1
|
Kuyucu AC, Hekimoglu O. Predicting the distribution of Ixodes ricinus in Europe: integrating microclimatic factors into ecological niche models. Parasitology 2024:1-12. [PMID: 39508154 DOI: 10.1017/s003118202400132x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Ixodes ricinus, commonly known as the castor bean tick and sheep tick, is a significant vector of various diseases, such as tick-borne encephalitis and Lyme borreliosis. Owing to climate change, the distribution and activity of I. ricinus are expected to increase, leading to an increase in the number of diseases transmitted by this species. Most distribution models and ecological niche models utilize macroclimate datasets such as WorldClim or CHELSA to map the distribution of disease-transmitting ticks. However, microclimatic factors are crucial for the activity and survival of small arthropods. In this study, an ecological niche modelling approach was used to assess the climatic suitability of I. ricinus using both microclimatic and macroclimatic parameters. A Mixed model was built by combining parameters from the Soiltemp (microclimate) and Wordclim (macroclimate) databases, whereas a Macroclimate model was built with the CHELSA dataset. Additionally, future suitabilities were projected via the macroclimate model under the SSP3-7.0 and SSP5-8.5 scenarios. Macroclimate and Mixed models showed similar distributions, confirming the current distribution of I. ricinus. The most important climatic factors were seasonality, annual temperature range, humidity and precipitation. Future projections suggest significant expansion in northern and eastern Europe, with notable declines in southern Europe.
Collapse
|
2
|
Rataud A, Drouin A, Bournez L, Pisanu B, Moutailler S, Henry PY, Marsot M. Contributions of birds to the feeding of ticks at host community level: Effects of tick burden, host density and yearly fluctuations. Ticks Tick Borne Dis 2024; 15:102390. [PMID: 39241452 DOI: 10.1016/j.ttbdis.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
The eco-epidemiology of tick-borne diseases hinges on the abundance and distribution of hosts that sustain tick populations and the pathogens they carry. Research into the role of bird species in the feeding of Ixodes ricinus ticks, the primary tick species of veterinary and public health importance in Europe, remains scarce. This study endeavors to bridge these knowledge gaps by (i) assessing the density of feeding ticks (DFT) within a bird community to pinpoint species making substantial contributions, and (ii) exploring interannual variations in DFT over an extended timeline. Furthermore, we investigate whether variations in individual tick burden (TB) were more closely associated with the characteristics of bird species or interannual variations affecting the density of questing tick, using interannual TB variation as a surrogate. To fulfill these aims, we conducted a 13-year longitudinal study monitoring I. ricinus ticks feeding on a bird community in a periurban forest in France, covering breeding periods from 2007 to 2019. Within this community, we identified seven principal bird species significantly contributing to I. ricinus tick feeding: the Common Blackbird (Turdus merula), the Song Thrush (Turdus philomelos), the European Robin (Erithacus rubecula), the Dunnock (Prunella modularis), the Eurasian Blackcap (Sylvia atricapilla), the Great Tit (Parus major), and the Common Nightingale (Luscinia megarhynchos). Our results show that the bird community's contribution to tick feeding remained relatively consistent from year-to-year, though certain years displayed higher or lower DFT values related to the average over the study period. Moreover, five out the seven major species accounted for 80 % to 95 % of DFT annually. Consequently, we emphasized the need to broaden the scope of future research on bird contributions to tick population dynamics beyond merely thrushes (Turdidae species), to encompass a more diverse range of species, particularly those common birds that engage in ground foraging activities. Furthermore, variations in individual tick burden were predominantly influenced by the characteristics of bird species rather than by interannual variability in infestation rates. This finding suggests a significant role for species-specific traits in determining tick exposure and susceptibility. In conclusion, our study offers new insights into the medium-term dynamics of tick-bird ecological systems, underscoring the need for future study of tick populations and their interactions with vertebrate hosts to improve our understanding of tick-borne disease circulation.
Collapse
Affiliation(s)
- Amalia Rataud
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Alex Drouin
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France; CIRAD, UMR ASTRE, Montpellier F-34398, France; ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Malzéville, France
| | - Benoit Pisanu
- Office Français de la Biodiversité, UMS Patrimoine Naturel OFB/MNHN/CNRS, 36 rue Geoffroy Saint-Hilaire, CP41, 75005, Paris, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Pierre-Yves Henry
- Mécanismes adaptatifs et Evolution (MECADEV UMR 7179), Muséum National d'Histoire Naturelle, CNRS, Brunoy, France; Centre de Recherches sur la Biologie des Populations d'Oiseaux (CRBPO), Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR 7204), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités, Paris, France
| | - Maud Marsot
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France.
| |
Collapse
|
3
|
Ciebiera O, Grochowalska R, Łopińska A, Zduniak P, Strzała T, Jerzak L. Ticks and spirochetes of the genus Borrelia in urban areas of Central-Western Poland. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:421-437. [PMID: 38940943 PMCID: PMC11269503 DOI: 10.1007/s10493-024-00932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Due to the extensive use of green urban areas as recreation places, city residents are exposed to tick-borne pathogens. The objectives of our study were (i) to determine the occurrence of ticks in urban green areas, focussing on areas used by humans such as parks, schools and kindergartens, and urban forests, and (ii) to assess the prevalence of Borrelia infections in ticks in Zielona Góra, a medium-sized city in western Poland. A total of 161 ticks representing the two species Ixodes ricinus (34 males, 51 females, 30 nymphs) and Dermacentor reticulatus (20 males, 26 females) were collected from 29 of 72 (40.3%) study sites. In total, 26.1% of the ticks (85.7% of I. ricinus and 14.3% of D. reticulatus) yielded DNA of Borrelia. The difference in the infection rate between I. ricinus and D. reticulatus was significant. Among infected ticks, the most frequent spirochete species were B. lusitaniae (50.0%) and B. afzelii (26.2%), followed by B. spielmanii (9.5%), B. valaisiana (7.1%), B. burgdorferi sensu stricto, (4.8%) and B. miyamotoi (2.4%). No co-infections were found. We did not observe a correlation in the occurrence of Borrelia spirochetes in ticks found in individual study sites that differed in terms of habitat type and height of vegetation. Our findings demonstrate that the Borrelia transmission cycles are active within urban habitats, pointing the need for monitoring of tick-borne pathogens in public green areas. They could serve as guidelines for authorities for the proper management of urban green spaces in a way that may limit tick populations and the potential health risks posed by tick-borne pathogens.
Collapse
Affiliation(s)
- Olaf Ciebiera
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland.
| | - Renata Grochowalska
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| | - Andżelina Łopińska
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| | - Piotr Zduniak
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kożuchowska 7, Wrocław, 51-631, Poland
| | - Leszek Jerzak
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| |
Collapse
|
4
|
Pitó A, Fedorov D, Brlík V, Kontschán J, Keve G, Sándor AD, Takács N, Hornok S. East-to-west dispersal of bird-associated ixodid ticks in the northern Palaearctic: Review of already reported tick species according to longitudinal migratory avian hosts and first evidence on the genetic connectedness of Ixodes apronophorus between Siberia and Europe. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100201. [PMID: 39188549 PMCID: PMC11345942 DOI: 10.1016/j.crpvbd.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/28/2024]
Abstract
Birds are long-known as important disseminators of ixodid ticks, in which context mostly their latitudinal, south-to-north migration is considered. However, several bird species that occur in the eastern part of the northern Palaearctic are known to migrate westward. In this study, a female tick collected from the sedge warbler, Acrocephalus schoenobaenus, in Lithuania was identified morphologically and analyzed with molecular-phylogenetic methods. In addition, literature data were reviewed on ixodid tick species known to be associated with birds that have recorded east-to-west migratory route in the Palaearctic. The tick collected from A. schoenobaenus was morphologically identified as Ixodes apronophorus. Two mitochondrial genetic markers for this specimen showed 100% identity with a conspecific tick reported previously in Western Siberia, Russia. Based on literature data, as many as 82 bird species from 11 orders were found to have records of ringing in the easternmost part of the northern Palaearctic and recaptures in Europe. Of these bird species, 31 ixodid tick species were reported in the Euro-Siberian region. Nearly all passeriform bird species with east-to-west migration were reported to carry ticks, whereas no reports of tick infestation were documented from the majority of wetland-associated bird species, mostly from the orders Anseriformes and Charadriiformes. The first European sequences of bona fide I. apronophorus revealed genetic connectedness with conspecific ticks reported from Siberia. Since the principal hosts of this tick species are rodents which do not migrate large distances, the most likely explanation for genetic similarity in this direction is dispersal of this tick species via migratory birds. Given the high number of tick species that are known to associate with bird species migrating in westward direction, this appears to be an important means of the gene flow between geographically distant tick populations in the northern Palaearctic.
Collapse
Affiliation(s)
- Andor Pitó
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- BirdLife, Budapest, Hungary
| | - Denis Fedorov
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Hungary
| | - Vojtěch Brlík
- Department of Ecology, Charles University, Prague, Czechia
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czechia
| | - Jenő Kontschán
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Sciences, Albert Kázmér Faculty of Mosonmagyaróvár, Széchenyi István University, Mosonmagyaróvár, Hungary
| | - Gergő Keve
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Hungary
| | - Attila D. Sándor
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Hungary
- STAR-UBB Institute, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Nóra Takács
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Hungary
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Hungary
| |
Collapse
|
5
|
Pitó A, Bukor B, Győrig E, Brlík V, Kontschán J, Keve G, Takács N, Hornok S. Investigations of the tick burden on passeriform, water-associated and predatory birds reveal new tick-host associations and habitat-related factors of tick infestation. Parasit Vectors 2024; 17:144. [PMID: 38500221 PMCID: PMC10949810 DOI: 10.1186/s13071-024-06229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Previous studies on the tick infestation of birds in the Carpathian Basin focused on songbirds (Passeriformes). Thus, the primary aim of the present work was to extend the scope of previous studies, i.e. to include aquatic (water-associated) bird species in a similar context, especially considering that these birds are usually long-distance migrants. METHODS Between March 2021 and August 2023, 11,919 birds representing 126 species were checked for the presence of ticks. From 352 birds belonging to 40 species, 905 ixodid ticks were collected. Tick species were identified morphologically and/or molecularly. RESULTS Ticks from avian hosts belonged to seven species: Ixodes ricinus (n = 448), I. frontalis (n = 31), I. festai (n = 2), I. arboricola (n = 36), I. lividus (n = 4), Haemaphysalis concinna (n = 382) and Dermacentor reticulatus (n = 2). Nymphs of I. ricinus occurred with a single activity peak around March-May, whereas its larvae typically infested birds in May, June or July. By contrast, H. concinna usually had its activity maximum during the summer (nymphs in June-July, larvae later in July-August). Interestingly, two ornithophilic species, I. frontalis and I. arboricola, were most active around winter months (between October and April). A significantly lower ratio of aquatic birds was found tick-infested than songbirds. Several new tick-host associations were revealed, including I. ricinus from Greylag Goose (Anser anser) and D. reticulatus from Great Egret (Ardea alba) and Sedge Warbler (Acrocephalus schoenobaenus). Ticks were collected for the first time in Europe from two species of predatory birds as well as from Little Bittern (Ixobrychus minutus). Bird species typically inhabiting reedbeds were most frequently infested with H. concinna, and most ticks localized at their throat, as opposed to forest-dwelling avian hosts, on which I. ricinus predominated and ticks were more evenly distributed. CONCLUSIONS In the evaluated region, aquatic birds appear to be less important in tick dispersal than songbirds. However, newly revealed tick-host associations in this category attest to their hitherto neglected contribution. The results suggest that the habitat type will have significant impact not only on the species composition but also on the feeding location of ticks on birds.
Collapse
Affiliation(s)
- Andor Pitó
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary.
- BirdLife Hungary, Budapest, Hungary.
| | - Boglárka Bukor
- HUN-REN-PE Evolutionary Ecology Research Group, University of Pannonia, Pf. 1158, 8210, Veszprém, Hungary
- Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary
| | | | - Vojtěch Brlík
- Department of Ecology, Charles University, Prague, Czechia
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Jenő Kontschán
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- Department of Plant Sciences, Albert Kázmér Faculty of Mosonmagyaróvár, Széchenyi István University, Mosonmagyaróvár, Hungary
| | - Gergő Keve
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Nóra Takács
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| |
Collapse
|
6
|
Bacak E, Ozsemir AC, Akyildiz G, Gungor U, Bente D, Keles AG, Beskardes V, Kar S. Bidirectional tick transport by migratory birds of the African-Western Palearctic flyway over Turkish Thrace: observation of the current situation and future projection. Parasitol Res 2023; 123:37. [PMID: 38087074 DOI: 10.1007/s00436-023-08069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023]
Abstract
This study was carried out at a vital stopover site of migrating birds in the Turkish Thrace, European part of Turkey, on the Mediterranean/Black Sea Flyway. Ticks were collected from the birds captured in the four migration periods, i.e., autumn 2020, spring 2021, autumn 2021, and spring 2022, and identified morphologically. Throughout the study, 10,651 birds from 77 species were examined, and 671 belonging to 34 species were found infested. The infestation prevalence in total birds and the mean number of ticks per infested bird were 6.3% and 3.8 (range: 1-142), respectively. A total of 2573 ticks were collected with the following species distribution and numbers: Ixodes spp. 70 larvae, I. frontalis 1829 larvae, 337 nymphs, and 30 adults, I. acuminatus 16 nymphs and 42 adults, I. ricinus 39 larvae, 141 nymphs, and one adult, Hyalomma spp. seven larvae and 60 nymphs, and Haemaphysalis sp. one larva. Prevalence, intensity, and species distribution of the ticks in birds varied depending on the month, season, year, and species-specific migration phenology of the birds. The results show that precise determination of the tick-borne risk associated with migratory birds for a particular region necessarily requires long-term and comprehensive studies and indicates that anthropogenic climate change and habitat degradation can significantly differentiate the risk by influencing the migration phenology in birds and by making new regions suitable for the establishment of different ticks.
Collapse
Affiliation(s)
- Ergun Bacak
- Vocational School of Forestry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Gurkan Akyildiz
- Department of Basic Health Sciences, Health Sciences Faculty, Marmara University, Istanbul, Turkey
| | - Umut Gungor
- Department of Forest Engineering, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dennis Bente
- Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Aysen Gargili Keles
- Department of Basic Health Sciences, Health Sciences Faculty, Marmara University, Istanbul, Turkey
| | - Vedat Beskardes
- Department of Forest Entomology and Protection, Faculty of Forestry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sirri Kar
- Department of Biology, Tekirdag Namik Kemal University, 59030 Suleymanpasa, Tekirdag, Turkey.
| |
Collapse
|
7
|
Zając Z, Kulisz J, Kunc-Kozioł R, Woźniak A, Filipiuk M, Rudolf R, Bartosik K, Cabezas-Cruz A. Tick Infestation in Migratory Birds of the Vistula River Valley, Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113781. [PMID: 36360665 PMCID: PMC9655835 DOI: 10.3390/ijerph192113781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 05/25/2023]
Abstract
Migratory birds play an important role in the eco-epidemiology of tick-borne diseases due to their ability to carry ticks for long distances. The aim of the present study was to investigate the prevalence and factors influencing the intensity of tick infestation in migratory birds. The study was conducted in a locality situated in the Vistula River valley, eastern Poland, during autumn, when the high migratory activity of birds is registered in the region. The birds were captured using ornithological nets and identified at the species level. In the next step, they were carefully inspected for attached ticks. Tick infestation was observed in 4.43% of the captured birds. The highest mean intensity of tick infestation was observed in birds foraging on the ground or in low shrubs and by long- and medium-distance migrants, i.e., Turdus merula (2.73), T. philomelos (2.04), and Erithacus rubecula (1.58). Ixodes ricinus was found to infest the birds most frequently. However, other tick species, i.e., I. trianguliceps, I. crenulatus (synonym I. canisuga), and I. apronophorus, rarely found in eastern Poland, were also found parasitizing birds. The occurrence of I. persulcatus, I. frontalis, and I. acuminatus (synonym I. redikorzevi) was confirmed in the region for the first time. The results of the study suggest that captured bird species are susceptible to tick infestation and could play an important role in the circulation of some tick-borne pathogens. They also play a significant role in the spread of ticks. The ecology and ethology of birds, including their foraging styles and migratory habits, are factors determining the risk of exposure of birds to tick attacks.
Collapse
Affiliation(s)
- Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Renata Kunc-Kozioł
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Maciej Filipiuk
- Department of Zoology and Nature Protection, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Robert Rudolf
- Kaliszany Ornithological Station, 24-340 Stare Kaliszany, Poland
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| |
Collapse
|
8
|
Keve G, Sándor AD, Hornok S. Hard ticks (Acari: Ixodidae) associated with birds in Europe: Review of literature data. Front Vet Sci 2022; 9:928756. [PMID: 36090176 PMCID: PMC9453168 DOI: 10.3389/fvets.2022.928756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hard ticks (Acari: Ixodidae) are considered the most important transmitters of pathogens in the temperate zone that covers most of Europe. In the era of climate change tick-borne diseases are predicted to undergo geographical range expansion toward the north through regions that are connected to southern areas of the continent by bird migration. This alone would justify the importance of synthesized knowledge on the association of tick species with avian hosts, yet birds also represent the most taxonomically and ecologically diverse part of urban vertebrate fauna. Birds frequently occur in gardens and near animal keeping facilities, thus playing a significant role in the dispersal of ticks and tick-borne pathogens in synanthropic environments. The primary aim of this review is to provide a comprehensive reference source (baseline data) for future studies, particularly in the context of discovering new tick-host associations after comparison with already published data. The records on the ixodid tick infestations of birds were assessed from nearly 200 papers published since 1952. In this period, 37 hard tick species were reported from 16 orders of avian hosts in Europe. Here we compile a list of these tick species, followed by the English and Latin name of all reported infested bird species, as well as the tick developmental stage and country of origin whenever this information was available. These data allowed a first-hand analysis of general trends regarding how and at which developmental stage of ticks tend to infest avian hosts. Five tick species that were frequently reported from birds and show a broad geographical distribution in the Western Palearctic (Ixodes arboricola, I. frontalis, I. ricinus, Haemaphysalis concinna and Hyalomma marginatum) were also selected for statistical comparisons. Differences were demonstrated between these tick species regarding their association with bird species that typically feed from the ground and those that rarely occur at the soil level. The ecology of these five bird-infesting tick species is also illustrated here according to avian orders, taking into account the ecology (habitat type) and activity (circadian rhythm and feeding level) of most bird species that represent a certain order.
Collapse
Affiliation(s)
- Gergő Keve
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Attila D. Sándor
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- *Correspondence: Attila D. Sándor
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| |
Collapse
|
9
|
Rataud A, Galon C, Bournez L, Henry PY, Marsot M, Moutailler S. Diversity of Tick-Borne Pathogens in Tick Larvae Feeding on Breeding Birds in France. Pathogens 2022; 11:pathogens11080946. [PMID: 36015066 PMCID: PMC9414652 DOI: 10.3390/pathogens11080946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Birds play a role in maintaining tick-borne diseases by contributing to the multiplication of ticks and pathogens on a local scale during the breeding season. In the present study, we describe the diversity of tick and pathogen species of medical and veterinary importance in Europe hosted by 1040 captured birds (56 species) during their breeding season in France. Of the 3114 ticks collected, Ixodes ricinus was the most prevalent species (89.5%), followed by I. frontalis (0.8%), I. arboricola (0.7%), Haemaphysalis concinna (0.5%), H. punctata (0.5%), Hyalomma spp. (0.2%), and Rhipicephalus spp. (0.06%). Because they may be representative of the bird infection status for some pathogen species, 1106 engorged tick larvae were screened for pathogens. Borrelia burgdorferi sensu lato was the most prevalent pathogen genus in bird-feeding larvae (11.7%), followed by Rickettsia spp. (7.4%), Anaplasma spp. (5.7%), Babesia spp. (2.3%), Ehrlichia spp. (1.4%), and B. miyamotoi (1%). Turdidae birds (Turdus merula and T. philomelos), Troglodytes troglodytes, and Anthus trivialis had a significantly higher prevalence of B. burgdorferi s.l.-infected larvae than other pathogen genera. This suggests that these bird species could act as reservoir hosts for B. burgdorferi s.l. during their breeding season, and thus play an important role in acarological risk.
Collapse
Affiliation(s)
- Amalia Rataud
- Laboratory for Animal Health, Epidemiology Unit, Université Paris Est, ANSES, 94700 Maisons-Alfort, France
| | - Clemence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Laure Bournez
- ANSES, Nancy Laboratory for Rabies and Wildlife, 54220 Malzéville, France
| | - Pierre-Yves Henry
- Mécanismes Adaptatifs et Evolution (MECADEV UMR 7179), Muséum National d’Histoire Naturelle, CNRS, 91800 Brunoy, France
- Centre de Recherches sur la Biologie des Populations d’Oiseaux (CRBPO), Centre d’Ecologie et des Sciences de la Conservation (CESCO UMR 7204), Muséum National d’Histoire Naturelle, CNRS, 75005 Paris, France
| | - Maud Marsot
- Laboratory for Animal Health, Epidemiology Unit, Université Paris Est, ANSES, 94700 Maisons-Alfort, France
- Correspondence: (M.M.); (S.M.)
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
- Correspondence: (M.M.); (S.M.)
| |
Collapse
|
10
|
Sormunen JJ, Klemola T, Vesterinen EJ. Ticks (Acari: Ixodidae) parasitizing migrating and local breeding birds in Finland. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:145-156. [PMID: 34787774 PMCID: PMC8702513 DOI: 10.1007/s10493-021-00679-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Ticks are globally renowned vectors for numerous zoonoses, and birds have been identified as important hosts for several species of hard ticks (Acari: Ixodidae) and tick-borne pathogens. Many European bird species overwinter in Africa and Western Asia, consequently migrating back to breeding grounds in Europe in the spring. During these spring migrations, birds may transport exotic tick species (and associated pathogens) to areas outside their typical distribution ranges. In Finland, very few studies have been conducted regarding ticks parasitizing migrating or local birds, and existing data are outdated, likely not reflecting the current situation. Consequently, in 2018, we asked volunteer bird ringers to collect ticks from migrating and local birds, to update current knowledge on ticks found parasitizing birds in Finland. In total 430 ticks were collected from 193 birds belonging to 32 species, caught for ringing between 2018 and 2020. Furthermore, four Ixodes uriae were collected from two roosting islets of sea birds in 2016 and 2020. Ticks collected on birds consisted of: Ixodes ricinus (n = 421), Ixodes arboricola (4), Ixodes lividus (2) and Hyalomma marginatum (3). Ixodes ricinus loads (nymphs and larvae) were highest on thrushes (Passeriformes: Turdidae) and European robins (Erithacus rubecula). The only clearly imported exotic tick species was H. marginatum. This study forms the second report of both I. uriae and I. arboricola from Finland, and possibly the northernmost observation of I. arboricola from Europe. The importation of exotic tick species by migrating birds seems a rare occurrence, as over 97% of all ticks collected from birds arriving in Finland during their spring migrations were I. ricinus, a species native to and abundant in Finland.
Collapse
Affiliation(s)
| | - Tero Klemola
- Department of Biology, University of Turku, Turku, Finland
| | - Eero J Vesterinen
- Department of Biology, University of Turku, Turku, Finland
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Ciebiera O, Łopińska A, Gabryś G. Ticks on game animals in the fragmented agricultural landscape of western Poland. Parasitol Res 2021; 120:1781-1788. [PMID: 33788023 PMCID: PMC8084817 DOI: 10.1007/s00436-021-07132-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/18/2021] [Indexed: 12/03/2022]
Abstract
Ticks (Acari: Ixodida) are well known external parasites of game animals that cause serious veterinary and medical problems. The occurrence and geographical distribution of different species of ticks in Western Poland have changed over the last decades. The purpose of the present study was to determine the species spectrum and prevalence of ticks parasitizing three species of game animals, the Eurasian wild boar Sus scrofa L., red deer Cervus elaphus L., and roe deer Capreolus capreolus (L.) in two hunting districts in Lubuskie Province. In addition, the distribution of ticks on the host’s body and the intensity of infestation were determined. Ticks were collected from dead animals during the hunting seasons in 2013 and 2014, over the periods from May to June and from August to December. In total, 286 specimens were examined: 138 Eurasian wild boars, 8 red deers, and 140 roe deers. Altogether, 1891 ticks were collected. Three species of ticks were determined: Ixodes ricinus (L.), Dermacentor reticulatus (Fabricius, 1794), and Haemaphysalis concinna (C.L. Koch, 1844). H. concinna was recorded for the first time in Lubuskie Province.
Collapse
Affiliation(s)
- Olaf Ciebiera
- Department of Nature Conservation, Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516, Zielona Góra, Poland.
| | - Andżelina Łopińska
- Department of Human Nutrition and Diet Therapy, University of Zielona Góra, Pałac Kalsk - Kalsk 67, 66-100, Sulechów, Poland
| | - Grzegorz Gabryś
- Department of Zoology, Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516, Zielona Góra, Poland
| |
Collapse
|
12
|
Occurrence and Abundance of Dermacentor reticulatus in the Habitats of the Ecological Corridor of the Wieprz River, Eastern Poland. INSECTS 2021; 12:insects12020096. [PMID: 33498682 PMCID: PMC7910990 DOI: 10.3390/insects12020096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Ecological corridors are zones of natural vegetation, which connect with other vegetation strips to create migration routes and provide shelter for animals. One of the longest ecological corridors in eastern Poland runs along the Wieprz River valley. We examined the occurrence and relative abundance of Dermacentor reticulatus in research plots established in the river valley and confirmed the presence of this tick species in each of the seven examined sites. The results of our research show that the habitats of the river ecological corridor can be regarded as preferred habitats of D. reticulatus in eastern Poland. Abstract Ecological corridors are zones of natural vegetation, which connect with other vegetation strips to create migration routes for animals and plants. The aim of our study was to investigate the occurrence and relative abundance of Dermacentor reticulatus in various habitats of the ecological corridor of the Wieprz River in eastern Poland. Ticks were collected using the flagging method in seven sites within the ecological corridor of the Wieprz River, i.e., one of the longest uninterrupted vegetation strips in eastern Poland. The presence of D. reticulatus adults was confirmed in each of the examined sites. The autumn peak of tick activity dominated in most plots. During this period, on average up to 309.7 individuals were collected within 30-min. The results of our study show that, due to the high abundance of local D. reticulatus populations, the habitats located in the ecological corridor of the Wieprz River can be regarded as preferred habitats of this tick species.
Collapse
|
13
|
Pacheco I, Acevedo P, Prado E, Mihalca AD, de la Fuente J. Targeting the Exoskeleton Elementome to Track Tick Geographic Origins. Front Physiol 2020; 11:572758. [PMID: 33071826 PMCID: PMC7538837 DOI: 10.3389/fphys.2020.572758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/28/2020] [Indexed: 02/03/2023] Open
Abstract
Understanding the origin of ticks is essential for evaluating the risk of tick-borne disease introduction into new territories. However, when collecting engorged ticks from a host, it is virtually impossible to identify the geographical location where this tick was acquired. Recently, the elementome of tick exoskeleton was characterized by using scanning electron microscopy (SEM) and energy dispersive spectroscopy analysis (EDS). The objective of our preliminary proof-of-concept study was to evaluate the use of SEM-EDS for the analysis of tick exoskeleton elementome to gain insight into the tick geographic and host origin. For this preliminary analysis we used 10 samples of engorged ticks (larvae and nymphs of six species from three genera) collected from various resident hosts and locations. The elementome of the tick exoskeleton was characterized in dorsal and ventral parts with three scans on each part using an EDS 80 mm2 detector at 15 kV in a field emission scanning electron microscope. We used principal component analysis (PCA) (varimax rotation) to reduce the redundancy of data under the premise of losing information as little as possible. The PCA was used to test whether the different variables (tick species, stages, hosts, or geographic locations) differ in the composition of exoskeleton elementome (C, O, P, Cl, and Na). Analyses were carried out using SPSS. The PCA analysis explained a high percentage of variance using the first two factors, C and O (86.13%). The first PC (PC-1; 63.12%) was positively related to P, Cl, and Na, and negatively related to C. The second principal component (23.01%) was mainly positively related to C. In the space defined by the two extracted PC (PC-1 and PC-2), the elementome of tick samples was clearly associated with tick species, but not with developmental stages, hosts or geographic locations. A differentiated elementome pattern was observed within Romanian regions (CJ and TL) for the same tick species. The use of the SEM-EDS methodological approach provided additional information about the tick exoskeleton elementome with possible applications to the identification of tick origin host and location.
Collapse
Affiliation(s)
- Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, Universidad de Castilla-La Mancha, Junta de Comunidades de Castilla-La Mancha, Ciudad Real, Spain
| | - Pelayo Acevedo
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, Universidad de Castilla-La Mancha, Junta de Comunidades de Castilla-La Mancha, Ciudad Real, Spain.,Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Eduardo Prado
- Department of Applied Physics, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, Consejo Superior de Investigaciones Científicas, Universidad de Castilla-La Mancha, Junta de Comunidades de Castilla-La Mancha, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
14
|
Grassi L, Tagliapietra V, Rizzoli A, Martini M, Drigo M, Franzo G, Menandro ML. Lack of Evidence on the Susceptibility of Ticks and Wild Rodent Species to PCV3 Infection. Pathogens 2020; 9:pathogens9090682. [PMID: 32825701 PMCID: PMC7558181 DOI: 10.3390/pathogens9090682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Porcine circovirus 3 (PCV3) is an emerging virus, first detected in 2016 and widespread in the swine industry. Although not considered a primary pathogen, PCV3 is potentially linked to several clinical conditions that threaten swine farming. Wild boars are considered the main reservoir species for PCV3 infection in the wild, but recent detection in roe deer, chamois and associated ticks has complicated our understanding of its epidemiology. Much emphasis has been placed on ticks, as competent vectors, and wild rodents, which typically feed immature tick stages. The aim of this study was to clarify whether wild rodent species and associated ticks are susceptible to PCV3 infection and involved in its spread. Wild small mammals' serum samples and hosted ticks were, therefore, collected from areas where no wild boars were present and tested by PCR, targeting the PCV3 rep gene. A total of 90 yellow-necked mice (Apodemus flavicollis), two wood mice (A. sylvaticus), 26 bank voles (Myodes glareolus) and 262 Ixodes spp. ticks were investigated. PCV3 DNA was not detected in serum or in tick samples. These findings support the hypothesis that the investigated species do not have an actual role as PCV3 reservoirs. Further studies would be necessary to state whether these species, or others that we did not test, are involved in PCV3 infection spread-in particular when susceptible species share the same habitat.
Collapse
Affiliation(s)
- Laura Grassi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Padua, Italy; (L.G.); (M.M.); (M.D.); (M.L.M.)
| | - Valentina Tagliapietra
- Fondazione Edmund Mach, Research and Innovation Center, 38010 San Michele all’Adige, TN, Italy; (V.T.); (A.R.)
| | - Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation Center, 38010 San Michele all’Adige, TN, Italy; (V.T.); (A.R.)
| | - Marco Martini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Padua, Italy; (L.G.); (M.M.); (M.D.); (M.L.M.)
| | - Michele Drigo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Padua, Italy; (L.G.); (M.M.); (M.D.); (M.L.M.)
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Padua, Italy; (L.G.); (M.M.); (M.D.); (M.L.M.)
- Correspondence:
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020 Legnaro, Padua, Italy; (L.G.); (M.M.); (M.D.); (M.L.M.)
| |
Collapse
|
15
|
The Potential Role of Migratory Birds in the Rapid Spread of Ticks and Tick-Borne Pathogens in the Changing Climatic and Environmental Conditions in Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062117. [PMID: 32209990 PMCID: PMC7142536 DOI: 10.3390/ijerph17062117] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/28/2022]
Abstract
This opinion piece highlights the role of migratory birds in the spread of ticks and their role in the circulation and dissemination of pathogens in Europe. Birds with different lifestyles, i.e., non-migrants residing in a specific area, or short-, medium-, and long-distance migrants, migrating within one or several distant geographical regions are carriers of a number of ticks and tick-borne pathogens. During seasonal migrations, birds that cover long distances over a short time and stay temporarily in different habitats can introduce tick and pathogen species in areas where they have never occurred. An increase in the geographical range of ticks as well as the global climate changes affecting the pathogens, vectors, and their hosts increase the incidence and the spread of emerging tick-borne diseases worldwide. Tick infestations of birds varied between regions depends on the rhythms of tick seasonal activity and the bird migration rhythms determined by for example, climatic and environmental factors. In areas north of latitude ca. 58°N, immature Ixodes ricinus ticks are collected from birds most frequently, whereas ticks from the Hyalomma marginatum group dominate in areas below 42°N. We concluded that the prognosis of hazards posed by tick-borne pathogens should take into account changes in the migration of birds, hosts of many epidemiologically important tick species.
Collapse
|