo Verde
| |
Collapse
|
28
|
Ross PA, Callahan AG, Yang Q, Jasper M, Arif MAK, Afizah AN, Nazni WA, Hoffmann AA. An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aegypti? Ecol Evol 2020; 10:1581-1591. [PMID: 32076535 PMCID: PMC7029055 DOI: 10.1002/ece3.6012] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Wolbachia are maternally inherited endosymbiotic bacteria found within many insect species. Aedes mosquitoes experimentally infected with Wolbachia are being released into the field for Aedes-borne disease control. These Wolbachia infections induce cytoplasmic incompatibility which is used to suppress populations through incompatible matings or replace populations through the reproductive advantage provided by this mechanism. However, the presence of naturally occurring Wolbachia in target populations could interfere with both population replacement and suppression programs depending on the compatibility patterns between strains. Aedes aegypti were thought to not harbor Wolbachia naturally but several recent studies have detected Wolbachia in natural populations of this mosquito. We therefore review the evidence for natural Wolbachia infections in A. aegypti to date and discuss limitations of these studies. We draw on research from other mosquito species to outline the potential implications of natural Wolbachia infections in A. aegypti for disease control. To validate previous reports, we obtained a laboratory population of A. aegypti from New Mexico, USA, that harbors a natural Wolbachia infection, and we conducted field surveys in Kuala Lumpur, Malaysia, where a natural Wolbachia infection has also been reported. However, we were unable to detect Wolbachia in both the laboratory and field populations. Because the presence of naturally occurring Wolbachia in A. aegypti could have profound implications for Wolbachia-based disease control programs, it is important to continue to accurately assess the Wolbachia status of target Aedes populations.
Collapse
Affiliation(s)
- Perran A Ross
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Parkville Victoria Australia
| | - Ashley G Callahan
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Parkville Victoria Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Parkville Victoria Australia
| | - Moshe Jasper
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Parkville Victoria Australia
| | - Mohd A K Arif
- Institute for Medical Research Kuala Lumpur Malaysia
| | | | - Wasi A Nazni
- Institute for Medical Research Kuala Lumpur Malaysia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group School of BioSciences Bio21 Institute The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
29
|
The Jekyll and Hyde Symbiont: Could Wolbachia Be a Nutritional Mutualist? J Bacteriol 2020; 202:JB.00589-19. [PMID: 31659008 DOI: 10.1128/jb.00589-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The most common intracellular symbiont on the planet-Wolbachia pipientis-is infamous largely for the reproductive manipulations induced in its host. However, more recent evidence suggests that this bacterium may also serve as a nutritional mutualist in certain host backgrounds and for certain metabolites. We performed a large-scale analysis of conserved gene content across all sequenced Wolbachia genomes to infer potential nutrients made by these symbionts. We review and critically evaluate the prior research supporting a beneficial role for Wolbachia and suggest future experiments to test hypotheses of metabolic provisioning.
Collapse
|
30
|
Sawasdichai S, Chaumeau V, Dah T, Kulabkeeree T, Kajeechiwa L, Phanaphadungtham M, Trakoolchengkaew M, Kittiphanakun P, Akararungrot Y, Oo K, Delmas G, White NJ, Nosten FH. Detection of diverse Wolbachia 16S rRNA sequences at low titers from malaria vectors in Kayin state, Myanmar. Wellcome Open Res 2019; 4:11. [PMID: 31828225 PMCID: PMC6892426 DOI: 10.12688/wellcomeopenres.15005.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Natural
Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of
Plasmodium falciparum in the vectors. The occurrence and effects of
Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. 16S rRNA
Wolbachia DNA sequences were detected with quantitative real-time PCR. Results: Low titer of
Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Sequences were diverse and different from those described in the African malaria mosquitoes. Conclusion: The detection of
Wolbachia DNA in malaria mosquitoes from Kayin state warrants further investigations to understand better the ecology and biology of
Anopheles-
Wolbachia interactions in Southeast Asia.
Collapse
Affiliation(s)
- Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Tee Dah
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Thithiworada Kulabkeeree
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Ladda Kajeechiwa
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Monthicha Phanaphadungtham
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Muesuwa Trakoolchengkaew
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Praphan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Yanada Akararungrot
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Kyi Oo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Gilles Delmas
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
31
|
Sawasdichai S, Chaumeau V, Dah T, Kulabkeeree T, Kajeechiwa L, Phanaphadungtham M, Trakoolchengkaew M, Kittiphanakun P, Akararungrot Y, Oo K, Delmas G, White NJ, Nosten FH. Low-density genetically diverse natural Wolbachia infections in malaria vectors in Kayin state, Myanmar. Wellcome Open Res 2019; 4:11. [DOI: 10.12688/wellcomeopenres.15005.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. Wolbachia infection rates were assessed with quantitative real-time PCR. Results: Low titer of Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Phylogenetic analysis based on 16S rRNA sequences revealed a high diversity of Wolbachia strains and identified lineages different from those described in the African malaria mosquitoes. Conclusion: These low-density genetically diverse natural Wolbachia infections question the ecology and biology of Wolbachia-Anopheles interactions in Southeast Asia. Their effects on malaria transmission and mosquito vectors are yet to be determined.
Collapse
|
32
|
Tseng SP, Wetterer JK, Suarez AV, Lee CY, Yoshimura T, Shoemaker D, Yang CCS. Genetic Diversity and Wolbachia Infection Patterns in a Globally Distributed Invasive Ant. Front Genet 2019; 10:838. [PMID: 31608104 PMCID: PMC6758599 DOI: 10.3389/fgene.2019.00838] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/13/2019] [Indexed: 11/23/2022] Open
Abstract
Understanding the phylogeographic history of an invasive species may facilitate reconstructing the history and routes of its invasion. The longhorn crazy ant, Paratrechina longicornis, is a ubiquitous agricultural and household pest throughout much of the tropics and subtropics, but little is known about the history of its spread. Here, we examine worldwide genetic variation in P. longicornis and its associated Wolbachia bacterial symbionts. Analyses of mtDNA sequences of 248 P. longicornis workers (one per colony) from 13 geographic regions reveal two highly diverged mtDNA clades that co-occur in most of the geographic regions. These two mtDNA clades are associated with different Wolbachia infection patterns, but are not congruent with patterns of nDNA (microsatellite) variation. Multilocus sequence typing reveals two distinct Wolbachia strains in P. longicornis, namely, wLonA and wLonF. The evolutionary histories of these two strains differ; wLonA appears to be primarily transmitted maternally, and patterns of mtDNA and nDNA variation and wLonA infection status are consistent with a relatively recent Wolbachia-induced selective sweep. In contrast, the observed patterns of mtDNA variation and wLonF infections suggest frequent horizontal transfer and losses of wLonF infections. The lack of nDNA structure among sampled geographic regions coupled with the finding that numerous mtDNA haplotypes are shared among regions implies that inadvertent long-distance movement through human commerce is common in P. longicornis and has shaped the genetic structure of this invasive ant worldwide.
Collapse
Affiliation(s)
- Shu-Ping Tseng
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - James K. Wetterer
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States
| | - Andrew V. Suarez
- Department of Evolution, Ecology and Behavior and Department of Entomology, University of Illinois Urbana-Champaign, IL, United States
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, CA, United States
| | - Tsuyoshi Yoshimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - DeWayne Shoemaker
- Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | | |
Collapse
|
33
|
Lorenzo-Carballa MO, Torres-Cambas Y, Heaton K, Hurst GDD, Charlat S, Sherratt TN, Van Gossum H, Cordero-Rivera A, Beatty CD. Widespread Wolbachia infection in an insular radiation of damselflies (Odonata, Coenagrionidae). Sci Rep 2019; 9:11933. [PMID: 31417112 PMCID: PMC6695491 DOI: 10.1038/s41598-019-47954-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Wolbachia is one of the most common endosymbionts found infecting arthropods. Theory predicts symbionts like Wolbachia will be more common in species radiations, as host shift events occur with greatest frequency between closely related species. Further, the presence of Wolbachia itself may engender reproductive isolation, and promote speciation of their hosts. Here we screened 178 individuals belonging to 30 species of the damselfly genera Nesobasis and Melanesobasis - species radiations endemic to the Fiji archipelago in the South Pacific - for Wolbachia, using multilocus sequence typing to characterize bacterial strains. Incidence of Wolbachia was 71% in Nesobasis and 40% in Melanesobasis, and prevalence was also high, with an average of 88% in the Nesobasis species screened. We identified a total of 25 Wolbachia strains, belonging to supergroups A, B and F, with some epidemic strains present in multiple species. The occurrence of Wolbachia in both males and females, and the similar global prevalence found in both sexes rules out any strong effect of Wolbachia on the primary sex-ratio, but are compatible with the phenotype of cytoplasmic incompatibility. Nesobasis has higher species richness than most endemic island damselfly genera, and we discuss the potential for endosymbiont-mediated speciation within this group.
Collapse
Affiliation(s)
- M O Lorenzo-Carballa
- ECOEVO Lab, EE Forestal, Campus Universitario A Xunqueira s/n, 36005, Pontevedra, Spain. .,Institute of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB, Liverpool, United Kingdom.
| | - Y Torres-Cambas
- Departamento de Biología y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Avda. Patricio Lumumba s/n, Santiago de Cuba, 90500, Cuba
| | - K Heaton
- Institute of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB, Liverpool, United Kingdom
| | - G D D Hurst
- Institute of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB, Liverpool, United Kingdom
| | - S Charlat
- Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 16, rue Raphael Dubois, 69622, Villeurbanne, France
| | - T N Sherratt
- Department of Biology, Carleton University 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - H Van Gossum
- Evolutionary Ecology Group, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1 D.D.136 2610, Wilrijk Antwerp, Belgium
| | - A Cordero-Rivera
- ECOEVO Lab, EE Forestal, Campus Universitario A Xunqueira s/n, 36005, Pontevedra, Spain
| | - C D Beatty
- Department of Ecology & Evolutionary Biology, Cornell University, E149 Corson Hall, 215 Tower Road, Ithaca, NY, 08053, United States of America
| |
Collapse
|
34
|
Cooper BS, Vanderpool D, Conner WR, Matute DR, Turelli M. Wolbachia Acquisition by Drosophila yakuba-Clade Hosts and Transfer of Incompatibility Loci Between Distantly Related Wolbachia. Genetics 2019; 212:1399-1419. [PMID: 31227544 PMCID: PMC6707468 DOI: 10.1534/genetics.119.302349] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Maternally transmitted Wolbachia infect about half of insect species, yet the predominant mode(s) of Wolbachia acquisition remains uncertain. Species-specific associations could be old, with Wolbachia and hosts codiversifying (i.e., cladogenic acquisition), or relatively young and acquired by horizontal transfer or introgression. The three Drosophila yakuba-clade hosts [(D. santomea, D. yakuba) D. teissieri] diverged ∼3 MYA and currently hybridize on the West African islands Bioko and São Tomé. Each species is polymorphic for nearly identical Wolbachia that cause weak cytoplasmic incompatibility (CI)-reduced egg hatch when uninfected females mate with infected males. D. yakuba-clade Wolbachia are closely related to wMel, globally polymorphic in D. melanogaster We use draft Wolbachia and mitochondrial genomes to demonstrate that D. yakuba-clade phylogenies for Wolbachia and mitochondria tend to follow host nuclear phylogenies. However, roughly half of D. santomea individuals, sampled both inside and outside of the São Tomé hybrid zone, have introgressed D. yakuba mitochondria. Both mitochondria and Wolbachia possess far more recent common ancestors than the bulk of the host nuclear genomes, precluding cladogenic Wolbachia acquisition. General concordance of Wolbachia and mitochondrial phylogenies suggests that horizontal transmission is rare, but varying relative rates of molecular divergence complicate chronogram-based statistical tests. Loci that cause CI in wMel are disrupted in D. yakuba-clade Wolbachia; but a second set of loci predicted to cause CI are located in the same WO prophage region. These alternative CI loci seem to have been acquired horizontally from distantly related Wolbachia, with transfer mediated by flanking Wolbachia-specific ISWpi1 transposons.
Collapse
Affiliation(s)
- Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Dan Vanderpool
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - William R Conner
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Daniel R Matute
- Biology Department, University of North Carolina at Chapel Hill, North Carolina 27510
| | - Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
35
|
Sawasdichai S, Chaumeau V, Dah T, Kulabkeeree T, Kajeechiwa L, Phanaphadungtham M, Trakoolchengkaew M, Kittiphanakun P, Akararungrot Y, Oo K, Delmas G, White NJ, Nosten FH. Low-density genetically diverse natural Wolbachia infections in malaria vectors in Kayin state, Myanmar. Wellcome Open Res 2019; 4:11. [DOI: 10.12688/wellcomeopenres.15005.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Natural Wolbachia infections in malaria mosquitoes were recently reported in Africa, and negatively correlated with the development of Plasmodium falciparum in the vectors. The occurrence and effects of Wolbachia infections outside Africa have not been described and may have been underestimated. Methods: Mosquitoes were collected by human-landing catch during May and June 2017 in ten villages in Kayin state, Myanmar. Closely related species of malaria vectors were identified with molecular assays. Wolbachia infection rates were assessed with quantitative real-time PCR. Results: Low titer of Wolbachia DNA was detected in 13/370 samples in six malaria vector species. Phylogenetic analysis based on 16S rRNA sequences revealed a high diversity of Wolbachia strains and identified lineages different from those described in the African malaria mosquitoes. Conclusion: These low-density genetically diverse natural Wolbachia infections question the ecology and biology of Wolbachia-Anopheles interactions in Southeast Asia. Their effects on malaria transmission and mosquito vectors are yet to be determined.
Collapse
|
36
|
Horizontal transmission of Wolbachia in Hylyphantes graminicola is more likely via intraspecies than interspecies transfer. Symbiosis 2019. [DOI: 10.1007/s13199-019-00623-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Zélé F, Santos I, Olivieri I, Weill M, Duron O, Magalhães S. Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe. FEMS Microbiol Ecol 2019; 94:4830074. [PMID: 29390142 DOI: 10.1093/femsec/fiy015] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial endosymbionts are known as important players of the evolutionary ecology of their hosts. However, their distribution, prevalence and diversity are still largely unexplored. To this aim, we investigated infections by the most common bacterial reproductive manipulators in herbivorous spider mites of South-Western Europe. Across 16 populations belonging to three Tetranychus species, Wolbachia was the most prevalent (ca. 61%), followed by Cardinium (12%-15%), while only few individuals were infected by Rickettsia (0.9%-3%), and none carried Arsenophonus or Spiroplasma. These endosymbionts are here reported for the first time in Tetranychus evansi and Tetranychus ludeni, and showed variable infection frequencies between and within species, with several cases of coinfections. Moreover, Cardinium was more prevalent in Wolbachia-infected individuals, which suggests facilitation between these symbionts. Finally, sequence comparisons revealed no variation of the Wolbachia wsp and Rickettsia gtlA genes, but some diversity of the Cardinium 16S rRNA, both between and within populations of the three mite species. Some of the Cardinium sequences identified belonged to distantly-related clades, and the lack of association between these sequences and spider mite mitotypes suggests repeated host switching of Cardinium. Overall, our results reveal a complex community of symbionts in this system, opening the path for future studies.
Collapse
Affiliation(s)
- Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749016 Lisbon, Portugal
| | - Inês Santos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749016 Lisbon, Portugal
| | - Isabelle Olivieri
- Institut des Sciences de l'Evolution (CNRS-Université de Montpellier-IRD-EPHE), 34095 Montpellier, CEDEX 5, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution (CNRS-Université de Montpellier-IRD-EPHE), 34095 Montpellier, CEDEX 5, France
| | - Olivier Duron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (CNRS-Université de Montpellier-IRD), Centre de Recherche IRD, 911 Avenue Agropolis, 34394 Montpellier, France
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749016 Lisbon, Portugal
| |
Collapse
|
38
|
Konecka E, Olszanowski Z. Phylogenetic analysis based on the 16S rDNA, gltA, gatB, and hcpA gene sequences of Wolbachia from the novel host Ceratozetes thienemanni (Acari: Oribatida). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 70:175-181. [PMID: 30708135 DOI: 10.1016/j.meegid.2019.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 11/20/2022]
Abstract
We determined the occurrence of intracellular endosymbionts (Wolbachia, Cardinium, Arsenophonus, Rickettsia, Spiroplasma, Hamiltonella, flavobacteria, and microsporidia) in oribatid mites (Acari: Oribatida) with the use of PCR technique. For the first time we looked for and detected Wolbachia in parthenogenetic oribatid mite Ceratozetes thienemanni Willmann, 1943. The 16S rDNA, gatB, hcpA, and gltA sequences of Wolbachia in C. thienemanni showed the highest similarity (≥ 90%) to the genes of Wolbachia from springtails (Collembola) and oribatid mite Gustavia microcephala. We found the unique sequence 5'-GGGGTAATGGCC-3' in 16S rDNA of Wolbachia from C. thienemanni and collembolan representing group E. The phylogeny of Wolbachia based on the analysis of single genes as well as concatenated alignments of four bacterial loci showed that the bacteria from C. thienemanni belonged to Wolbachia group E, like the endosymbionts from springtail hosts and G. microcephala. Considering coexisting of representatives of Oribatida and Collembola in the same soil habitat and similar food, it is possible that the source of Wolbachia infection was the same. Residues of dead invertebrates could be in organic matter of their soil food, so the scenario of infection transferred by eating of remains of soil cohabitates is also possible. It could explain the similarity and relationship of the Wolbachia in these two arthropod groups. Oribatid mite C. thienemanni is a parthenogenetic mite which is a unique feature in the genus Ceratozetes. Moreover, this species, within the entire genus Ceratozetes, is characterized by the most northerly distribution. It is difficult to determine either it is parthenogenesis or the presence of endosymbionts that are in some way responsible for this kind of evolutionary success. Maybe we are dealing here with a kind of synergy of both factors?
Collapse
Affiliation(s)
- Edyta Konecka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Ziemowit Olszanowski
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
39
|
Shaikevich E, Bogacheva A, Rakova V, Ganushkina L, Ilinsky Y. Wolbachia symbionts in mosquitoes: Intra- and intersupergroup recombinations, horizontal transmission and evolution. Mol Phylogenet Evol 2019; 134:24-34. [PMID: 30708172 DOI: 10.1016/j.ympev.2019.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 01/13/2019] [Accepted: 01/22/2019] [Indexed: 11/27/2022]
Abstract
Many mosquitoes harbour Wolbachia symbionts that could affect the biology of their host in different ways. Evolutionary relationships of mosquitoes' Wolbachia infection, geographical distribution and symbiont prevalence in many mosquito species are not yet clear. Here, we present the results of Wolbachia screening of 17 mosquito species of four genera-Aedes, Anopheles, Coquillettidia and Culex collected from five regions of Eastern Europe and the Caucasus in 2012-2016. Based on multilocus sequence typing (MLST) data previously published and generated in this study, we try to reveal genetic links between mosquitoes' and other hosts' Wolbachia. The Wolbachia symbionts are found in Culex pipiens, Aedes albopictus and Coquillettidia richiardii and for the first time in Aedes cinereus and Aedes cantans, which are important vectors of human pathogens. Phylogenetic analysis demonstrated multiple origins of infection in mosquitoes although the one-allele-criterion approach revealed links among B-supergroup mosquito Wolbachia with allele content of lepidopteran hosts. The MLST gene content of strain wAlbA from the A-supergroup is linked with different ant species. Several cases of intersupergroup recombinations were found. One of them occurred in the wAlbaB strain of Aedes albopictus, which contains the coxA allele of the A-supergroup, whereas other loci, including wsp, belong to supergroup B. Other cases are revealed for non-mosquito symbionts and they exemplified genetic exchanges of A, B and F supergroups. We conclude that modern Wolbachia diversity in mosquitoes and in many other insect taxa is a recent product of strain recombination and symbiont transfers.
Collapse
Affiliation(s)
- Elena Shaikevich
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Vera Rakova
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, Moscow 119435, Russia.
| | - Ludmila Ganushkina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, Moscow 119435, Russia.
| | - Yury Ilinsky
- Institute of Cytology and Genetics of SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia; Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| |
Collapse
|
40
|
A new Cardinium group of bacteria found in Achipteria coleoptrata (Acari: Oribatida). Mol Phylogenet Evol 2018; 131:64-71. [PMID: 30391314 DOI: 10.1016/j.ympev.2018.10.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/15/2018] [Accepted: 10/31/2018] [Indexed: 11/20/2022]
Abstract
The understanding of the biology of arthropods requires an understanding of their bacterial associates. We determined the distribution of bacteria Wolbachia sp., Rickettsia sp., Cardinium sp., Spiroplasma sp., Arsenophonus sp., Hamiltonella sp., and Flavobacterium in oribatid mites (Acari: Oribatida). We identified Cardinium sp. in Achipteria coleoptrata. This is the first report of this bacterium in A. coleoptrata. Approximately 30% of the mite population was infected by Cardinium sp. The Cardinium 16S rDNA was examined for the presence of two sequences unique for this microorganism. One of them was noted in Cardinium sp. of A. coleoptrata. In the second sequence, we found nucleotide substitution in the 7th position: A instead of T. In our opinion, this demonstrated the unique nature of Cardinium sp. of A. coleoptrata. We also determined phylogenetic relationship between Cardinium sp., including the strain found in A. coleoptrata by studying the 16S rRNA and gyrB gene sequences. It revealed that Cardinium from A. coleoptrata did not cluster together with strains from groups A, B, C or D, and constituted a separate clade E. These observations make A. coleoptrata a unique Cardinium host in terms of the distinction of the strain.
Collapse
|
41
|
Liu QQ, Zhang TS, Li CX, Gu JW, Hou JB, Dong H. Decision-making in a bisexual line and a thelytokous Wolbachia-infected line of Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) regarding behavior toward their hosts. PEST MANAGEMENT SCIENCE 2018; 74:1720-1727. [PMID: 29363888 DOI: 10.1002/ps.4867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND The use of thelytokous Wolbachia-infected Trichogramma (parasitic wasps) has long been considered as a way to enhance the efficacy of biocontrol. However, Wolbachia can affect the host physiology. We compared decision-making between bisexual and thelytokous Wolbachia-infected lines of Trichogramma dendrolimi Matsumura regarding behavior toward fresh and old eggs of Corcyra cephalonica at 25 ± 1 °C and 70 ± 5% relative humidity. RESULTS The behavioral patterns and sequences of the two lines were basically the same. The durations of various behavioral patterns and values of fitness indicators of the bisexual line on fresh eggs were generally significantly shorter and better, respectively, than on old eggs, whereas the thelytokous line behaved similarly toward the two types of eggs, and differences in most fitness indicators between fresh and old eggs were not significant. On fresh eggs, the durations of various behaviors in the bisexual line were generally significantly shorter than in the thelytokous line and the fitness indicators were generally significantly better. CONCLUSION Wolbachia affected the fitness of T. dendrolimi negatively. The potential of the thelytokous line as a biocontrol agent would not be as good as that of the bisexual line when decision-making only is considered. Therefore, further evaluations need to be carried out before the thelytokous line can be used in practical biocontrol. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Quan-Quan Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Tong-Shu Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chun-Xue Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jun-Wen Gu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jie-Bin Hou
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hui Dong
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
42
|
Turelli M, Cooper BS, Richardson KM, Ginsberg PS, Peckenpaugh B, Antelope CX, Kim KJ, May MR, Abrieux A, Wilson DA, Bronski MJ, Moore BR, Gao JJ, Eisen MB, Chiu JC, Conner WR, Hoffmann AA. Rapid Global Spread of wRi-like Wolbachia across Multiple Drosophila. Curr Biol 2018; 28:963-971.e8. [PMID: 29526588 PMCID: PMC5882237 DOI: 10.1016/j.cub.2018.02.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/16/2018] [Accepted: 02/07/2018] [Indexed: 01/08/2023]
Abstract
Maternally transmitted Wolbachia, Spiroplasma, and Cardinium bacteria are common in insects [1], but their interspecific spread is poorly understood. Endosymbionts can spread rapidly within host species by manipulating host reproduction, as typified by the global spread of wRi Wolbachia observed in Drosophila simulans [2, 3]. However, because Wolbachia cannot survive outside host cells, spread between distantly related host species requires horizontal transfers that are presumably rare [4-7]. Here, we document spread of wRi-like Wolbachia among eight highly diverged Drosophila hosts (10-50 million years) over only about 14,000 years (5,000-27,000). Comparing 110 wRi-like genomes, we find ≤0.02% divergence from the wRi variant that spread rapidly through California populations of D. simulans. The hosts include both globally invasive species (D. simulans, D. suzukii, and D. ananassae) and narrowly distributed Australian endemics (D. anomalata and D. pandora) [8]. Phylogenetic analyses that include mtDNA genomes indicate introgressive transfer of wRi-like Wolbachia between closely related species D. ananassae, D. anomalata, and D. pandora but no horizontal transmission within species. Our analyses suggest D. ananassae as the Wolbachia source for the recent wRi invasion of D. simulans and D. suzukii as the source of Wolbachia in its sister species D. subpulchrella. Although six of these wRi-like variants cause strong cytoplasmic incompatibility, two cause no detectable reproductive effects, indicating that pervasive mutualistic effects [9, 10] complement the reproductive manipulations for which Wolbachia are best known. "Super spreader" variants like wRi may be particularly useful for controlling insect pests and vector-borne diseases with Wolbachia transinfections [11].
Collapse
Affiliation(s)
- Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA.
| | - Brandon S Cooper
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA; Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Kelly M Richardson
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul S Ginsberg
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Brooke Peckenpaugh
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA; Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Chenling X Antelope
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA; Department of Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin J Kim
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Michael R May
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Antoine Abrieux
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Derek A Wilson
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Michael J Bronski
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brian R Moore
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Jian-Jun Gao
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, Yunnan 650091, China
| | - Michael B Eisen
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - William R Conner
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
43
|
Klopfstein S, van Der Schyff G, Tierney S, Austin AD. Wolbachia infections in Australian ichneumonid parasitoid wasps (Hymenoptera: Ichneumonidae): evidence for adherence to the global equilibrium hypothesis. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/blx157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Seraina Klopfstein
- Naturhistorisches Museum der Burgergemeinde Bern, Bern, Switzerland
- University of Bern, Institute of Ecology and Evolution, Bern, Switzerland
- Australian Centre for Evolutionary Biology and Biodiversity; School of Biological Sciences, The University of Adelaide, Adelaide, SA Australia
| | - Gwen van Der Schyff
- Australian Centre for Evolutionary Biology and Biodiversity; School of Biological Sciences, The University of Adelaide, Adelaide, SA Australia
| | - Simon Tierney
- Australian Centre for Evolutionary Biology and Biodiversity; School of Biological Sciences, The University of Adelaide, Adelaide, SA Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity; School of Biological Sciences, The University of Adelaide, Adelaide, SA Australia
| |
Collapse
|
44
|
Mereghetti V, Chouaia B, Montagna M. New Insights into the Microbiota of Moth Pests. Int J Mol Sci 2017; 18:ijms18112450. [PMID: 29156569 PMCID: PMC5713417 DOI: 10.3390/ijms18112450] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
In recent years, next generation sequencing (NGS) technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition.
Collapse
Affiliation(s)
- Valeria Mereghetti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Bessem Chouaia
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
45
|
Experimental Manipulation Shows a Greater Influence of Population than Dietary Perturbation on the Microbiome of Tyrophagus putrescentiae. Appl Environ Microbiol 2017; 83:AEM.00128-17. [PMID: 28235879 DOI: 10.1128/aem.00128-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/21/2017] [Indexed: 01/07/2023] Open
Abstract
Tyrophagus putrescentiae is inhabited by bacteria that differ among mite populations (strains) and diets. Here, we investigated how the microbiome and fitness of Tputrescentiae are altered by dietary perturbations and mite populations. Four T. putrescentiae populations, referred to as dog, Koppert, laboratory, and Phillips, underwent a perturbation, i.e., a dietary switch from a rearing diet to two experimental diets. The microbiome was investigated by sequencing the V1-V3 portion of the 16S rRNA gene, and selected bacterial taxa were quantified by quantitative PCR (qPCR) using group/taxon-specific primers. The parameters observed were the changes in mite population growth and nutritional status, i.e., the total glycogen, lipid, saccharide, and protein contents in mites. The effect of diet perturbation on the variability of the microbiome composition and population growth was lower than the effect induced by mite population. In contrast, the diet perturbation showed a greater effect on nutritional status of mites than the mite population. The endosymbionts exhibited high variations among T. putrescentiae populations, including Cardinium in the laboratory population, Blattabacterium-like bacteria in the dog population, and Wolbachia in the dog and Phillips populations. Solitalea-like and Bartonella-like bacteria were present in the dog, Koppert, and Phillips populations in different proportions. The T. putrescentiae microbiome is dynamic and varies based on both the mite population and perturbation; however, the mites remain characterized by robust bacterial communities. Bacterial endosymbionts were found in all populations but represented a dominant portion of the microbiome in only some populations.IMPORTANCE We addressed the question of whether population origin or perturbation exerts a more significant influence on the bacterial community of the stored product mite Tyrophagus putrescentiae The microbiomes of four populations of T. putrescentiae insects subjected to diet perturbation were compared. Based on our results, the bacterial community was more affected by the mite population than by diet perturbation. This result can be interpreted as indicating high stability of the putative intracellular symbionts in response to dietary perturbation. The changes in the absolute and relative numbers of Wolbachia, Blattabacterium-like, Solitalea-like, and Cardinium bacteria in the T. putrescentiae populations can also be caused by neutral processes other than perturbation. When nutritional status is considered, the effect of population appeared less important than the perturbation. We hypothesize that differences in the proportions of the endosymbiotic bacteria result in changes in mite population growth.
Collapse
|
46
|
Li SJ, Ahmed MZ, Lv N, Shi PQ, Wang XM, Huang JL, Qiu BL. Plantmediated horizontal transmission of Wolbachia between whiteflies. THE ISME JOURNAL 2017; 11:1019-1028. [PMID: 27935594 PMCID: PMC5364347 DOI: 10.1038/ismej.2016.164] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/19/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022]
Abstract
Maternal transmission is the main transmission pathway of facultative bacterial endosymbionts, but phylogenetically distant insect hosts harbor closely related endosymbionts, suggesting that horizontal transmission occurs in nature. Here we report the first case of plant-mediated horizontal transmission of Wolbachia between infected and uninfected Bemisia tabaci AsiaII7 whiteflies. After infected whiteflies fed on cotton leaves, Wolbachia was visualized, both in the phloem vessels and in some novel 'reservoir' spherules along the phloem by fluorescence in situ hybridization using Wolbachia-specific 16S rRNA probes and transmission electron microscopy. Wolbachia persisted in the plant leaves for at least 50 days. When the Wolbachia-free whiteflies fed on the infected plant leaves, the majority of them became infected with the symbiont and vertically transmitted it to their progeny. Multilocus sequence typing and sequencing of the wsp (Wolbachia surface protein) gene confirmed that the sequence type of Wolbachia in the donor whiteflies, cotton phloem and the recipient whiteflies are all identical (sequence type 388). These results were replicated using cowpea and cucumber plants, suggesting that horizontal transmission is also possible through other plant species. Our findings may help explain why Wolbachia bacteria are so abundant in arthropods, and suggest that in some species, Wolbachia may be maintained in populations by horizontal transmission.
Collapse
Affiliation(s)
- Shao-Jian Li
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Muhammad Z Ahmed
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
- Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, FL, USA
| | - Ning Lv
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Pei-Qiong Shi
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Xing-Min Wang
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Ji-Lei Huang
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, China
| | - Bao-Li Qiu
- Department of Entomology, Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| |
Collapse
|
47
|
Bailly-Bechet M, Martins-Simões P, Szöllősi GJ, Mialdea G, Sagot MF, Charlat S. How Long Does Wolbachia Remain on Board? Mol Biol Evol 2017; 34:1183-1193. [DOI: 10.1093/molbev/msx073] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Pekas A, Palevsky E, Sumner JC, Perotti MA, Nesvorna M, Hubert J. Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae). Sci Rep 2017; 7:2. [PMID: 28127053 PMCID: PMC5428342 DOI: 10.1038/s41598-017-00046-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
Neoseiulus cucumeris is a predatory mite used for biological control of arthropod pests. Mass-reared predators are fed with factitious prey mites such as Tyrophagus putrescentiae. Although some information on certain endosymbionts of N. cucumeris and T. putrescentiae exists, it is unclear whether both species share bacterial communities. The bacterial communities in populations of predator and prey mites, as well as the occurence of potential acaropathogenic bacteria were analyzed. The comparisons were based on the following groups: (i) N. cucumeris mass-production; (ii) N. cucumeris laboratory population with disease symptoms; (iii) T. putrescentiae pure populations and; (iv) T. putrescentiae from rearing units of N. cucumeris. Only 15% of OTUs were present in all samples from predatory and prey mite populations (core OTUs): the intracellular symbionts Wolbachia, Cardinium, plus other Blattabacterium-like, Solitalea-like, and Bartonella-like symbionts. Environmental bacteria were more abundant in predatory mites, while symbiotic bacteria prevailed in prey mites. Relative numbers of certain bacterial taxa were significantly different between the microbiota of prey mites reared with and without N. cucumeris. No significant differences were found in the bacterial communities of healthy N. cucumeris compared to N. cucumeris showing disease symptoms. We did not identify any confirmed acaropathogenic bacteria among microbiota.
Collapse
Affiliation(s)
- Apostolos Pekas
- Research & Development Department, Biobest Belgium N. V., Ilse Velden 18, Westerlo, B-2260, Belgium
| | - Eric Palevsky
- Department of Entomology, Newe-Ya'ar Research Center, Agricultural Research Organization, Ministry of Agriculture, P.O. Box 1021, Ramat Yishay, IL-30095, Israel
| | - Jason C Sumner
- SASA (Science and Advice for Scottish Agriculture), 1 Roddinglaw Road, Edinburgh, EH12 9FJ, UK
| | - M Alejandra Perotti
- Evolutionary Biology Section, School of Biological Sciences, University of Reading, Reading, RG6 6AS, UK
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia, Czech Republic
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia, Czech Republic.
| |
Collapse
|
49
|
Wallau GL, da Rosa MT, De Ré FC, Loreto ELS. Wolbachia from Drosophila incompta: just a hitchhiker shared by Drosophila in the New and Old World? INSECT MOLECULAR BIOLOGY 2016; 25:487-499. [PMID: 27122079 DOI: 10.1111/imb.12237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Wolbachia are intracellular endosymbionts that infect arthropods and filarial nematodes, occasionally causing a wide variety of modifications in host biology, such as male-killing and cytoplasmic incompatibility (CI), amongst others. This study assembled draft genomes for Wolbachia infecting Drosophila incompta, a species that uses flowers as exclusive breeding and feeding sites, in two distinct Brazilian populations. The absence of four genes involved in CI from this genome, together with literature reports of low frequencies of infected flies in wild populations that contain high mitogenome polymorphism, suggests that this bacterium does not induce CI in D. incompta. Phylogenomic analysis placed Wolbachia infecting D. incompta as closely related to the wMel strain which received such name since it was originally detected in Drosophila melanogaster. In addition, phylogenetic analysis using the Wolbachia surface protein gene and five genes used for multilocus sequence typing of Wolbachia found infecting Drosophila and other arthropod species of Old and New World displayed a complex evolutionary scenario involving recent horizontal transfer bursts in all major clades of Wolbachia pipens belonging to the supergroup A in both geographical regions.
Collapse
Affiliation(s)
- G L Wallau
- PPG Biodiversade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Departamento de Entomologia, Centro de Pesquisas Aggeu Magalhães - FIOCRUZ-CPqAM, Recife, PE, Brazil
| | - M T da Rosa
- PPG Biodiversade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - F C De Ré
- PPG Biodiversade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - E L S Loreto
- PPG Biodiversade Animal, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Departamento Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
50
|
Pietri JE, DeBruhl H, Sullivan W. The rich somatic life of Wolbachia. Microbiologyopen 2016; 5:923-936. [PMID: 27461737 PMCID: PMC5221451 DOI: 10.1002/mbo3.390] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 01/18/2023] Open
Abstract
Wolbachia is an intracellular endosymbiont infecting most arthropod and some filarial nematode species that is vertically transmitted through the maternal lineage. Due to this primary mechanism of transmission, most studies have focused on Wolbachia interactions with the host germline. However, over the last decade many studies have emerged highlighting the prominence of Wolbachia in somatic tissues, implicating somatic tissue tropism as an important aspect of the life history of this endosymbiont. Here, we review our current understanding of Wolbachia-host interactions at both the cellular and organismal level, with a focus on Wolbachia in somatic tissues.
Collapse
Affiliation(s)
- Jose E Pietri
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, California, USA
| | - Heather DeBruhl
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California, USA
| | - William Sullivan
- Department of Molecular, Cell & Developmental Biology, University of California, Santa Cruz, California, USA
| |
Collapse
|