1
|
Yoshizawa Y, Yokosuka A, Inomata M, Iguchi T, Mimaki Y. Steroidal constituents in the whole plants of Helleborus niger and their cytotoxic activity in vitro. PHYTOCHEMISTRY 2024; 229:114272. [PMID: 39260588 DOI: 10.1016/j.phytochem.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Phytochemical investigation of the whole plants of Helleborus niger L. (Ranunculaceae) resulted in the isolation of five undescribed compounds, including one bufadienolide (1), two bufadienolide rhamnosides (2 and 3), and two ecdysteroids (12 and 13), along with eight known compounds (4-11). The chemical structures of 1-3, 12, and 13 were determined by spectroscopic studies, including 2D NMR, and chromatographic and spectroscopic analyses of the hydrolyzed products. Compounds 1-13 were evaluated for their cytotoxic activity against HL-60 human leukemia cells, A549 human lung adenocarcinoma cells, SBC-3 human small-cell lung cancer cells, and TIG-3 human normal diploid lung cells. Compounds 1-12 showed cytotoxic activity against HL-60, A549, and SBC-3 cells, with IC50 values ranging from 0.0016 to 6.1 μM. Bufadienolide rhamnoside 2 exhibited potent cell proliferation inhibitory activity against SBC-3 cells after 24-48 h of treatment and apoptosis-inducing activity in SBC-3 cells via an intrinsic pathway after 72 h of treatment. The JFCR39 panel screening of 2 suggests that the molecular target of 2 is Na+,K+-ATPase.
Collapse
Affiliation(s)
- Yuka Yoshizawa
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akihito Yokosuka
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Mina Inomata
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tomoki Iguchi
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
2
|
Correia C, Maurer MJ, McDonough SJ, Schneider PA, Ross PE, Novak AJ, Feldman AL, Cerhan JR, Slager SL, Witzig TE, Eckloff BW, Li H, Nowakowski GS, Kaufmann SH. Relationship between BCL2 mutations and follicular lymphoma outcome in the chemoimmunotherapy era. Blood Cancer J 2023; 13:81. [PMID: 37193683 PMCID: PMC10188323 DOI: 10.1038/s41408-023-00847-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
How to identify follicular lymphoma (FL) patients with low disease burden but high risk for early progression is unclear. Building on a prior study demonstrating the early transformation of FLs with high variant allele frequency (VAF) BCL2 mutations at activation-induced cytidine deaminase (AICDA) sites, we examined 11 AICDA mutational targets, including BCL2, BCL6, PAX5, PIM1, RHOH, SOCS, and MYC, in 199 newly diagnosed grade 1 and 2 FLs. BCL2 mutations with VAF ≥20% occurred in 52% of cases. Among 97 FL patients who did not initially receive rituximab-containing therapy, nonsynonymous BCL2 mutations at VAF ≥20% were associated with increased transformation risk (HR 3.01, 95% CI 1.04-8.78, p = 0.043) and a trend toward shorter event-free survival (EFS, median 20 months with mutations versus 54 months without, p = 0.052). Other sequenced genes were less frequently mutated and did not increase the prognostic value of the panel. Across the entire population, nonsynonymous BCL2 mutations at VAF ≥20% were associated with decreased EFS (HR 1.55, 95% CI 1.02-2.35, p = 0.043 after correction for FLIPI and treatment) and decreased overall survival after median 14-year follow-up (HR 1.82, 95% CI 1.05-3.17, p = 0.034). Thus, high VAF nonsynonymous BCL2 mutations remain prognostic even in the chemoimmunotherapy era.
Collapse
Affiliation(s)
- Cristina Correia
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Samantha J McDonough
- Medical Genome Facility, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Paula A Schneider
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Paige E Ross
- Genomics Systems Unit, Mayo Clinic, Rochester, MN, 55905, USA
| | - Anne J Novak
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Susan L Slager
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Thomas E Witzig
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Bruce W Eckloff
- Medical Genome Facility, Mayo Clinic, 200 First Street, S.W., Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Grzegorz S Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Scott H Kaufmann
- Division of Oncology Research, Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Division of Hematology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Ucar A, Yeltekin AÇ, Köktürk M, Calimli MH, Nas MS, Parlak V, Alak G, Atamanalp M. Has PdCu@GO effect on oxidant/antioxidant balance? Using zebrafish embryos and larvae as a model. Chem Biol Interact 2023; 378:110484. [PMID: 37054932 DOI: 10.1016/j.cbi.2023.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Industrial products containing PdCu@GO can gain access to the aquaculture environment, causing dangerous effects on living biota. In this study, the developmental toxicity of zebrafish treated with different concentrations (50, 100, 250, 500 and 1000 μg/L) of PdCu@GO was investigated. The findings showed that PdCu@GO administration decreased the hatchability and survival rate, caused dose-dependent cardiac malformation. Reactive oxygen species (ROS) and apoptosis were also inhibited in a dose-dependent manner, with acetylcholinesterase (AChE) activity affected by nano-Pd exposure. As evidence for oxidative stress, malondialdehyde (MDA) level increased and superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx) activities and glutathione (GSH) level decreased due to the increase in PdCu@GO concentration. Our research, it was determined that the oxidative stress stimulated by the increase in the concentration of PdCu@GO in zebrafish caused apoptosis (Caspase-3) and DNA damage (8-OHdG). Stimulation of ROS, inflammatory cytokines, tumor Necrosis Factor Alfa (TNF-α) and interleukin - 6 (IL-6), which act as signaling molecules to trigger proinflammatory cytokine production, induced zebrafish immunotoxicity. However, it was determined that the increase of ROS induced teratogenicity through the induction of nuclear factor erythroid 2 level (Nrf-2), NF-κB and apoptotic signaling pathways triggered by oxidative stress. Taken together with the research findings, the study contributed to a comprehensive assessment of the toxicological profile of PdCu@GO by investigating the effects on zebrafish embryonic development and potential molecular mechanisms.
Collapse
Affiliation(s)
- Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | | | - Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Iğdır University, TR-76000, Iğdır, Turkey
| | - Mehmet Harbi Calimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Iğdır University, TR-76000, Iğdır, Turkey
| | - Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Iğdır University, TR-76000, Iğdır, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
4
|
Takahashi N, Iguchi T, Nagamine A, Shirai R, Nagata A, Yamauchi J, Mimaki Y. Structure Elucidation of 16 Undescribed Steroidal Glycosides from the Underground Parts of Agapanthus africanus and Apoptosis-Inducing Activity in Small-Cell Lung Cancer Cell. ACS OMEGA 2023; 8:2808-2830. [PMID: 36687079 PMCID: PMC9851033 DOI: 10.1021/acsomega.2c07766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
To explore new candidates for anticancer agents from natural products, the underground parts of Agapanthus africanus, commonly used as an ornamental plant, were investigated phytochemically. As a result, 16 undescribed steroidal glycosides (1-16) were obtained, and their structures were determined mainly by NMR spectroscopic analysis and chemical transformations. The cytotoxic activities of the isolated compounds (1-16) against SBC-3 human small-cell lung cancer cells, A549 human adenocarcinoma cells, and HL-60 human promyelocytic leukemia cells were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2-tetrazolium bromide (MTT) assay. Compound 1, a bisdesmosidic furostanol glycoside, and 10, a bisdesmosidic spirostanol glycoside, were cytotoxic to all three cell lines with IC50 values ranging from 1.2 to 13 μM. As 1 exhibited the most potent cytotoxicity against SBC-3 cells among the isolated compounds, its apoptosis-inducing activity toward SBC-3 cells was examined. Compound 1 arrested SBC-3 cells at the G2/M phase of the cell cycle and effectively induced apoptosis via an intrinsic pathway accompanied by the dissipation of membrane potential and morphological changes in mitochondria.
Collapse
Affiliation(s)
- Naoki Takahashi
- Department
of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tomoki Iguchi
- Department
of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Anju Nagamine
- Department
of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Remina Shirai
- Laboratory
of Molecular Neurology, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akihiro Nagata
- Department
of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Junji Yamauchi
- Laboratory
of Molecular Neurology, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Department
of Pharmacology, National Research Institute
for Child Health and Development, 2-10-1, Okura, Setagaya, Tokyo 157-8535, Japan
| | - Yoshihiro Mimaki
- Department
of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
5
|
Novel Oleanane-Type Triterpene Glycosides from the Saponaria officinalis L. Seeds and Apoptosis-Inducing Activity via Mitochondria. Int J Mol Sci 2022; 23:ijms23042047. [PMID: 35216169 PMCID: PMC8877789 DOI: 10.3390/ijms23042047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Saponaria officinalis L., commonly known as “Soapwort”, is a rich source of triterpene glycosides; however, the chemical constituents of S. officinalis seeds have not been fully identified. In this study, we conducted a systematic phytochemical investigation of the seeds of S. officinalis and obtained 17 oleanane-type triterpene glycosides (1–17), including seven new glycosides (1–7). The structures of 1–7 were determined based on a detailed analysis of NMR spectroscopic data and chromatographic and spectroscopic analyses following specific chemical transformation. The cytotoxicities of the isolated compounds were evaluated against HL-60 human promyelocytic leukemia cells, A549 human adenocarcinoma lung cancer cells, and SBC-3 human small-cell lung cancer cells. The cytotoxicities of 1, 4, and 10 toward HL-60 cells and SBC-3 cells were nearly as potent as that of cisplatin. Compound 1, a bisdesmosidic triterpene glycoside obtained in good yield, arrested the cell cycle of SBC-3 cells at the G2/M phase, and induced apoptosis through an intrinsic pathway, accompanied by ROS generation. As a result of the mitochondrial dysfunction induced by 1, mitochondria selective autophagy, termed mitophagy, occurred in SBC-3 cells.
Collapse
|
6
|
Schneider D, Xiong Y, Wu D, Hu P, Alabanza L, Steimle B, Mahmud H, Anthony-Gonda K, Krueger W, Zhu Z, Dimitrov DS, Orentas RJ, Dropulić B. Trispecific CD19-CD20-CD22-targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors in preclinical models. Sci Transl Med 2021; 13:13/586/eabc6401. [PMID: 33762438 DOI: 10.1126/scitranslmed.abc6401] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/21/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
A substantial number of patients with leukemia and lymphoma treated with anti-CD19 or anti-CD22 monoCAR-T cell therapy relapse because of antigen loss or down-regulation. We hypothesized that B cell tumor antigen escape may be overcome by a chimeric antigen receptor (CAR) design that simultaneously targets three B cell leukemia antigens. We engineered trispecific duoCAR-T cells with lentiviral vectors encoding two CAR open reading frames that target CD19, CD20, and CD22. The duoCARs were composed of a CAR with a tandem CD19- and CD20-targeting binder, linked by the P2A self-cleaving peptide to a second CAR targeting CD22. Multiple combinations of intracellular T cell signaling motifs were evaluated. The most potent duoCAR architectures included those with ICOS, OX40, or CD27 signaling domains rather than those from CD28 or 4-1BB. We identified four optimal binder and signaling combinations that potently rejected xenografted leukemia and lymphoma tumors in vivo. Moreover, in mice bearing a mixture of B cell lymphoma lines composed of parental triple-positive cells, CD19-negative, CD20-negative, and CD22-negative variants, only the trispecific duoCAR-T cells rapidly and efficiently rejected the tumors. Each of the monoCAR-T cells failed to prevent tumor progression. Analysis of intracellular signaling profiles demonstrates that the distinct signaling of the intracellular domains used may contribute to these differential effects. Multispecific duoCAR-T cells are a promising strategy to prevent antigen loss-mediated relapse or the down-regulation of target antigen in patients with B cell malignancies.
Collapse
Affiliation(s)
- Dina Schneider
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA.
| | - Ying Xiong
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Darong Wu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Peirong Hu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Leah Alabanza
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Brittany Steimle
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Hasan Mahmud
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | | | - Winfried Krueger
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Zhongyu Zhu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | | | - Rimas J Orentas
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Boro Dropulić
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA.
| |
Collapse
|
7
|
Handa K, Jindal R. Genotoxicity induced by hexavalent chromium leading to eryptosis in Ctenopharyngodon idellus. CHEMOSPHERE 2020; 247:125967. [PMID: 32069732 DOI: 10.1016/j.chemosphere.2020.125967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/02/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
The initiation of eryptosis as a result of genotoxic action of Cr(VI), seen through micronucleus and comet assay in the peripheral erythrocytes of Ctenopharyngodon idellus was evaluated through RT-qPCR. For this, fish was exposed to sublethal concentration of hexavalent chromium (5.30 and 10.63 mg/L), and the blood was sampled on different endpoints (15, 30 and 45 days). Accumulation of chromium in the erythrocytes was also studied, which depicted a significant increase in toxicant concentration and time dependent manner. Both concentrations of hexavalent chromium induced DNA damage, visible in the form of comet tails. The presence of micronuclei in the erythrocytes was accompanied with occurrence of nuclear bud (NBu), lobed nucleus (Lb), notched nucleus (Nt), vacuolated nucleus (Vn), binucleated cell (Bn) as nuclear abnormalities; and acanthocytes (Ac), echinocytes (Ec), notched cells (Nc), microcytes (Mc) and vacuolated cytoplasm (Vc) as cytoplasmic abnormalities. The expression of genes related to intrinsic apoptotic pathway induced by Cr(VI) presented significant (p < 0.05) upregulation in the expression of p53, Bax, Apaf-1, caspase9 and caspase3, and downregulation of Bcl2; inferring the initiation of apoptotic pathway. The ration of Bax and Bcl2 also appended the apoptotic state of the erythrocytes. From the present investigation, it can be concluded that genotoxicity induced by hexavalent chromium lead to eryptosis in C. idellus.
Collapse
Affiliation(s)
- Kriti Handa
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Wang G, Shao J, Wu M, Meng Y, Gul Y, Yang H, Xiong D. Effect of acute exposure of triazophos on histological structure and apoptosis of the brain and liver of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:646-655. [PMID: 31136875 DOI: 10.1016/j.ecoenv.2019.05.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Triazophos (TAP) has become a part of widespread pollutant of the aquatic environment due to its residue. Current study was designed to investigate the toxic effect of TAP at different doses (0.06, 0.3 and 1.5 mg/L) to the model organism of zebrafish (Danio rerio) by using multi-endpoint analysis in a 96 h acute exposure test. The direct observation that histological and ultrastructural alteration of zebrafish brain and liver were carried out via paraffin section in hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM), respectively. In addition, a series of methods were applied for exploring the physiological parameters related to cellular apoptosis. Results indicated that vacuolar structure after 96 h treatment with TAP were appeared in the molecular and granular layers of cerebellum. A large number of nuclear retraction, tissues vacuolation and cytoplasmic loss were observed in liver at histological level. From the fine structural level, the mitochondrial vacuolation and membrane damage of brain cells were found and the cristae of mitochondria disintegrated partly in hepatocytes. Onset of such histological structure alterations were one of the most intuitive reflection to TAP exposure, which needs to analyze biochemical alterations for further study. The mitochondrial membrane potential (MMP) showed a downward trend in the brain and liver of zebrafish. Simultaneously, the activity of caspase-3 and caspase-9 increased after 96 h exposure with a concentration-dependent manner, which could be served as a suitable indicator of cellular apoptosis. Furthermore, apoptosis-related genes (Apaf-1, p53, Bax, Bcl-2, caspase-3 and caspase-9) transcription showed different alterations in response to the TAP treatment. These results indicated that TAP exposure led to apoptosis in zebrafish brain and liver and it was speculated that the apoptosis may occur through mitochondrial pathway. The present study demonstrated that the exposure of zebrafish to the insecticide TAP led to observe its effects at both histological structure and apoptosis level in liver and brain.
Collapse
Affiliation(s)
- Guihua Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jian Shao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Manni Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanxiao Meng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yasmeen Gul
- Department of Zoology, Government College Women University, Faisalabad, 38860, Pakistan
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Dongmei Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, How CW, Masarudin MJ, Abdullah R, Alitheen NB. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep 2019; 9:1614. [PMID: 30733560 PMCID: PMC6367486 DOI: 10.1038/s41598-018-38214-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
Collapse
Affiliation(s)
- Noraini Nordin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani City, Kurdistan Region, Iraq
| | - Nur Rizi Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Cheras, Wilayah Persekutuan, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee Wun How
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Pharmacy, MAHSA University, Jenjarom, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi SP. An in vivo analysis of Cr 6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:158-167. [PMID: 29753883 DOI: 10.1016/j.aquatox.2018.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Present study was designed to assess the hexavalent chromium (Cr6+) mediated oxidative stress that induces DNA damage and apoptosis in adult fish, Channa punctatus (35 ± 3.0 g; 14.5 ± 1.0 cm; Actinopterygii). Fishes were maintained in three groups for 15, 30 and 45 d of exposure periods. They were treated with 5% (Group T1) and 10% (Group T2) of 96 h-LC50 of chromium trioxide (Cr6+). Controls were run for the similar duration. A significant (p < 0.05) increment in the activities of antioxidant enzymes, SOD and CAT in liver tissues of the exposed fish evinces the persistence of oxidative stress. A significant (p < 0.05) increase in induction of micronuclei (MN) coupled with transcriptional responses of target genes related to antioxidant enzymes, DNA damage and apoptosis (sod, cat, gsr, nox-1, p53, bax, bcl-2, apaf-1 and casp3a) establishes the impact of oxidative stress due to in vivo, Cr6+ accumulation in liver as compared to control (0 mg/L), in a dose and exposure-dependent manner. Initially, the increased level of reactive oxygen species (ROS) in liver coincided with that of enhanced mRNA expression of antioxidant enzymes, sod, cat, gsr and nox-1 but, later, the overproduction of ROS, after 45 d of exposure of Cr6+, resulted in a significant (p < 0.05) up-regulation of p53. Our findings also unveil that the up-regulation of bax, apaf-1 and casp3a and down-regulation of bcl-2 are associated with Cr6+-induced oxidative stress mediated-apoptosis in liver of test fish. Aforesaid molecular markers can, thus, be efficiently utilized for bio-monitoring of aquatic regimes and conservation of fish biodiversity.
Collapse
Affiliation(s)
- Yashika Awasthi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Arun Ratn
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Rajesh Prasad
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Manoj Kumar
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Sunil P Trivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| |
Collapse
|
11
|
Mukherjee AK, Saviola AJ, Mackessy SP. Cellular mechanism of resistance of human colorectal adenocarcinoma cells against apoptosis-induction by Russell's Viper venom l-amino acid oxidase (Rusvinoxidase). Biochimie 2018; 150:8-15. [PMID: 29702182 DOI: 10.1016/j.biochi.2018.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/22/2018] [Indexed: 01/19/2023]
Abstract
The present study highlights the cellular mechanism of resistance in human adenocarcinoma (Colo-205) cells against apoptosis induction by Rusvinoxidase, an l-amino acid oxidase purified from Russell's Viper venom (RVV). The significantly lower cytotoxicity as well as apoptotic activity of Rusvinoxidase towards Colo-205 cells (compared to MCF-7 breast cancer cells) is correlated with lower depletion of cellular glutathione content and increased down-regulation of catalase activity of Colo-205 cells following Rusvinoxidase treatment. Exposure to Rusvinoxidase subsequently diminished reactive oxygen species (ROS) production and failed to impair mitochondrial membrane potential, resulting in apoptosis induction resistance in Colo-205 cells. Further, higher expression levels of caspase 8, compared to caspase 9, indicate that Rusvinoxidase preferentially triggers the extrinsic pathway of apoptosis in Colo-205 cells. A time-dependent lower ratio of the relative expression of Bax and Bcl-xL (pro- and anti-apoptotic proteins) in Colo-205 cells, compared to our previous study on MCF-7 cells, unambiguously supports a higher cellular resistance mechanism in Colo-205 cells against Rusvinoxidase-induced apoptosis.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, USA; Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India.
| | - Anthony J Saviola
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, USA.
| |
Collapse
|
12
|
Mazumder S, De R, Sarkar S, Siddiqui AA, Saha SJ, Banerjee C, Iqbal MS, Nag S, Debsharma S, Bandyopadhyay U. Selective scavenging of intra-mitochondrial superoxide corrects diclofenac-induced mitochondrial dysfunction and gastric injury: A novel gastroprotective mechanism independent of gastric acid suppression. Biochem Pharmacol 2016; 121:33-51. [PMID: 27693316 DOI: 10.1016/j.bcp.2016.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat multiple inflammatory diseases and pain but severe gastric mucosal damage is the worst outcome of NSAID-therapy. Here we report that mitoTEMPO, a mitochondrially targeted superoxide (O2-) scavenger protected as well as healed gastric injury induced by diclofenac (DCF), the most commonly used NSAID. Common existing therapy against gastric injury involves suppression of gastric acid secretion by proton pump inhibitors and histamine H2 receptor antagonists; however, dyspepsia, vitamin B12 deficiency and gastric microfloral dysbalance are the major drawbacks of acid suppression. Interestingly, mitoTEMPO did not inhibit gastric acid secretion but offered gastroprotection by preventing DCF-induced generation of O2- due to mitochondrial respiratory chain failure and by preventing mitochondrial oxidative stress (MOS)-mediated mitopathology. MitoTEMPO even restored DCF-stimulated reduced fatty acid oxidation, mitochondrial depolarization and bioenergetic crisis in gastric mucosa. MitoTEMPO also prevented the activation of mitochondrial pathway of apoptosis and MOS-mediated proinflammatory signaling through NF-κB by DCF. Furthermore, mitoTEMPO when administered in rats with preformed gastric lesions expedited the healing of gastric injury and the healed stomach exhibited its normal physiology as evident from gastric acid and pepsin secretions under basal or stimulated conditions. Thus, in contrast to the existing antiulcer drugs, mitochondrially targeted O2- scavengers like mitoTEMPO may represent a novel class of gastroprotective molecules that does not affect gastric acid secretion and may be used in combination with DCF, keeping its anti-inflammatory action intact, while reducing its gastrodamaging effects.
Collapse
Affiliation(s)
- Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Rudranil De
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Souvik Sarkar
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Mohd Shameel Iqbal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, West Bengal, India.
| |
Collapse
|
13
|
Abulayha A, Bredan A, El Enshasy H, Daniels I. Rituximab: modes of action, remaining dispute and future perspective. Future Oncol 2015; 10:2481-92. [PMID: 25525856 DOI: 10.2217/fon.14.146] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Less than two decades ago, immunotherapy joined chemotherapy and radiotherapy as an effective approach for the treatment of cancer. The anti-CD20 monoclonal antibody, rituximab, is now used to treat almost all types of non-Hodgkin's B-cell lymphomas, and it could be useful in the treatment of other diseases with B-cell involvement. Upon binding, rituximab induces death of the target cells. It seems to act not only by activating immune system defense mechanisms such as complement-dependent and antibody-dependent cellular cytotoxicity, but also by inducing direct cell death. In this paper, we review current knowledge on rituximab mechanisms of action, with particular attention to its direct effects, and also highlight potential future avenues of research.
Collapse
Affiliation(s)
- Abdulmunem Abulayha
- Cell Biology Research Group, Biotechnology Research Center, Twisha, Tripoli, Libya
| | | | | | | |
Collapse
|
14
|
Smolewski P, Robak T. The preclinical discovery of rituximab for the treatment of non-Hodgkin’s lymphoma. Expert Opin Drug Discov 2015; 10:791-808. [DOI: 10.1517/17460441.2015.1045295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Pérez-Callejo D, González-Rincón J, Sánchez A, Provencio M, Sánchez-Beato M. Action and resistance of monoclonal CD20 antibodies therapy in B-cell Non-Hodgkin Lymphomas. Cancer Treat Rev 2015; 41:680-9. [PMID: 26045227 DOI: 10.1016/j.ctrv.2015.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022]
Abstract
Anti-CD20 monoclonal antibodies (mAbs) have improved patient's survival with Non-Hodgkin Lymphoma, when combined with chemotherapy. Several mechanisms of action have been reported, including antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity and induction of apoptosis. Despite the large amount of studies and published data, the role each mechanism played in vivo is not fully understood. Furthermore, the reason why a significant percentage of patients are refractory or resistant remains unknown. Several activated intracellular signaling pathways have been implicated in the mechanisms of resistance of rituximab. In the present manuscript, we review those mechanisms and new anti-CD20 mAbs, as well as the efforts being accomplished to overcome it, focusing on new drugs targeting pathways implicated in resistance to rituximab.
Collapse
Affiliation(s)
- D Pérez-Callejo
- Medical Oncology Service, HU Puerta de Hierro-Majadahonda, Onco-Hematology Area, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain.
| | - J González-Rincón
- Medical Oncology Service, HU Puerta de Hierro-Majadahonda, Onco-Hematology Area, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain.
| | - A Sánchez
- Medical Oncology Service, HU Puerta de Hierro-Majadahonda, Onco-Hematology Area, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain.
| | - M Provencio
- Medical Oncology Service, HU Puerta de Hierro-Majadahonda, Onco-Hematology Area, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain.
| | - M Sánchez-Beato
- Medical Oncology Service, HU Puerta de Hierro-Majadahonda, Onco-Hematology Area, Instituto de Investigación Sanitaria Puerta de Hierro, Madrid, Spain.
| |
Collapse
|
16
|
Tabal S, Elbanani A, Deyab M, Abulayha A. Rituximab increases the cytotoxicities of vincristine and hydroxyurea through caspase-dependent and caspase-independent cell death, respectively. Cancer Biother Radiopharm 2015; 30:125-31. [PMID: 25714921 DOI: 10.1089/cbr.2014.1769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the treatment of B cell non-Hodgkin's lymphoma, rituximab is used in combination with different chemotherapeutics to improve its efficacy, but the mechanisms involved are not fully understood. The authors examined the mechanism by which rituximab combined with hydroxyurea or vincristine induces cell death in the human Burkitt's lymphoma Ramos cell line. Cell death was analyzed by phosphatidylserine exposure, caspase activation, and mitochondrial membrane changes. Their results indicate that the cell death initiated by the combination of rituximab and hydroxyurea is caspase-independent. In contrast, preincubation of the cells with the same concentrations of caspase inhibitors used with hydroxyurea eliminated the synergistic effect of the rituximab and vincristine combination. This was confirmed by the presence of the active fragment of caspase-3 in vincristine-treated cells. These preliminary results demonstrate that rituximab can activate different downstream signals to induce direct cell effects. Furthermore, the findings support the important role of mitochondria in the regulation of both pathways.
Collapse
Affiliation(s)
- Salah Tabal
- Cell Biology Research Group, Biotechnology Research Center , Twisha, Tripoli, Libya
| | | | | | | |
Collapse
|
17
|
Adem J, Ropponen A, Eeva J, Eray M, Pelkonen J, Nuutinen U. Rituximab-induced early and late signaling have opposite effects on dexamethasone-induced apoptosis in human follicular lymphoma cells. Leuk Lymphoma 2015; 56:2448-57. [PMID: 25563557 DOI: 10.3109/10428194.2014.1001983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The addition of rituximab (RTX) to standard chemotherapy has improved the treatment of B-cell malignancies. We show here that RTX and dexamethasone (Dex) induced synergistic apoptosis in follicular lymphoma cell lines. However, apoptosis was delayed by RTX-induced early protective signaling. RTX-induced early signaling also decreased Dex-induced apoptosis and led to phosphorylation of ERK1/2, Bcl-2 (at serine 70) and phosphorylation/degradation of BimL/EL. All these events were prevented by the MEK inhibitor, UO126. Therefore, we suggest that RTX-induced ERK-mediated signaling events lead to protection from apoptosis during early signaling and that blocking of Bim and Bcl-2 phosphorylation might be used as a novel strategy for lymphoma treatment.
Collapse
Affiliation(s)
- Jemal Adem
- a Department of Clinical Microbiology , Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland.,e Cancer Center of University of Eastern Finland , Kuopio , Finland
| | - Antti Ropponen
- a Department of Clinical Microbiology , Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Jonna Eeva
- a Department of Clinical Microbiology , Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | - Mine Eray
- b Fimlab Laboratories Oy, Tampere University Hospital , Tampere , Finland.,c Department of Medicine,University of Tampere , Tampere , Finland
| | - Jukka Pelkonen
- a Department of Clinical Microbiology , Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland.,d Eastern Finland Laboratory Centre (ISLAB) , Kuopio , Finland.,e Cancer Center of University of Eastern Finland , Kuopio , Finland
| | - Ulla Nuutinen
- a Department of Clinical Microbiology , Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
18
|
Canonical and new generation anticancer drugs also target energy metabolism. Arch Toxicol 2014; 88:1327-50. [PMID: 24792321 DOI: 10.1007/s00204-014-1246-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 01/05/2023]
Abstract
Significant efforts have been made for the development of new anticancer drugs (protein kinase or proteasome inhibitors, monoclonal humanized antibodies) with presumably low or negligible side effects and high specificity. However, an in-depth analysis of the side effects of several currently used canonical (platin-based drugs, taxanes, anthracyclines, etoposides, antimetabolites) and new generation anticancer drugs as the first line of clinical treatment reveals significant perturbation of glycolysis and oxidative phosphorylation. Canonical and new generation drug side effects include decreased (1) intracellular ATP levels, (2) glycolytic/mitochondrial enzyme/transporter activities and/or (3) mitochondrial electrical membrane potentials. Furthermore, the anti-proliferative effects of these drugs are markedly attenuated in tumor rho (0) cells, in which functional mitochondria are absent; in addition, several anticancer drugs directly interact with isolated mitochondria affecting their functions. Therefore, several anticancer drugs also target the energy metabolism, and hence, the documented inhibitory effect of anticancer drugs on cancer growth should also be linked to the blocking of ATP supply pathways. These often overlooked effects of canonical and new generation anticancer drugs emphasize the role of energy metabolism in maintaining cancer cells viable and its targeting as a complementary and successful strategy for cancer treatment.
Collapse
|
19
|
Lee HT, Lin CS, Lee CS, Tsai CY, Wei YH. Increased 8-hydroxy-2'-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus. Clin Exp Immunol 2014; 176:66-77. [PMID: 24345202 PMCID: PMC3958155 DOI: 10.1111/cei.12256] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2013] [Indexed: 12/14/2022] Open
Abstract
We measured plasma levels of the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) and leucocyte mRNA expression levels of the genes encoding the 8-OHdG repair enzyme human 8-oxoguanine DNA glycosylase 1 (hOGG1), the anti-oxidant enzymes copper/zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase-1 (GPx-1), GPx-4, glutathione reductase (GR) and glutathione synthetase (GS), the mitochondrial biogenesis-related proteins mtDNA-encoded ND 1 polypeptide (ND1), ND6, ATPase 6, mitochondrial transcription factor A (Tfam), nuclear respiratory factor 1(NRF-1), pyruvate dehydrogenase E1 component alpha subunit (PDHA1), pyruvate dehydrogenase kinase isoenzyme 1 (PDK-1) and hypoxia inducible factor-1α (HIF-1α) and the glycolytic enzymes hexokinase-II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase A (LDHa). We analysed their relevance to oxidative damage in 85 systemic lupus erythematosus (SLE) patients, four complicated SLE patients undergoing rituximab treatment and 45 healthy individuals. SLE patients had higher plasma 8-OHdG levels (P < 0·01) but lower leucocyte expression of the genes encoding hOGG1(P < 0·01), anti-oxidant enzymes (P < 0·05), mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) than healthy individuals. The increase in plasma 8-OHdG was correlated positively with the elevation of leucocyte expression of the genes encoding hOGG1 (P < 0·05), anti-oxidant enzymes (P < 0·05), several mitochondrial biogenesis-related proteins (P < 0·05) and glycolytic enzymes (P < 0·05) in lupus patients. The patients, whose leucocyte mtDNA harboured D310 heteroplasmy, exhibited a positive correlation between the mtDNA copy number and expression of ND1, ND6 and ATPase 6 (P < 0·05) and a negative correlation between mtDNA copy number and systemic lupus erythematosus disease activity index (SLEDAI) (P < 0·05), as well as plasma 8-OHdG (P < 0·05). In particular, four complicated SLE patients with increased expression of the genes encoding the anti-oxidant enzymes, GAPDH, Tfam and PDHA1, experienced better therapeutic outcomes after rituximab therapy. In conclusion, higher oxidative damage with suboptimal increases in DNA repair, anti-oxidant capacity, mitochondrial biogenesis and glucose metabolism may be implicated in SLE deterioration, and this impairment might be improved by targeted biological therapy.
Collapse
Affiliation(s)
- H-T Lee
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan,Faculty of Medicine, National Yang-Ming UniversityTaipei, Taiwan,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial HospitalTaipei, Taiwan,Department of Medicine, Mackay Medical CollegeNew Taipei City, Taiwan
| | - C-S Lin
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan,Faculty of Medicine, National Yang-Ming UniversityTaipei, Taiwan,Division of Thoracic Surgery, Taipei Hospital, Ministry of Health and WelfareNew Taipei City, Taiwan
| | - C-S Lee
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Mackay Memorial HospitalTaipei, Taiwan,Department of Medicine, Mackay Medical CollegeNew Taipei City, Taiwan,Mackay Junior College of Medicine, Nursing, and ManagementNew Taipei City, Taiwan
| | - C-Y Tsai
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan,Faculty of Medicine, National Yang-Ming UniversityTaipei, Taiwan,Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General HospitalTaipei, Taiwan,Correspondence: C. Y. Tsai, Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, No.201, Section 2, Shi-Pai Road, Bei-Tou District, Taipei 112, Taiwan., Y. H. Wei, Department of Medicine, Mackay Medical College, No. 46, Section 3, Zhong-Zheng Road, San-Zhi District, New Taipei City 252, Taiwan, E-mail: (C. Y. T.) or (Y. H. W.)
| | - Y-H Wei
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan,Institute of Biochemistry and Molecular Biology, National Yang-Ming UniversityTaipei, Taiwan,Faculty of Medicine, National Yang-Ming UniversityTaipei, Taiwan,Department of Medicine, Mackay Medical CollegeNew Taipei City, Taiwan,Correspondence: C. Y. Tsai, Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, No.201, Section 2, Shi-Pai Road, Bei-Tou District, Taipei 112, Taiwan., Y. H. Wei, Department of Medicine, Mackay Medical College, No. 46, Section 3, Zhong-Zheng Road, San-Zhi District, New Taipei City 252, Taiwan, E-mail: (C. Y. T.) or (Y. H. W.)
| |
Collapse
|
20
|
Celastrol induces apoptosis in gefitinib-resistant non-small cell lung cancer cells via caspases-dependent pathways and Hsp90 client protein degradation. Molecules 2014; 19:3508-22. [PMID: 24662070 PMCID: PMC6271537 DOI: 10.3390/molecules19033508] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/26/2014] [Accepted: 03/12/2014] [Indexed: 12/17/2022] Open
Abstract
Celastrol, a triterpene extracted from the Chinese herb Tripterygium wilfordii, has been shown to have multiple bioactivities. Although among these activities, its anti-cancer effects have attracted the most attention, the effect of celastrol on gefitinib-resistant non-small cell lung cancer (NSCLC) cells is not clearly known. Here, we examined the potency of celastrol in three different NSCLC cell lines. We explored its treatment mechanism in two gefitinib-resistant NSCLC cell lines (H1650 and H1975). Our data demonstrated that celastrol exerted its apoptotic effect in a dose- and time-dependent manner. Also, the mitochondria membrane potential was gradually lost and the ratio of Bax/Bcl-2 increased after the treatment of celastrol, both of which are indicators of mitochondria membrane integrity. Although the caspases were activated, the treatment with pan-caspase inhibitor could partially inhibit the level of apoptosis. Moreover, the protein level of Hsp90 client proteins, EGFR and AKT, was measured. Interestingly, both client proteins were remarkably down-regulated after the treatment of celastrol. Taken together, our data showed that celastrol may be developed as a promising agent for treating gefitinib-resistant NSCLCs by inducing apoptosis through caspase-dependent pathways and Hsp90 client protein degradation.
Collapse
|
21
|
Liu D, Yang J, Li Y, Zhang M, Wang L. Cd-induced apoptosis through the mitochondrial pathway in the hepatopancreas of the freshwater crab Sinopotamon henanense. PLoS One 2013; 8:e68770. [PMID: 23894343 PMCID: PMC3718824 DOI: 10.1371/journal.pone.0068770] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 06/03/2013] [Indexed: 11/29/2022] Open
Abstract
Cd is one of the most common pollutants in the environment that also induces the apoptosis. To explore the mechanism of apoptosis in the hepatopancreas, freshwater crab S. henanense were treated with 0, 3.56, 7.12, 14.25, 28.49 and 56.98 mg/L Cd for 72 h. Apoptosis was noticeable in every treatment group and necrosis was observed clearly in the high concentration Cd groups. Classical apoptotic bodies were found by transmission electronic microscopy, which revealed chromatin condensation under nuclear membrane and mitochondrial membrane rupture. An increasing number of autolysosomes, damaged rough endoplamic reticulum and Golgi complex were observed as the Cd concentration increase. Brown colored apoptotic cells were detected by the TUNEL test in all Cd-treatment groups. The apoptosis index increased following the elevation of Cd concentration and got 32.9% in the highest Cd group. Caspase-9 and caspase-3 activities increased in the lower Cd treatment groups but no changes in the higher Cd concentration groups (comparing to the control group). The activity of caspase-8 did not change significantly. No significant change in the content of mitochondrial cytochrome c (cyt c) in Cd exposed groups except the decrease in the 56.98 mg/L group. In crabs treated with 3.56, 7.12 and 14.25 mg/L Cd, hyperpolarization of mitochondrial membrane potential (Δψm) significantly increased. These results implied that apoptosis in the hepatopancreas induced by Cd occurrs through the mitochondrial caspase-dependent pathway. However, whether there are other apoptotic pathways needs to be studied further.
Collapse
Affiliation(s)
- Dongmei Liu
- Laboratory of the Bio-effect and Molecular Mechanism of Classical Environmental Pollutants, School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Jian Yang
- Laboratory of the Bio-effect and Molecular Mechanism of Classical Environmental Pollutants, School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Yingjun Li
- Laboratory of the Bio-effect and Molecular Mechanism of Classical Environmental Pollutants, School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Meng Zhang
- Institute of Molecular Biology, Nankai University, Tianjin, China
| | - Lan Wang
- Laboratory of the Bio-effect and Molecular Mechanism of Classical Environmental Pollutants, School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
- * E-mail:
| |
Collapse
|
22
|
Rhee JS, Yu IT, Kim BM, Jeong CB, Lee KW, Kim MJ, Lee SJ, Park GS, Lee JS. Copper induces apoptotic cell death through reactive oxygen species-triggered oxidative stress in the intertidal copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 132-133:182-189. [PMID: 23523965 DOI: 10.1016/j.aquatox.2013.02.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 06/02/2023]
Abstract
The copepod, Tigriopus japonicus is an important model for toxicity testing. However, no attempt has been made in analyzing the effect of toxicants at the level of the ROS-mediated signal transduction pathway. To understand copper-induced cytotoxicity at the molecular level, we employed several cellular and biochemical assays after exposure to copper, and found a significant induction of enzyme activities of antioxidant proteins with increased intracellular reactive oxygen species (ROS) as well as an increase of TUNEL-positive cells, but a decrease of BrdU-positive cells. In addition, several important genes such as p38 MAPK, antioxidant-related genes, Hsps, and apoptosis-related genes were significantly modulated by copper exposure. Taken together, we suggest that copper-induced cytotoxicity is mediated by the formation of intracellular ROS and oxidative stress in T. japonicus. Whole body biochemical assays such as TUNEL- and BrdU-assay will provide a better understanding of cellular responses such as apoptosis and cell death upon cytotoxic exposure of copper in T. japonicus.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Reslan L, Dalle S, Herveau S, Perrial E, Dumontet C. Apoptotic induction by anti-CD20 antibodies in chronic lymphocytic leukemia: comparison of rituximab and obinutuzumab. Leuk Lymphoma 2013; 55:188-90. [PMID: 23537278 DOI: 10.3109/10428194.2013.788175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Bezombes C, Fournié JJ, Laurent G. Direct Effect of Rituximab in B-Cell–Derived Lymphoid Neoplasias: Mechanism, Regulation, and Perspectives. Mol Cancer Res 2011; 9:1435-42. [DOI: 10.1158/1541-7786.mcr-11-0154] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The anti-CD20 monoclonal antibody rituximab is the backbone of treatment for the B-cell malignancies non-Hodgkin lymphoma and chronic lymphocytic leukemia. However, there is a wide variability in response to rituximab treatment, and some patients are refractory to current standard therapies. Rituximab kills B cells by multiple mechanisms of action, including complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity, which are immune-mediated mechanisms, as well as by direct effects on cell signaling pathways and cell membranes following CD20 binding. A large number of events that are affected by rituximab binding have been identified, including lipid raft modifications, kinase and caspase activation, and effects on transcription factors and apoptotic/antiapoptotic molecules. Studies on cell lines and isolated tumor cells have shown that by targeting these pathways, it may be possible to increase or decrease susceptibility to rituximab cell killing. An increased understanding of the direct effects of rituximab may therefore aid in the design of new, rational combinations to improve the outcome of CD20-based therapy for patients who currently have suboptimal outcome following standard treatments. Mol Cancer Res; 9(11); 1435–42. ©2011 AACR.
Collapse
Affiliation(s)
- Christine Bezombes
- Authors' Affiliations: 1Cancer Research Center of Toulouse, Institut National de la Santé et de la Recherche Médicale, UMR1037-Centre National de la Recherche Scientifique ERL5294, Université Toulouse 3 BP3028; 2Service Hématologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, Toulouse, France
| | - Jean-Jacques Fournié
- Authors' Affiliations: 1Cancer Research Center of Toulouse, Institut National de la Santé et de la Recherche Médicale, UMR1037-Centre National de la Recherche Scientifique ERL5294, Université Toulouse 3 BP3028; 2Service Hématologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, Toulouse, France
| | - Guy Laurent
- Authors' Affiliations: 1Cancer Research Center of Toulouse, Institut National de la Santé et de la Recherche Médicale, UMR1037-Centre National de la Recherche Scientifique ERL5294, Université Toulouse 3 BP3028; 2Service Hématologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, Toulouse, France
- Authors' Affiliations: 1Cancer Research Center of Toulouse, Institut National de la Santé et de la Recherche Médicale, UMR1037-Centre National de la Recherche Scientifique ERL5294, Université Toulouse 3 BP3028; 2Service Hématologie, Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan, Toulouse, France
| |
Collapse
|
25
|
Liu D, Yan B, Yang J, Lei W, Wang L. Mitochondrial pathway of apoptosis in the hepatopancreas of the freshwater crab Sinopotamon yangtsekiense exposed to cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:394-402. [PMID: 21831345 DOI: 10.1016/j.aquatox.2011.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/04/2011] [Accepted: 07/13/2011] [Indexed: 05/31/2023]
Abstract
Cadmium (Cd) is one of the most common toxic metals in water. To investigate the mechanism of Cd-induced apoptosis in the hepatopancreas, freshwater crabs Sinopotamon yangtsekiense were exposed to 0, 3.56, 7.12, 14.25, 28.49 and 56.98 mg/L Cd for 48 h. After a 48 h exposure, apoptosis and necroptosis were apparent in the group exposed to 28.49 mg/L Cd and only one case of necrosis was observed in the highest concentration of Cd. Electronic microscopy revealed chromatin condensation under nuclear membrane and mitochondrial membrane rupture in 14.25 and 28.49 mg/L Cd treatment groups. Brown colored apoptotic cells were detected with the TUNEL test in all Cd-treatment groups. The AI in 56.98 mg/L group was 1.4-fold greater than that in crabs exposed to 14.25mg/L Cd. Caspase-9, caspase-3, SDH and Ca(2+)-ATPase activities increased with increasing Cd concentration. However, the activities of caspase-8 and LDH did not change significantly compared with control group. These results implied that Cd induced apoptosis in the hepatopancreas occurs through a mitochondrial pathway.
Collapse
Affiliation(s)
- Dongmei Liu
- Laboratory of Bio-effect and Molecular Mechanism on Classical Environmental Pollutants, School of Life Science, Shanxi University, 96 Wucheng Road, Taiyuan 030006, Shanxi Province, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Yu FS, Yang JS, Yu CS, Lu CC, Chiang JH, Lin CW, Chung JG. Safrole induces apoptosis in human oral cancer HSC-3 cells. J Dent Res 2010; 90:168-74. [PMID: 21173435 DOI: 10.1177/0022034510384619] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phytochemicals have been used as potential chemopreventive or chemotherapeutic agents. However, there are data suggesting a mutagenic effect of some phytochemicals. We hypothesized that safrole would have anticancer effects on human oral squamous cell carcinoma HSC-3 cells. Safrole decreased the percentage of viable HSC-3 cells via induction of apoptosis by an increased level of cytosolic Ca(2+) and a reduction in the mitochondrial membrane potential (ΔΨ(m)). Changes in the membrane potential were associated with changes in the Bax, release of cytochrome c from mitochondria, and activation of downstream caspases-9 and -3, resulting in apoptotic cell death. In vivo studies also showed that safrole reduced the size and volume of an HSC-3 solid tumor on a xenograft athymic nu/nu mouse model. Western blotting and flow cytometric analysis studies confirmed that safrole-mediated apoptotic cell death of HSC-3 cells is regulated by cytosolic Ca(2+) and by mitochondria- and Fas-dependent pathways.
Collapse
Affiliation(s)
- F-S Yu
- Department of Dental Hygiene, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Provencio M, Martín P, García V, Candia A, Sánchez AC, Bellas C. Caspase 3a: new prognostic marker for diffuse large B-cell lymphoma in the rituximab era. Leuk Lymphoma 2010; 51:2021-30. [PMID: 20919853 DOI: 10.3109/10428194.2010.516039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fewer than half of patients with diffuse large B-cell lymphoma (DLBCL) can be cured. Molecular prognostic factors in the rituximab era must be re-evaluated, because there are few molecular indicators with prognostic value. Samples of DLBCL from 41 newly diagnosed patients with a median follow-up of 52 months were studied. Immunohistochemical staining was performed to investigate the expression of apoptosis-related proteins (Bcl-2 and caspase 3a), cell proliferation (Ki-67), and tumor microenvironmental factors. Two groups were analysed, 23 cases (56%) treated with CHOP and 18 (44%) treated with R-CHOP. Survival analysis showed that cases with overexpression of Bcl-2 had worse overall survival (OS) in the CHOP group. However, OS in the R-CHOP group was adversely affected by lack of caspase 3a staining. In the entire series, cases positive for caspase 3a showed significantly better OS, without significance for other parameters, and caspase 3 was associated with parameters of prognosis and OS in R-CHOP. This is the first study that relates caspase 3a and prognosis in DLBCL.
Collapse
Affiliation(s)
- Mariano Provencio
- Departments of Medical Oncology, University Hospital Puerta de Hierro, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
LIU J, LI C, XING G, ZHOU L, DONG M, GENG Y, LI X, LI J, WANG G, ZOU D, NIU Y. Beta-Asarone Attenuates Neuronal Apoptosis Induced by Beta Amyloid in Rat Hippocampus. YAKUGAKU ZASSHI 2010; 130:737-46. [DOI: 10.1248/yakushi.130.737] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jicheng LIU
- The Institute of Medicine, Qiqihar Medical University
| | - Chengchong LI
- The Institute of Medicine, Qiqihar Medical University
| | - Guihua XING
- The Institute of Medicine, Qiqihar Medical University
| | - Li ZHOU
- The Institute of Medicine, Qiqihar Medical University
| | - Miaoxian DONG
- The Institute of Medicine, Qiqihar Medical University
| | - Yutao GENG
- The Institute of Medicine, Qiqihar Medical University
| | - Xueyan LI
- The Institute of Medicine, Qiqihar Medical University
| | - Jiaming LI
- The Institute of Medicine, Qiqihar Medical University
| | - Gang WANG
- The Institute of Medicine, Qiqihar Medical University
| | - Dejia ZOU
- The Institute of Medicine, Qiqihar Medical University
| | - Yingcai NIU
- The Institute of Medicine, Qiqihar Medical University
| |
Collapse
|
29
|
Mitrofan LM, Castells FB, Pelkonen J, Mönkkönen J. Lysosomal-mitochondrial axis in zoledronic acid-induced apoptosis in human follicular lymphoma cells. J Biol Chem 2010; 285:1967-79. [PMID: 19875454 PMCID: PMC2804355 DOI: 10.1074/jbc.m109.038935] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/07/2009] [Indexed: 12/19/2022] Open
Abstract
Bisphosphonates (BPs) are potent inhibitors of osteoclast function, widely used to treat excessive bone resorption associated with bone metastases, that also have anti-tumor activity. Zoledronic acid (ZOL) represents a potential chemotherapeutic agent for the treatment of cancer. ZOL is the most potent nitrogen-containing BPs, and it inhibits cell growth and induces apoptosis in a variety of cancer cells. Recently we demonstrated that accumulation of isopentenyl pyrophosphate and the consequent formation of a new type of ATP analog (ApppI) after mevalonate pathway inhibition by nitrogen-containing BPs strongly correlates with ZOL-induced cell death in cancer cells in vitro. In this study we show that ZOL-induced apoptosis in HF28RA human follicular lymphoma cells occurs exclusively via the mitochondrial pathway, involves lysosomes, and is dependent on mevalonate pathway inhibition. To define the exact signaling pathway connecting them, we used modified HF28RA cell lines overexpressing either BclXL or dominant-negative caspase-9. In both mutant cells, mitochondrial and lysosomal membrane permeabilization (MMP and LMP) were totally prevented, indicating signaling between lysosomes and mitochondria and, additionally, an amplification loop for MMP and/or LMP regulated by caspase-9 in association with farnesyl pyrophosphate synthetase inhibition. Additionally, the lysosomal pathway in ZOL-induced apoptosis plays an additional/amplification role of the intrinsic pathway independently of caspase-3 activation. Moreover, we show a potential regulation by Bcl-XL and caspase-9 on cell cycle regulators of S-phase. Our findings provide a molecular basis for new strategies concomitantly targeting cell death pathways from multiple sites.
Collapse
Affiliation(s)
- Laura M Mitrofan
- Department of Pharmaceutics, Faculty of Pharmacy, Biocenter Kuopio, FIN-70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
30
|
Lim SH, Beers SA, French RR, Johnson PWM, Glennie MJ, Cragg MS. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 2010; 95:135-43. [PMID: 19773256 PMCID: PMC2805725 DOI: 10.3324/haematol.2008.001628] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Antibodies to CD20 have confirmed the hypothesis that monoclonal reagents can be given in vivo to alleviate human diseases. The targeting of CD20 on normal, malignant and auto-immune B-lymphocytes by rituximab has demonstrated substantial benefits for patients with a variety of B-cell lymphomas, as well as some with autoimmune disorders. There has been a notable increase in the survival rates from B-cell lymphoma in the decade since anti-CD20 therapy was introduced.
Collapse
Affiliation(s)
- Sean H Lim
- Tenovus Laboratory, Cancer Sciences Division, Southampton University School of Medicine, General Hospital, Southampton SO16 6YD, UK
| | | | | | | | | | | |
Collapse
|
31
|
The synthesized 2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one (CHM-1) promoted G2/M arrest through inhibition of CDK1 and induced apoptosis through the mitochondrial-dependent pathway in CT-26 murine colorectal adenocarcinoma cells. J Gastroenterol 2009; 44:1055-63. [PMID: 19688288 DOI: 10.1007/s00535-009-0111-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/21/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND In this study, we investigated the effects of 2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one (CHM-1) on cell viability, cell cycle arrest and apoptosis in CT-26 murine colorectal adenocarcinoma cells. METHODS For determining cell viability, the MTT assay was used. CHM-1 promoted G2/M arrest by PI staining and flow cytometric analysis. Apoptotic cells were evaluated by DAPI staining. We used CDK1 kinase assay, Western blot analysis and caspase activity assays for examining the CDK1 activity and proteins correlated with apoptosis and cell cycle arrest. The in vivo anti-tumor effects of CHM-1-P were evaluated in BALB/c mice inoculated with CT-26 cells orthotopic model. RESULTS CHM-1 induced CT-26 cell viability inhibition and morphologic changes in a dose-dependent and time-dependent manner and the approximate IC50 was 742.36 nM. CHM-1 induced significant G2/M arrest and apoptosis in CT-26 cells. CHM-1 inhibited the CDK1 activity and decreased CDK1, Cyclin A, Cyclin B protein levels. CHM-1 induced apoptosis in CT-26 cells and promoted increasing of cytosolic cytochrome c, AIF, Bax, BAD, cleavage of pro-caspase-9, and -3. The significant reduction of caspase-9 and -3 activity and increasing the viable CT-26 cells after pretreated with caspase-9 and -3 inhibitor indicated that CHM-1-induced apoptosis was mainly mediated a mitochondria-dependent pathway. CHM-1-P improved mice survival rate, and enlargement of the spleen and liver metastasis were significantly reduced in groups treated with either 10 mg/kg and 30 mg/kg of CHM-1-P and 5-FU in comparison to these of CT-26/BALB/c mice. CONCLUSIONS Taken together, CHM-1 acted against colorectal adenocarcinoma cells in vitro via G2/M arrest and apoptosis, and CHM-1-P inhibited tumor growth in vivo.
Collapse
|
32
|
Eeva J, Nuutinen U, Ropponen A, Mättö M, Eray M, Pellinen R, Wahlfors J, Pelkonen J. Feedback regulation of mitochondria by caspase-9 in the B cell receptor-mediated apoptosis. Scand J Immunol 2009; 70:574-83. [PMID: 19906200 DOI: 10.1111/j.1365-3083.2009.02331.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During the germinal centre reaction (GC), B cells with non-functional or self-reactive antigen receptors are negatively selected by apoptosis to generate B cell repertoire with appropriate antigen specificities. We studied the molecular mechanism of Fas/CD95- and B cell receptor (BCR)-induced apoptosis to shed light on the signalling events involved in the negative selection of GC B cells. As an experimental model, we used human follicular lymphoma (FL) cell line HF1A3, which originates from a GC B cell, and transfected HF1A3 cell lines overexpressing Bcl-x(L), c-FLIP(long) or dominant negative (DN) caspase-9. Fas-induced apoptosis was dependent on the caspase-8 activation, since the overexpression of c-FLIP(long), a natural inhibitor of caspase-8 activation, blocked apoptosis induced by Fas. In contrast, caspase-9 activation was not involved in Fas-induced apoptosis. BCR-induced apoptosis showed the typical characteristics of mitochondria-dependent (intrinsic) apoptosis. Firstly, the activation of caspase-9 was involved in BCR-induced DNA fragmentation, while caspase-8 showed only marginal role. Secondly, overexpression of Bcl-x(L) could block all apoptotic changes induced by BCR. As a novel finding, we demonstrate that caspase-9 can enhance the cytochrome-c release and collapse of mitochondrial membrane potential (DeltaPsi(m)) during BCR-induced apoptosis. The requirement of different signalling pathways in apoptosis induced by BCR and Fas may be relevant, since Fas- and BCR-induced apoptosis can thus be regulated independently, and targeted to different subsets of GC B cells.
Collapse
Affiliation(s)
- J Eeva
- Department of Clinical Microbiology, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|