1
|
Gonzalez TL, Willson BE, Wang ET, Taylor KD, Novoa A, Swarna A, Ortiz JC, Zeno GJ, Jefferies CA, Lawrenson K, Rotter JI, Chen YDI, Williams J, Cui J, Goodarzi MO, Pisarska MD. Sexually dimorphic DNA methylation and gene expression patterns in human first trimester placenta. Biol Sex Differ 2024; 15:63. [PMID: 39152463 PMCID: PMC11328442 DOI: 10.1186/s13293-024-00629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/19/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Fetal sex and placental development impact pregnancy outcomes and fetal-maternal health, but the critical timepoint of placenta establishment in first trimester is understudied in human pregnancies. METHODS Pregnant subjects were recruited in late first trimester (weeks 10-14) at time of chorionic villus sampling, a prenatal diagnostic test. Leftover placenta tissue was collected and stored until birth outcomes were known, then DNA and RNA were isolated from singleton, normal karyotype pregnancies resulting in live births. DNA methylation was measured with the Illumina Infinium MethylationEPIC BeadChip array (n = 56). Differential methylation analysis compared 25 females versus 31 males using a generalized linear model on 743,461 autosomal probes. Gene expression sex differences were analyzed with RNA-sequencing (n = 74). An integrated analysis was performed using linear regression to correlate gene expression and DNA methylation in 51 overlapping placentas. RESULTS Methylation analysis identified 151 differentially methylated probes (DMPs) significant at false discovery rate < 0.05, including 89 (59%) hypermethylated in females. Probe cg17612569 (GABPA, ATP5J) was the most significant CpG site, hypermethylated in males. There were 11 differentially methylated regions affected by fetal sex, with transcription factors ZNF300 and ZNF311 most significantly hypermethylated in males and females, respectively. RNA-sequencing identified 152 genes significantly sexually dimorphic at false discovery rate < 0.05. The 151 DMPs were associated with 18 genes with gene downregulation (P < 0.05) in the direction of hypermethylation, including 2 genes significant at false discovery rate < 0.05 (ZNF300 and CUB and Sushi multiple domains 1, CSMD1). Both genes, as well as Family With Sequence Similarity 228 Member A (FAM228A), showed significant correlation between DNA methylation and sexually dimorphic gene expression, though FAM228A DNA methylation was less sexually dimorphic. Comparison with other sex differences studies found that cg17612569 is male-hypermethylated across gestation in placenta and in human blood up to adulthood. CONCLUSIONS Overall, sex dimorphic differential methylation with associated differential gene expression in the first trimester placenta is small, but there remain significant genes that may be regulated through methylation leading to differences in the first trimester placenta.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Bryn E Willson
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Erica T Wang
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Allynson Novoa
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Akhila Swarna
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Juanita C Ortiz
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Gianna J Zeno
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Caroline A Jefferies
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Rheumatology, Department of Medicine, Kao Autoimmune Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - John Williams
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jinrui Cui
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA.
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Giel AS, Bigge J, Schumacher J, Maj C, Dasmeh P. Analysis of Evolutionary Conservation, Expression Level, and Genetic Association at a Genome-wide Scale Reveals Heterogeneity Across Polygenic Phenotypes. Mol Biol Evol 2024; 41:msae115. [PMID: 38865495 PMCID: PMC11247350 DOI: 10.1093/molbev/msae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/22/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
Understanding the expression level and evolutionary rate of associated genes with human polygenic diseases provides crucial insights into their disease-contributing roles. In this work, we leveraged genome-wide association studies (GWASs) to investigate the relationship between the genetic association and both the evolutionary rate (dN/dS) and expression level of human genes associated with the two polygenic diseases of schizophrenia and coronary artery disease. Our findings highlight a distinct variation in these relationships between the two diseases. Genes associated with both diseases exhibit a significantly greater variance in evolutionary rate compared to those implicated in monogenic diseases. Expanding our analyses to 4,756 complex traits in the GWAS atlas database, we unraveled distinct trait categories with a unique interplay among the evolutionary rate, expression level, and genetic association of human genes. In most polygenic traits, highly expressed genes were more associated with the polygenic phenotypes compared to lowly expressed genes. About 69% of polygenic traits displayed a negative correlation between genetic association and evolutionary rate, while approximately 30% of these traits showed a positive correlation between genetic association and evolutionary rate. Our results demonstrate the presence of a spectrum among complex traits, shaped by natural selection. Notably, at opposite ends of this spectrum, we find metabolic traits being more likely influenced by purifying selection, and immunological traits that are more likely shaped by positive selection. We further established the polygenic evolution portal (evopolygen.de) as a resource for investigating relationships and generating hypotheses in the field of human polygenic trait evolution.
Collapse
Affiliation(s)
- Ann-Sophie Giel
- Centre for Human Genetics, Marburg University, Marburg, Germany
| | - Jessica Bigge
- Centre for Human Genetics, Marburg University, Marburg, Germany
| | | | - Carlo Maj
- Centre for Human Genetics, Marburg University, Marburg, Germany
| | - Pouria Dasmeh
- Centre for Human Genetics, Marburg University, Marburg, Germany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Institute for Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Ermis Akyuz E, Bell SM. The Diverse Role of CUB and Sushi Multiple Domains 1 (CSMD1) in Human Diseases. Genes (Basel) 2022; 13:genes13122332. [PMID: 36553598 PMCID: PMC9778380 DOI: 10.3390/genes13122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
CUB and Sushi Multiple Domains 1 (CSMD1), a tumour suppressor gene, encodes a large membrane-bound protein including a single transmembrane domain. This transmembrane region has a potential tyrosine phosphorylation site, suggesting that CSMD1 is involved in controlling cellular functions. Although the specific mechanisms of action for CSMD1 have not yet been uncovered, it has been linked to a number of processes including development, complement control, neurodevelopment, and cancer progression. In this review, we summarise CSMD1 functions in the cellular processes involved in the complement system, metastasis, and Epithelial mesenchymal transition (EMT) and also in the diseases schizophrenia, Parkinson's disease, and cancer. Clarifying the association between CSMD1 and the aforementioned diseases will contribute to the development of new diagnosis and treatment methods for these diseases. Recent studies in certain cancer types, e.g., gastric cancer, oesophageal cancer, and head and neck squamous cell carcinomas, have indicated the involvement of CSMD1 in response to immunotherapy.
Collapse
|
4
|
Hu N, Wang C, Zhang T, Su H, Liu H, Yang HH, Giffen C, Hu Y, Taylor PR, Goldstein AM. CSMD1 Shows Complex Patterns of Somatic Copy Number Alterations and Expressions of mRNAs and Target Micro RNAs in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14205001. [PMID: 36291785 PMCID: PMC9599939 DOI: 10.3390/cancers14205001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Human Cub and Sushi Multiple Domains 1 (CSMD1) is a novel candidate tumor-suppressor gene. We investigated CSMD1 in esophageal squamous cell carcinoma (ESCC) by performing an integrated analysis of somatic DNA alterations (i.e., copy number alteration, allelic imbalance, and loss of heterozygosity) with RNA expressions (mRNA and target miRNAs) on specimens from the same ESCC patients, using data from SNP, miRNA, and RT-PCR arrays. Our results indicate that the CSMD1 gene may play a role in the development of ESCC through complex patterns involving somatic alterations and mRNA expression. Furthermore, somatic copy number alterations in SNPs located in non-coding regions of CSMD1 appear to influence expression of both this gene and its target miRNAs. Abstract Background: Human Cub and Sushi Multiple Domains 1 (CSMD1) is a novel candidate tumor-suppressor gene that codes for multiple domains, including complement regulatory and adhesion proteins, and has recently been shown to have alterations in multiple cancers. We investigated CSMD1 in esophageal squamous cell carcinoma (ESCC) by performing an integrated analysis on somatic copy number alterations (CNAs), including copy-number gain or loss, allelic imbalance (AI), loss of heterozygosity (LOH), and the expressions of mRNA and its target miRNAs on specimens from the same patients with ESCC. Results: (i) Two-thirds of ESCC patients had all three types of alterations studied—somatic DNA alterations in 70%, and abnormal expressions of CSMD1 RNA in 69% and in target miRNAs in 66%; patterns among these alterations were complex. (ii) In total, 97% of 888 CSMD1 SNPs studied showed somatic DNA alterations, with most located near exons 4–11, 24–25, 39–40, 55–56, and 69–70. (iii) In total, 68% of SNPs with a CNA were correlated with expression of CSMD1. (iv) A total of 33 correlations between non-coding SNPs and expression of CSMD1 target miRs were found. Conclusions: Our results indicate that the CSMD1 gene may play a role in ESCC through complex patterns of DNA alterations and RNA and miRNA expressions. Alterations in some somatic SNPs in non-coding regions of CSMD1 appear to influence expression of this gene and its target miRNAs.
Collapse
Affiliation(s)
- Nan Hu
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Chaoyu Wang
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
- Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Hua Su
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Huaitian Liu
- Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Howard H. Yang
- Center for Cancer Research (CCR), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Carol Giffen
- Information Management Services, Inc., Silver Spring, Bethesda, MD 20904, USA
| | - Ying Hu
- Computational Genomics & Bioinformatics Branch (CGBB), Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Philip R. Taylor
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD 20892, USA
- Correspondence:
| |
Collapse
|
5
|
Wang X, Chen X, Liu Y, Huang S, Ding J, Wang B, Dong P, Sun Z, Chen L. CSMD1 suppresses cancer progression by inhibiting proliferation, epithelial-mesenchymal transition, chemotherapy-resistance and inducing immunosuppression in esophageal squamous cell carcinoma. Exp Cell Res 2022; 417:113220. [PMID: 35623420 DOI: 10.1016/j.yexcr.2022.113220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Human CUB and Sushi multiple domains (CSMD1) is considered a crucial role in cancer progression, but the specific function in esophageal squamous cell carcinoma (ESCC) is not clear. Understanding the role of CSMD1 in ESCC progression may lead to a novel strategy for ESCC treatment. Here, we found that both CSMD1 mRNA and protein levels were downregulated in ESCC tissues. Reduced CSMD1 expression was correlated with a poor prognosis in ESCC patients. CSMD1 expression inhibited proliferation, migration and invasion in ESCC cell lines in vitro. CSMD1 deficiency in established xenografted tumors increases tumor size and weight. We further found that CSMD1-overexpression cells are more sensitive to chemotherapy. Moreover, we addressed the role of CSMD1 in the CD8+ T cell immune response. An in vitro killing assay showed that the cytotoxicity of CD8+ T cells was inhibited in CSMD1-overexpression tumor cells. In vivo, in CSMD1 deficiency tumor-bearing mice activation and expansion of CD8+ T cells were increased. Further investigation showed that CSMD1 expression on tumor cells was positively correlated with CD8+ T cells infiltration and cytokines secretion. These findings highlight that CSMD1 is a tumor suppressor gene in ESCC patients and a positive regulator of CD8+ T cells expansion and activation, and could increase cytokines secretion, indicating that tumor cell-associated CSMD1 might be a target for ESCC.
Collapse
Affiliation(s)
- Xing Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Xinwei Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuanyuan Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shan Huang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Tongji Hospital, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Jian Ding
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Baoxin Wang
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Pin Dong
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhenfeng Sun
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lixiao Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
6
|
Liu H, Chen Y, Zhou L, Jiang X, Zhou X. MicroRNA-642b-3p functions as an oncomiR in gastric cancer by down-regulating the CUB and sushi multiple domains protein 1/smad axis. Bioengineered 2022; 13:9613-9627. [PMID: 35412956 PMCID: PMC9208452 DOI: 10.1080/21655979.2022.2056813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs or miRs) has been involved in the progression of gastric cancer (GC). Our analysis of GC-related gene expression profiles identified the significantly up-regulated miR-642b-3p expression, which has been reported as a mediator in various cancers but rarely mentioned in researches on GC. Herein, this study intends to investigate the role of miR-642b-3p in GC development. Bioinformatics analysis was conducted to predict the downstream target gene of miR-642b-3p. Expression patterns of miR-642b-3p and CUB and sushi multiple domains protein 1 (CSMD1) in GC tissues and cell lines was then determined. Immunofluorescence, wound healing and Transwell invasion assays were performed to observe the malignant behaviors of GC cells with altered expression of miR-642b-3p and CSMD1. Nude mice with xenograft tumors were developed for in vivo validation. miR-642b-3p expression was increased in GC tissues and cell lines. miR-642b-3p targeted CSMD1 and reduced the expression of CSMD1, thereby inhibiting the activation of Smad signaling pathway. By this mechanism, the epithelial–mesenchymal transition (EMT), invasive and migratory potentials of GC cells were repressed. Meanwhile, in vivo data verified that miR-642b-3p enhanced the tumor growth of GC cells, which was associated with blockade of CSMD1-dependent activation of the Smad signaling pathway. Overall, miR-642b-3p acts as an oncomiR promoting tumor development in GC through suppressing CSMD1 expression and inactivating the Smad signaling pathway, which may enable the development of new therapeutic strategies for treatment of GC.
Collapse
Affiliation(s)
- Haofeng Liu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou P.R. China.,Department of General Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong P.R. China
| | - Yuan Chen
- Department of General Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong P.R. China
| | - Linsen Zhou
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng P.R. China
| | - Xiaohui Jiang
- Department of General Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong P.R. China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou P.R. China
| |
Collapse
|
7
|
Wang X, Wang S, Han Y, Xu M, Li P, Ke M, Teng Z, Huang P, Diao Z, Yan Y, Meng Q, Kuang Y, Zheng W, Liu H, Liu X, Jia B. Association of CSMD1 with Tumor Mutation Burden and Other Clinical Outcomes in Gastric Cancer. Int J Gen Med 2021; 14:8293-8299. [PMID: 34815701 PMCID: PMC8605807 DOI: 10.2147/ijgm.s325910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Background Immunotherapy is considered as a powerful and promising clinical approach for the treatment of gastric cancer (GC). However, it is still challenging to precisely screen patients who potentially benefit from immune checkpoint therapy (ICT). Identification of potential biomarkers for selecting patients sensitive to immunotherapy was urgently needed. Methods Public sequence data and corresponding clinical data were used to explore the potential biomarkers for immunotherapy. Results We found that CSMD1 is the most frequently mutated gene and its mutation is highly correlated with prognosis in gastric cancer patients. Interestingly, patients with mutated CSMD1 exhibit a high mutation burden and upregulated PDL1 expression. The ratio of microsatellite instability (MSI) in the CSMD1 mutation cohort was higher than that in the cohort without CSMD1 mutation. Furthermore, patients with CSMD1 mutation have been found to possess a higher number of activated CD4+ T cells and neoantigens. Conclusion CSMD1 mutation may act as a novel biomarker for assessing the survival and immune therapy response in patients with gastric cancer.
Collapse
Affiliation(s)
- Xuning Wang
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China.,Department of General Surgery, The First Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Shixiang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China
| | - Yalin Han
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China.,PLA Rocket Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Maolin Xu
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China
| | - Peng Li
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China
| | - Mu Ke
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China
| | - Zhipeng Teng
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China
| | - Pu Huang
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China
| | - Ziyan Diao
- Department of General Surgery, The First Center of Chinese PLA General Hospital, Beijing, People's Republic of China.,Chinese PLA Medical School, Beijing, People's Republic of China
| | - Yongfeng Yan
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China
| | - Qingyu Meng
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China
| | - Yanshen Kuang
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China
| | - Wei Zheng
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China
| | - Hongyi Liu
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China
| | - Xuesong Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China
| | - Baoqing Jia
- The Air Force Hospital of Northern Theater PLA, Shenyang, People's Republic of China
| |
Collapse
|
8
|
Fan X, Song J, Fan Y, Li J, Chen Y, Zhu H, Zhang Z. CSMD1 Mutation Related to Immunity Can Be Used as a Marker to Evaluate the Clinical Therapeutic Effect and Prognosis of Patients with Esophageal Cancer. Int J Gen Med 2021; 14:8689-8710. [PMID: 34849012 PMCID: PMC8627272 DOI: 10.2147/ijgm.s338284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION As a highly aggressive tumor with a poor prognosis, esophageal cancer (ESCA)'s relationship with gene mutations is unclear. Therefore, we tried to explore the role of gene mutation in ESCA progression and its relationship with immune response, clinical treatment, and prognosis. METHODS In addition to copy number variation (CNV) situations of common genes obtained from 2 public databases, the relationship between mutations and prognosis/tumor mutational burden (TMB) was also analyzed. Kaplan-Meier survival and Cox regression analysis were used to identify the CSMD1 mutation status as an independent predictor of prognosis. We also enriched related functions and pathways. Next, the relationship between 22 immune cells and CSMD1 mutation status was analyzed. In addition to the differences in the expression levels of immune checkpoint inhibitors (ICIs)-related genes between the high TMB and low TMB groups, the differences in the expression levels of ICIs/m6a/multi-drug resistance-related genes and the sensitivity of three chemotherapeutic drugs between CSMD1 mutant and the wild group were also compared. In addition to differences and prognostic analysis of CSMD1 expression, the correlation analysis between the expression of these genes/immune cells and the expression of CSMD1 was also performed. Finally, a nomogram that could efficiently and conveniently predict the survival probability of ESCA patients was constructed and verified. RESULTS We obtained 17 frequently mutated genes distribution. Mutation and loss of CSMD1 are frequent in ESCA. Only CSMD1 mutation can be used as an independent predictor of poor prognosis. Patients in the high TMB group have a lower survival probability. Wild CSMD1 may be involved in immune-related pathways. More helper T cells and fewer resting state dendritic cells were found in the CSMD1 mutant group. The PD-1 expression in the high TMB group showed higher. Paclitaxel sensitivity and ABCC1 expression were higher in the wild CSMD1 group. Most cancers show differential expression of CSMD1. Except for the prognosis of ESCA, the expression of CSMD1 is related to immune cell content and the expression of ICIs/m6a/multi-drug resistance related genes. DISCUSSION CSMD1 mutation could be used as an immune-related biomarker to predict prognosis and treatment effect of paclitaxel. Mutation and loss of CSMD1 may promote the progression of ESCA.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jianxiong Song
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yating Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jiaqi Li
- School of Stomatology, Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yutao Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Huanhuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Zhiyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| |
Collapse
|
9
|
Gialeli C, Tuysuz EC, Staaf J, Guleed S, Paciorek V, Mörgelin M, Papadakos KS, Blom AM. Complement inhibitor CSMD1 modulates epidermal growth factor receptor oncogenic signaling and sensitizes breast cancer cells to chemotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:258. [PMID: 34404439 PMCID: PMC8371905 DOI: 10.1186/s13046-021-02042-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Human CUB and Sushi multiple domains 1 (CSMD1) is a large membrane-bound tumor suppressor in breast cancer. The current study aimed to elucidate the molecular mechanism underlying the effect of CSMD1 in highly invasive triple negative breast cancer (TNBC). METHODS We examined the antitumor action of CSMD1 in three TNBC cell lines overexpressing CSMD1, MDA-MB-231, BT-20 and MDA-MB-486, in vitro using scanning electron microscopy, proteome array, qRT-PCR, immunoblotting, proximity ligation assay, ELISA, co-immunoprecipitation, immunofluorescence, tumorsphere formation assays and flow cytometric analysis. The mRNA expression pattern and clinical relevance of CSMD1 were evaluated in 3520 breast cancers from a modern population-based cohort. RESULTS CSMD1-expressing cells had distinct morphology, with reduced deposition of extracellular matrix components. We found altered expression of several cancer-related molecules, as well as diminished expression of signaling receptors including Epidermal Growth Factor Receptor (EGFR), in CSMD1-expressing cells compared to control cells. A direct interaction of CSMD1 and EGFR was identified, with the EGF-EGFR induced signaling cascade impeded in the presence of CSMD1. Accordingly, we detected increased ubiquitination levels of EGFR upon activation in CSMD1-expressing cells, as well as increased degradation kinetics and chemosensitivity. Accordingly, CSMD1 expression rendered tumorspheres pretreated with gefitinib more sensitive to chemotherapy. In addition, higher mRNA levels of CSMD1 tend to be associated with better outcome of triple negative breast cancer patients treated with chemotherapy. CONCLUSIONS Our results indicate that CSMD1 cross-talks with the EGFR endosomal trafficking cascade in a way that renders highly invasive breast cancer cells sensitive to chemotherapy. Our study unravels one possible underlying molecular mechanism of CSMD1 tumor suppressor function and may provide novel avenues for design of better treatment.
Collapse
Affiliation(s)
- Chrysostomi Gialeli
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Experimental Cardiovascular Research Group, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Emre Can Tuysuz
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, Lund, Sweden
| | - Safia Guleed
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Veronika Paciorek
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | | | | | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
10
|
Gu S, Huang X, Xu X, Liu Y, Khoong Y, Zhang Z, Li H, Gao Y, Zan T. Inhibition of CUB and sushi multiple domains 1 (CSMD1) expression by miRNA-190a-3p enhances hypertrophic scar-derived fibroblast migration in vitro. BMC Genomics 2021; 22:613. [PMID: 34384362 PMCID: PMC8359300 DOI: 10.1186/s12864-021-07920-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Background Hypertrophic scar (HTS) is a fibroproliferative skin disorder characterized by excessive cell proliferation, migration, and extracellular matrix (ECM) deposition. The CUB and Sushi multiple domains 1 (CSMD1) has previously been identified as the key regulatory gene of hypertrophic scar by a large sample GWAS study. However, further research has not yet been conducted to verify this finding in other HTS patients and to determine the underlying mechanism. Results In this study, we verified that CSMD1 was downregulated in both HTS tissue and HTS-derived fibroblasts. The knockdown of CSMD1 resulted in enhanced migration and fibronectin1 (FN1) secretion in fibroblasts in vitro. In addition, the upstream and downstream regulatory mechanisms of CSMD1 were also investigated through microRNA (miRNA) databases screening and RNA-sequencing (RNA-seq) respectively. The screening of four common microRNA (miRNA) databases suggested that miR-190a-3p binds to the CSMD1 and may regulate its expression. We confirmed that miR-190a-3p directly targeted the CSMD1–3′-UTR using luciferase reporter assays. Furthermore, the overexpression of miR-190a-3p showed promotion of migratory activity and FN1 secretion in fibroblasts, resembling the effect of CSMD1 knockdown; whereas the knockdown of miR-190a-3p exerted the opposite effect. Finally, transcriptomic analysis showed activation of Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling pathway in the CSMD1 knockdown fibroblasts. Conclusions This study has validated the conclusions of the previous GWAS study conducted in Chinese population. In vitro experiments have provided further evidence on the function of CSMD1 in the development of HTS, and have also revealed the underlying upstream and downstream regulating mechanisms. Additionally, the JAK/STAT signaling pathway identified using RNA-seq might provide a potential treatment approach, especially for HTS. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07920-8.
Collapse
Affiliation(s)
- Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Xiangwen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Zewei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Haizhou Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Yashan Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P. R. China.
| |
Collapse
|
11
|
CUB and Sushi Multiple Domains (CSMD1) Gene Polymorphisms and Susceptibilities to Idiopathic Parkinson's Disease in Northern Chinese Han Population: A Case-Control Study. PARKINSON'S DISEASE 2021; 2021:6661162. [PMID: 33628416 PMCID: PMC7896860 DOI: 10.1155/2021/6661162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/12/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
Evidence has shown that the CUB and Sushi Multiple Domains (CSMD1) gene is an inhibitor of the complement activation pathway and is also involved in central nervous system inflammation. Previous studies have revealed that the CSMD1 gene is related to familial Parkinson's disease. This study aimed to investigate the relationship between CSMD1 gene and susceptibility to Parkinson's disease in population of northern China. A case-control study was performed on 423 Parkinson's disease patients and 465 healthy controls matched for age and sex. DNA from enrolled subjects were extracted from the peripheral blood, and single nucleotide polymorphisms (SNPs) rs12681349 (C>T), rs10503253 (C>A), and rs1983474 (T>G) within CSMD1 gene were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Genotype frequency of rs10503253 (CA versus CC : OR = 1.554, 95% CI = 1.169–2.066, p=0.002) and rs1983474 (GG versus TT : OR = 0.599, 95% CI = 0.401–0.895, p=0.012) was significantly different between PD cases and controls, but not for rs12681349. Comprehensive and subgroup analysis indicated that rs10503252 showed significant statistical differences in the dominant model (AA + CA versus CC : OR = 0.677, 95% CI = 0.517–0.886, p=0.004), late-onset cohort (CA versus CC : OR = 1.570, 95% CI = 1.159–2.126, p=0.004), and the female cohort (CA versus CC : OR = 0.687, 95% CI = 0.497–0.952, p=0.023), compared with the matched control group. The difference of recessive model of rs1983474 (GG versus TT + TG : OR = 1.837, 95% CI = 1.287–2.620, p=0.001) was significant in Parkinson's disease. According to the subgroup analysis, results indicated that late-onset cohort (GG versus TT : OR = 0.643, 95% CI = 0.420–0.985, p=0.042), male cohort (TG versus TT : OR = 2.160, 95% CI = 1.162–4.016, p=0.015), and female group (GG versus TT : OR = 0.418, 95% CI = 0.234–0.746, p=0.003) of rs1983474 were significantly associated with Parkinson's disease susceptibility. In both genotype and subgroup analysis, we failed to find any relationship between rs12681349 polymorphism and Parkinson's disease risk. Our results indicate that the rs10503253 and rs1983474 gene polymorphism may be associated with idiopathic Parkinson's disease susceptibility in Chinese population. Nevertheless, these conclusions need to be further verified by more studies.
Collapse
|
12
|
The Role of Csmd1 during Mammary Gland Development. Genes (Basel) 2021; 12:genes12020162. [PMID: 33530646 PMCID: PMC7912059 DOI: 10.3390/genes12020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
The Cub Sushi Multiple Domains-1 (CSMD1) protein is a tumour suppressor which has been shown to play a role in regulating human mammary duct development in vitro. CSMD1 knockdown in vitro demonstrated increased cell proliferation, invasion and motility. However, the role of Csmd1 in vivo is poorly characterised when it comes to ductal development and is therefore an area which warrants further exploration. In this study a Csmd1 knockout (KO) mouse model was used to identify the role of Csmd1 in regulating mammary gland development during puberty. Changes in duct development and protein expression patterns were analysed by immunohistochemistry. This study identified increased ductal development during the early stages of puberty in the KO mice, characterised by increased ductal area and terminal end bud number at 6 weeks. Furthermore, increased expression of various proteins (Stat1, Fak, Akt, Slug/Snail and Progesterone receptor) was shown at 4 weeks in the KO mice, followed by lower expression levels from 6 weeks in the KO mice compared to the wild type mice. This study identifies a novel role for Csmd1 in mammary gland development, with Csmd1 KO causing significantly more rapid mammary gland development, suggesting an earlier adult mammary gland formation.
Collapse
|
13
|
Weidle UH, Birzele F, Nopora A. microRNAs Promoting Growth of Gastric Cancer Xenografts and Correlation to Clinical Prognosis. Cancer Genomics Proteomics 2021; 18:1-15. [PMID: 33419892 DOI: 10.21873/cgp.20237] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The annual death toll for gastric cancer is in the range of 700,000 worldwide. Even in patients with early-stage gastric cancer recurrence within five years has been observed after surgical resection and following chemotherapy with therapy-resistant features. Therefore, the identification of new targets and treatment modalities for gastric cancer is of paramount importance. In this review we focus on the role of microRNAs with documented efficacy in preclinical xenograft models with respect to growth of human gastric cancer cells. We have identified 31 miRs (-10b, -19a, -19b, -20a, -23a/b, -25, -27a-3p, -92a, -93, -100, -106a, -130a, -135a, -135b-5p, -151-5p, -187, -199-3p, -215, -221-3p, -224, -340a, -382, -421, -425, -487a, -493, -532-3p, -575, -589, -664a-3p) covering 26 different targets which promote growth of gastric cancer cells in vitro and in vivo as xenografts. Five miRs (miRs -10b, 151-5p, -187, 532-3p and -589) additionally have an impact on metastasis. Thirteen of the identified miRs (-19b, -20a/b, -25, -92a, -106a, -135a, -187, -221-3p, -340a, -421, -493, -575 and -589) have clinical impact on worse prognosis in patients.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| |
Collapse
|
14
|
Cairns J, Ingle JN, Dudenkov TM, Kalari KR, Carlson EE, Na J, Buzdar AU, Robson ME, Ellis MJ, Goss PE, Shepherd LE, Goodnature B, Goetz MP, Weinshilboum RM, Li H, Bari MG, Wang L. Pharmacogenomics of aromatase inhibitors in postmenopausal breast cancer and additional mechanisms of anastrozole action. JCI Insight 2020; 5:137571. [PMID: 32701512 PMCID: PMC7455128 DOI: 10.1172/jci.insight.137571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
Aromatase inhibitors (AIs) reduce breast cancer recurrence and prolong survival, but up to 30% of patients exhibit recurrence. Using a genome-wide association study of patients entered on MA.27, a phase III randomized trial of anastrozole versus exemestane, we identified a single nucleotide polymorphism (SNP) in CUB And Sushi multiple domains 1 (CSMD1) associated with breast cancer–free interval, with the variant allele associated with fewer distant recurrences. Mechanistically, CSMD1 regulates CYP19 expression in an SNP- and drug-dependent fashion, and this regulation is different among 3 AIs: anastrozole, exemestane, and letrozole. Overexpression of CSMD1 sensitized AI-resistant cells to anastrozole but not to the other 2 AIs. The SNP in CSMD1 that was associated with increased CSMD1 and CYP19 expression levels increased anastrozole sensitivity, but not letrozole or exemestane sensitivity. Anastrozole degrades estrogen receptor α (ERα), especially in the presence of estradiol (E2). ER+ breast cancer organoids and AI- or fulvestrant-resistant breast cancer cells were more sensitive to anastrozole plus E2 than to AI alone. Our findings suggest that the CSMD1 SNP might help to predict AI response, and anastrozole plus E2 serves as a potential new therapeutic strategy for patients with AI- or fulvestrant-resistant breast cancers. A germline variation within the CSMD1 gene predicts aromatase inhibitor response in breast cancer.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics
| | | | - Tanda M Dudenkov
- Department of Molecular Pharmacology and Experimental Therapeutics
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Erin E Carlson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jie Na
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Aman U Buzdar
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark E Robson
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Paul E Goss
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Barbara Goodnature
- Patient advocate, Mayo Clinic Breast Cancer Specialized Program of Research Excellence, Rochester, Minnesota, USA
| | | | | | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics
| | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics
| |
Collapse
|
15
|
Targeted Next-Generation Sequencing of 117 Routine Clinical Samples Provides Further Insights into the Molecular Landscape of Uveal Melanoma. Cancers (Basel) 2020; 12:cancers12041039. [PMID: 32340176 PMCID: PMC7226611 DOI: 10.3390/cancers12041039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Uveal melanoma (UM) has well-characterised somatic copy number alterations (SCNA) in chromosomes 1, 3, 6 and 8, in addition to mutations in GNAQ, GNA11, CYSLTR2, PLCB4, BAP1, SF3B1 and EIF1AX, most being linked to metastatic-risk. To gain further insight into the molecular landscape of UM, we designed a targeted next-generation sequencing (NGS) panel to detect SCNA and mutations in routine clinical UM samples. We compared hybrid-capture and amplicon-based target enrichment methods and tested a larger cohort of primary UM samples on the best performing panel. UM clinical samples processed either as fresh-frozen, formalin-fixed paraffin embedded (FFPE), small intraocular biopsies or following irradiation were successfully profiled using NGS, with hybrid capture outperforming the PCR-based enrichment methodology. We identified monosomy 3 (M3)-UM that were wild-type for BAP1 but harbored SF3B1 mutations, novel frameshift deletions in SF3B1 and EIF1AX, as well as a PLCB4 mutation outside of the hotspot on exon 20 coinciding with a GNAQ mutation in some UM. We observed samples that harboured mutations in both BAP1 and SF3B1, and SF3B1 and EIF1AX, respectively. Novel mutations were also identified in TTC28, KTN1, CSMD1 and TP53BP1. NGS can simultaneously assess SCNA and mutation data in UM, in a reliable and reproducible way, irrespective of sample type or previous processing. BAP1 and SF3B1 mutations, in addition to 8q copy number, are of added importance when determining UM patient outcome.
Collapse
|
16
|
Premi S, Han L, Mehta S, Knight J, Zhao D, Palmatier MA, Kornacker K, Brash DE. Genomic sites hypersensitive to ultraviolet radiation. Proc Natl Acad Sci U S A 2019; 116:24196-24205. [PMID: 31723047 PMCID: PMC6883822 DOI: 10.1073/pnas.1907860116] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
If the genome contains outlier sequences extraordinarily sensitive to environmental agents, these would be sentinels for monitoring personal carcinogen exposure and might drive direct changes in cell physiology rather than acting through rare mutations. New methods, adductSeq and freqSeq, provided statistical resolution to quantify rare lesions at single-base resolution across the genome. Primary human melanocytes, but not fibroblasts, carried spontaneous apurinic sites and TG sequence lesions more frequent than ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs). UV exposure revealed hyperhotspots acquiring CPDs up to 170-fold more frequently than the genomic average; these sites were more prevalent in melanocytes. Hyperhotspots were disproportionately located near genes, particularly for RNA-binding proteins, with the most-recurrent hyperhotspots at a fixed position within 2 motifs. One motif occurs at ETS family transcription factor binding sites, known to be UV targets and now shown to be among the most sensitive in the genome, and at sites of mTOR/5' terminal oligopyrimidine-tract translation regulation. The second occurs at A2-15TTCTY, which developed "dark CPDs" long after UV exposure, repaired CPDs slowly, and had accumulated CPDs prior to the experiment. Motif locations active as hyperhotspots differed between cell types. Melanocyte CPD hyperhotspots aligned precisely with recurrent UV signature mutations in individual gene promoters of melanomas and with known cancer drivers. At sunburn levels of UV exposure, every cell would have a hyperhotspot CPD in each of the ∼20 targeted cell pathways, letting hyperhotspots act as epigenetic marks that create phenome instability; high prevalence favors cooccurring mutations, which would allow tumor evolution to use weak drivers.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Lynn Han
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Sameet Mehta
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - James Knight
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Meg A Palmatier
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Karl Kornacker
- Karl Kornacker & Associates, LLC, Worthington, OH 43085;
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040;
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
17
|
Feng H, Jia XM, Gao NN, Tang H, Huang W, Ning N. Overexpressed VEPH1 inhibits epithelial-mesenchymal transition, invasion, and migration of human cutaneous melanoma cells through inactivating the TGF-β signaling pathway. Cell Cycle 2019; 18:2860-2875. [PMID: 31599708 DOI: 10.1080/15384101.2019.1638191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Malignant melanoma has a profound influence on populations around the world, with the underlying mechanisms controlling this disease yet to be fully identified. Hence, the current study aimed to investigate effects associated with VEPH1 on epithelial-mesenchymal transition (EMT), proliferation, invasion, migration and the apoptosis of human cutaneous melanoma (CM) cells through the TGF-β signaling pathway. Microarray-based gene analysis was initially performed to screen the CM-related differentially expressed genes. The expression of VEPH1, TGF-β signaling pathway- and EMT-related genes in CM tissues and cell lines was subsequently evaluated. Gain-of- and loss-of-function experiments were conducted to examine the effects of VEPH1 and the TGF-β signaling pathway on the expression of EMT-related genes, cell proliferation, migration, invasion, cell cycle and apoptosis in vitro. Finally, tumor formation in nude mice was conducted. VEPH1 was lowly expressed and regulated the progression of CM with involvement in the TGF-β signaling pathway. Human CM tissues were noted to activate the TGF-β signaling pathway and EMT. A375 cells treated with overexpressed VEPH1 plasmids or/and TGF-β signaling pathway inhibitor SB-431542 displayed diminished TGF-β, SMAD4, Vimentin and N-cadherin expression while the expression of E-cadherin was elevated, accompanied by decreased cell proliferation, migration, invasion, inhibited cell cycle entry. However, si-VEPH1 or TGF-β signaling pathway activator contributed to reverse results. Taken together, the key findings of the current study present evidence suggesting that VEPH1 protects against human CM by inhibiting the activation of the TGF-β signaling pathway, highlighting its potential as a target for the prognosis and diagnosis of CM.
Collapse
Affiliation(s)
- Hao Feng
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University (Hunan Province People's Hospital) , Changsha , P.R. China
| | - Xiao-Min Jia
- Department of Pathology, The First Affiliated Hospital of Hunan Normal University (Hunan Province People's Hospital) , Changsha , P.R. China
| | - Ni-Na Gao
- Department of Pathology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital , Changsha , P.R. China
| | - Hua Tang
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University (Hunan Province People's Hospital) , Changsha , P.R. China
| | - Wei Huang
- Department of Gynaecology, The First Affiliated Hospital of Hunan Normal University (Hunan Province People's Hospital) , Changsha , P.R. China
| | - Ning Ning
- Department of Medical Administration, The First Affiliated Hospital of Hunan Normal University (Hunan Province People's Hospital) , Changsha , P.R. China
| |
Collapse
|
18
|
Analysis of head and neck carcinoma progression reveals novel and relevant stage-specific changes associated with immortalisation and malignancy. Sci Rep 2019; 9:11992. [PMID: 31427592 PMCID: PMC6700135 DOI: 10.1038/s41598-019-48229-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/23/2019] [Indexed: 01/08/2023] Open
Abstract
We report changes in the genomic landscape in the development of head and neck squamous cell carcinomas HNSCC from potentially premalignant lesions (PPOLS) to malignancy and lymph node metastases. Likely pathological mutations predominantly involved a relatively small set of genes reported previously (TP53, KMT2D, CDKN2A, PIK3CA, NOTCH1 and FAT1) but also other predicted cancer drivers (MGA, PABPC3, NR4A2, NCOR1 and MACF1). Notably, all these mutations arise early and are present in PPOLs. The most frequent genetic changes, which follow acquisition of immortality and loss of senescence, are of consistent somatic copy number alterations (SCNAs) involving chromosomal regions enriched for genes in known and previously unreported cancer-related pathways. We mapped the evolution of SCNAs in HNSCC progression. One of the earliest SCNAs involved deletions of CSMD1 (8p23.2). CSMD1 deletions or promoter hypermethylation were present in all of the immortal PPOLs and occurred at high frequency in the immortal HNSCC cell lines. Modulation of CSMD1 in cell lines revealed significant suppression of proliferation and invasion by forced expression, and significant stimulation of invasion by knockdown of expression. Known cancer drivers NOTCH1, PPP6C, RAC1, EIF4G1, PIK3CA showed significant increase in frequency of SCNA in transition from PPOLs to HNSCC that correlated with their expression. In the later stages of progression, HNSCC with and without nodal metastases showed some clear differences including high copy number gains of CCND1, hsa-miR-548k and TP63 in the metastases group.
Collapse
|
19
|
Zhang X, Kang C, Li N, Liu X, Zhang J, Gao F, Dai L. Identification of special key genes for alcohol-related hepatocellular carcinoma through bioinformatic analysis. PeerJ 2019; 7:e6375. [PMID: 30755830 PMCID: PMC6368834 DOI: 10.7717/peerj.6375] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Background Alcohol-related hepatocellular carcinoma (HCC) was reported to be diagnosed at a later stage, but the mechanism was unknown. This study aimed to identify special key genes (SKGs) during alcohol-related HCC development and progression. Methods The mRNA data of 369 HCC patients and the clinical information were downloaded from the Cancer Genome Atlas project (TCGA). The 310 patients with certain HCC-related risk factors were included for analysis and divided into seven groups according to the risk factors. Survival analyses were applied for the HCC patients of different groups. The patients with hepatitis B virus or hepatitis C virus infection only were combined into the HCC-V group for further analysis. The differentially expressed genes (DEGs) between the HCCs with alcohol consumption only (HCC-A) and HCC-V tumors were identified through limma package in R with cutoff criteria│log2 fold change (logFC)|>1.0 and p < 0.05. The DEGs between eight alcohol-related HCCs and their paired normal livers of GSE59259 from the Gene Expression Omnibus (GEO) were identified through GEO2R (a built-in tool in GEO database) with cutoff criteria |logFC|> 2.0 and adj.p < 0.05. The intersection of the two sets of DEGs was considered SKGs which were then investigated for their specificity through comparisons between HCC-A and other four HCC groups. The SKGs were analyzed for their correlations with HCC-A stage and grade and their prognostic power for HCC-A patients. The expressional differences of the SKGs in the HCCs in whole were also investigated through Gene Expression Profiling Interactive Analysis (GEPIA). The SKGs in HCC were validated through Oncomine database analysis. Results Pathological stage is an independent prognostic factor for HCC patients. HCC-A patients were diagnosed later than HCC patients with other risk factors. Ten SKGs were identified and nine of them were confirmed for their differences in paired samples of HCC-A patients. Three (SLC22A10, CD5L, and UROC1) and four (SLC22A10, UROC1, CSAG3, and CSMD1) confirmed genes were correlated with HCC-A stage and grade, respectively. SPP2 had a lower trend in HCC-A tumors and was negatively correlated with HCC-A stage and grade. The SKGs each was differentially expressed between HCC-A and at least one of other HCC groups. CD5L was identified to be favorable prognostic factor for overall survival while CSMD1 unfavorable prognostic factor for disease-free survival for HCC-A patients and HCC patients in whole. Through Oncomine database, the dysregulations of the SKGs in HCC and their clinical significance were confirmed. Conclusion The poor prognosis of HCC-A patients might be due to their later diagnosis. The SKGs, especially the four stage-correlated genes (CD5L, SLC22A10, UROC1, and SPP2) might play important roles in HCC development, especially alcohol-related HCC development and progression. CD5L might be useful for overall survival and CSMD1 for disease-free survival predication in HCC, especially alcohol-related HCC.
Collapse
Affiliation(s)
| | | | | | - Xiaoli Liu
- Henan Province People's Hospital, Zhengzhou, China
| | | | | | - Liping Dai
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Jung AR, Eun YG, Lee YC, Noh JK, Kwon KH. Clinical Significance of CUB and Sushi Multiple Domains 1 Inactivation in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19123996. [PMID: 30545040 PMCID: PMC6321139 DOI: 10.3390/ijms19123996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/29/2018] [Accepted: 12/05/2018] [Indexed: 01/16/2023] Open
Abstract
Although the genetic alteration of CUB and Sushi multiple domains 1 (CSMD1) is known to be associated with poor prognosis in several cancers, there is a lack of clinical relevance in head and neck cancer. The aim of this study was to offer insight into the clinical significance of CSMD1, utilizing a multimodal approach that leverages publicly available independent genome-wide expression datasets. CSMD1-related genes were found and analyzed to examine the clinical significance of CSMD1 inactivation in the HNSCC cohort of publicly available databases. We analyzed the frequency of somatic mutations, clinicopathologic characteristics, association with immunotherapy-related gene signatures, and the pathways of gene signatures. We found 363 CSMD1-related genes. The prognosis of the CSMD1-inactivated subgroup was poor. FBXW7, HLA-A, MED1, NOTCH2, NOTCH3, and TP53 had higher mutation rates in the CSMD1-inactivated subgroups. The Interferon-gamma score and immune signature score were elevated in CSMD1-inactivated subgroups. We identified several CSMD1-related pathways, such as the phosphatidylinositol signaling system and inositol phosphate metabolism. Our study using three large and independent datasets suggests that CSMD1-related gene signatures are associated with the prognosis of HNSCC patients.
Collapse
Affiliation(s)
- Ah Ra Jung
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02774, Korea.
| | - Young-Gyu Eun
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02774, Korea.
| | - Young Chan Lee
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Kyung Hee University, Seoul 02774, Korea.
| | - Joo Kyung Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02774, Korea.
| | - Kee Hwan Kwon
- Department of Otolaryngology-Head and Neck Surgery, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, 150, Seongan-ro Gangdong-Gu, Seoul 134-701, Korea.
| |
Collapse
|
21
|
Novel potential inhibitors of complement system and their roles in complement regulation and beyond. Mol Immunol 2018; 102:73-83. [PMID: 30217334 DOI: 10.1016/j.molimm.2018.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
The complement system resembles a double-edged sword since its activation can either benefit or harm the host. Thus, regulation of this system is of utmost importance and performed by several circulating and membrane-bound complement inhibitors. The pool of well-established regulators has recently been enriched with proteins that either share structural homology to known complement inhibitors such as Sushi domain-containing (SUSD) protein family and Human CUB and Sushi multiple domains (CSMD) families or extracellular matrix (ECM) macromolecules that interact with and modulate complement activity. In this review, we summarize the current knowledge about newly discovered complement inhibitors and discuss their implications in complement regulation, as well as in processes beyond complement regulation such cancer development. Understanding the behavior of these proteins will introduce new mechanisms of complement regulation and may provide new avenues in the development of novel therapies.
Collapse
|
22
|
Escudero-Esparza A, Bartoschek M, Gialeli C, Okroj M, Owen S, Jirström K, Orimo A, Jiang WG, Pietras K, Blom AM. Complement inhibitor CSMD1 acts as tumor suppressor in human breast cancer. Oncotarget 2018; 7:76920-76933. [PMID: 27764775 PMCID: PMC5363559 DOI: 10.18632/oncotarget.12729] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/11/2016] [Indexed: 12/02/2022] Open
Abstract
Human CUB and Sushi multiple domains 1 (CSMD1) is a membrane-bound complement inhibitor suggested to act as a putative tumor suppressor gene, since allelic loss of this region encompassing 8p23 including CSMD1 characterizes various malignancies. Here, we assessed the role of CSMD1 as a tumor suppressor gene in the development of breast cancer in vitro and in vivo. We found that human breast tumor tissues expressed CSMD1 at lower levels compared to that in normal mammary tissues. The decreased expression of CSMD1 was linked to a shorter overall survival of breast cancer patients. We also revealed that expression of CSMD1 in human breast cancer cells BT-20 and MDA-MB-231 significantly inhibited their malignant phenotypes, including migration, adhesion and invasion. Conversely, stable silencing of CSMD1 expression in T47D cells enhanced cancer cell migratory, adherent and clonogenic abilities. Moreover, expression of CSMD1 in the highly invasive MDA-MB-231 cells diminished their signaling potential as well as their stem cell-like properties as assessed by measurement of aldehyde dehydrogenase activity. In a xenograft model, expression of CSMD1 blocked the ability of cancer cells to metastasize to secondary sites in vivo, likely via inhibiting local invasion but not the extravasation into distant tissues. Taken together, these findings demonstrate the role of CSMD1 as a tumor suppressor gene in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Marcin Okroj
- Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Karin Jirström
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Akira Orimo
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Cardiff, UK
| | - Kristian Pietras
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
23
|
Abstract
The complement system is an arm of innate immunity that aids in the removal of pathogens and dying cells. Due to its harmful, pro-inflammatory potential, complement is controlled by several soluble and membrane-bound inhibitors. This family of complement regulators has been recently extended by the discovery of several new members, and it is becoming apparent that these proteins harbour additional functions. In this review, the current state of knowledge of the physiological functions of four complement regulators will be described: cartilage oligomeric matrix protein (COMP), CUB and sushi multiple domains 1 (CSMD1), sushi domain-containing protein 4 (SUSD4) and CD59. Complement activation is involved in both the development of and defence against cancer. COMP expression is pro-oncogenic, whereas CSMD1 and SUSD4 act as tumour suppressors. These effects may be related in part to the complex influence of complement on cancer but also depend on unrelated functions such as the protection of cells from endoplasmic reticulum stress conveyed by intracellular COMP. CD59 is the main inhibitor of the membrane attack complex, and its deficiency leads to complement attack on erythrocytes and severe haemolytic anaemia, which is now amenable to treatment with an inhibitor of C5 cleavage. Unexpectedly, the intracellular pool of CD59 is crucial for insulin secretion from pancreatic β-cells. This finding is one of several relating to the intracellular functions of complement proteins, which until recently were only considered to be present in the extracellular space. Understanding the alternative functions of complement inhibitors may unravel unexpected links between complement and other physiological systems, but is also important for better design of therapeutic complement inhibition.
Collapse
Affiliation(s)
- A M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
24
|
Kamal M, Holliday DL, Morrison EE, Speirs V, Toomes C, Bell SM. Loss of CSMD1 expression disrupts mammary duct formation while enhancing proliferation, migration and invasion. Oncol Rep 2017; 38:283-292. [PMID: 28534981 DOI: 10.3892/or.2017.5656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
The CUB and sushi multiple domains 1 (CSMD1) gene maps to chromosome 8p23, a region deleted in many cancers. Loss of CSMD1 expression is associated with poor prognosis in breast cancer suggesting that it acts as a tumour suppressor in this cancer. However, the function of CSMD1 is largely unknown. Herein, we investigated CSMD1 functions in cell line models. CSMD1 expression was suppressed in MCF10A and LNCaP cells using short hairpin RNA. Functional assays were performed focusing on the 'normal' MCF10A cell line. Suppression of CSMD1 significantly increased the proliferation, cell migration and invasiveness of MCF10A cells compared to shcontrols. shCSMD1 cells also showed significantly reduced adhesion to Matrigel and fibronectin. In a three-dimensional Matrigel model of MCF10A cells, reduced CSMD1 expression resulted in the development of larger and more poorly differentiated breast acini-like structures that displayed impaired lumen formation. Loss of CSMD1 expression disrupts a model of mammary duct formation while enhancing proliferation, migration and invasion. Our data suggest that CSMD1 is involved in the suppression of a transformed phenotype.
Collapse
Affiliation(s)
- Mohamed Kamal
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Deborah L Holliday
- Leeds Institute of Cancer and Pathology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Ewan E Morrison
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Valerie Speirs
- Leeds Institute of Cancer and Pathology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Carmel Toomes
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Sandra M Bell
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
25
|
Mahas A, Potluri K, Kent MN, Naik S, Markey M. Copy number variation in archival melanoma biopsies versus benign melanocytic lesions. Cancer Biomark 2017; 16:575-97. [PMID: 27002761 DOI: 10.3233/cbm-160600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Skin melanocytes can give rise to benign and malignant neoplasms. Discrimination of an early melanoma from an unusual/atypical benign nevus can represent a significant challenge. However, previous studies have shown that in contrast to benign nevi, melanoma demonstrates pervasive chromosomal aberrations. OBJECTIVE This substantial difference between melanoma and benign nevi can be exploited to discriminate between melanoma and benign nevi. METHODS Array-comparative genomic hybridization (aCGH) is an approach that can be used on DNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues to assess the entire genome for the presence of changes in DNA copy number. In this study, high resolution, genome-wide single-nucleotide polymorphism (SNP) arrays were utilized to perform comprehensive and detailed analyses of recurrent copy number aberrations in 41 melanoma samples in comparison with 21 benign nevi. RESULTS We found statistically significant copy number gains and losses within melanoma samples. Some of the identified aberrations are previously implicated in melanoma. Moreover, novel regions of copy number alterations were identified, revealing new candidate genes potentially involved in melanoma pathogenesis. CONCLUSIONS Taken together, these findings can help improve melanoma diagnosis and introduce novel melanoma therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Mahas
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Keerti Potluri
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael N Kent
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.,Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Sameep Naik
- Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Michael Markey
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
26
|
Royer-Bertrand B, Torsello M, Rimoldi D, El Zaoui I, Cisarova K, Pescini-Gobert R, Raynaud F, Zografos L, Schalenbourg A, Speiser D, Nicolas M, Vallat L, Klein R, Leyvraz S, Ciriello G, Riggi N, Moulin AP, Rivolta C. Comprehensive Genetic Landscape of Uveal Melanoma by Whole-Genome Sequencing. Am J Hum Genet 2016; 99:1190-1198. [PMID: 27745836 PMCID: PMC5097942 DOI: 10.1016/j.ajhg.2016.09.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023] Open
Abstract
Uveal melanoma (UM) is a rare intraocular tumor that, similar to cutaneous melanoma, originates from melanocytes. To gain insights into its genetics, we performed whole-genome sequencing at very deep coverage of tumor-control pairs in 33 samples (24 primary and 9 metastases). Genome-wide, the number of coding mutations was rather low (only 17 variants per tumor on average; range 7-28), thus radically different from cutaneous melanoma, where hundreds of exonic DNA insults are usually detected. Furthermore, no UV light-induced mutational signature was identified. Recurrent coding mutations were found in the known UM drivers GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Other genes, i.e., TP53BP1, CSMD1, TTC28, DLK2, and KTN1, were also found to harbor somatic mutations in more than one individual, possibly indicating a previously undescribed association with UM pathogenesis. De novo assembly of unmatched reads from non-coding DNA revealed peculiar copy-number variations defining specific UM subtypes, which in turn could be associated with metastatic transformation. Mutational-driven comparison with other tumor types showed that UM is very similar to pediatric tumors, characterized by very few somatic insults and, possibly, important epigenetic changes. Through the analysis of whole-genome sequencing data, our findings shed new light on the molecular genetics of uveal melanoma, delineating it as an atypical tumor of the adult for which somatic events other than mutations in exonic DNA shape its genetic landscape and define its metastatic potential.
Collapse
Affiliation(s)
- Beryl Royer-Bertrand
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1011 Lausanne Switzerland; Center for Molecular Diseases, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Matteo Torsello
- Experimental Pathology, Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Donata Rimoldi
- Ludwig Cancer Research, Department of Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Ikram El Zaoui
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1011 Lausanne Switzerland
| | - Katarina Cisarova
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1011 Lausanne Switzerland
| | - Rosanna Pescini-Gobert
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1011 Lausanne Switzerland
| | - Franck Raynaud
- Department of Computational Biology, Computational Systems Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Leonidas Zografos
- Jules-Gonin Eye Hospital, Department of Ophthalmology, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Ann Schalenbourg
- Jules-Gonin Eye Hospital, Department of Ophthalmology, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Daniel Speiser
- Ludwig Cancer Research, Department of Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Michael Nicolas
- Jules-Gonin Eye Hospital, Department of Ophthalmology, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Laureen Vallat
- Jules-Gonin Eye Hospital, Department of Ophthalmology, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Robert Klein
- Formerly Complete Genomics, Mountain View, CA 94043, USA
| | - Serge Leyvraz
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Giovanni Ciriello
- Department of Computational Biology, Computational Systems Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Nicolò Riggi
- Experimental Pathology, Institute of Pathology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Alexandre P Moulin
- Jules-Gonin Eye Hospital, Department of Ophthalmology, Fondation Asile des Aveugles, University of Lausanne, 1004 Lausanne, Switzerland
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1011 Lausanne Switzerland.
| |
Collapse
|
27
|
Gao G, Johnson SH, Vasmatzis G, Pauley CE, Tombers NM, Kasperbauer JL, Smith DI. Common fragile sites (CFS) and extremely large CFS genes are targets for human papillomavirus integrations and chromosome rearrangements in oropharyngeal squamous cell carcinoma. Genes Chromosomes Cancer 2016; 56:59-74. [PMID: 27636103 DOI: 10.1002/gcc.22415] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/04/2023] Open
Abstract
Common fragile sites (CFS) are chromosome regions that are prone to form gaps or breaks in response to DNA replication stress. They are often found as hotspots for sister chromatid exchanges, deletions, and amplifications in different cancers. Many of the CFS regions are found to span genes whose genomic sequence is greater than 1 Mb, some of which have been demonstrated to function as important tumor suppressors. CFS regions are also hotspots for human papillomavirus (HPV) integrations in cervical cancer. We used mate-pair sequencing to examine HPV integration events and chromosomal structural variations in 34 oropharyngeal squamous cell carcinoma (OPSCC). We used endpoint PCR and Sanger sequencing to validate each HPV integration event and found HPV integrations preferentially occurred within CFS regions similar to what is observed in cervical cancer. We also found that many of the chromosomal alterations detected also occurred at or near the cytogenetic location of CFSs. Several large genes were also found to be recurrent targets of rearrangements, independent of HPV integrations, including CSMD1 (2.1Mb), LRP1B (1.9Mb), and LARGE1 (0.7Mb). Sanger sequencing revealed that the nucleotide sequences near to identified junction sites contained repetitive and AT-rich sequences that were shown to have the potential to form stem-loop DNA secondary structures that might stall DNA replication fork progression during replication stress. This could then cause increased instability in these regions which could lead to cancer development in human cells. Our findings suggest that CFSs and some specific large genes appear to play important roles in OPSCC. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Sarah H Johnson
- Biomarker Discovery Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - George Vasmatzis
- Biomarker Discovery Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | - David I Smith
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
28
|
Zhu Q, Gong L, Wang J, Tu Q, Yao L, Zhang JR, Han XJ, Zhu SJ, Wang SM, Li YH, Zhang W. miR-10b exerts oncogenic activity in human hepatocellular carcinoma cells by targeting expression of CUB and sushi multiple domains 1 (CSMD1). BMC Cancer 2016; 16:806. [PMID: 27756250 PMCID: PMC5069781 DOI: 10.1186/s12885-016-2801-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a lethal disease, while the precise underlying molecular mechanisms of HCC pathogenesis remain to be defined. MicroRNA (miRNA), a class of non-coding small RNAs, can post-transcriptionally regulate gene expression. Altered miRNA expression has been reported in HCCs. This study assessed expression and the oncogenic activity of miRNA-10b (miR-10b) in HCC. METHODS Forty-five paired human HCC and adjacent non-tumor tissues were collected for qRT-PCR and immunohistochemistry analysis of miR-10b and CUB and Sushi multiple domains 1 (CSMD1), respectively. We analyzed the clinicopathological data from these patients to further determine if there was an association between miR-10b and CSMD1. HCC cell lines were used to assess the effects of miR-10b mimics or inhibitors on cell viability, migration, invasion, cell cycle distribution, and colony formation. Luciferase assay was used to assess miR-10b binding to the 3'-untranslated region (3'-UTR) of CSMD1. RESULTS miR-10b was highly expressed in HCC tissues compared to normal tissues. In vitro, overexpression of miR-10b enhanced HCC cell viability, migration, and invasion; whereas, downregulation of miR-10b expression suppressed these properties in HCC cells. Injection of miR-10b mimics into tumor cell xenografts also promoted xenograft growth in nude mice. Bioinformatics and luciferase reporter assay demonstrated that CSMD1 was the target gene of miR-10b. Immunocytochemical, immunohistochemical, and qRT-PCR data indicated that miR-10b decreased CSMD1 expression in HCC cells. CONCLUSIONS We showed that miR-10b is overexpressed in HCC tissues and miR-10b mimics promoted HCC cell viability and invasion via targeting CSMD1 expression. Our findings suggest that miR-10b acts as an oncogene by targeting the tumor suppressor gene, CSMD1, in HCC.
Collapse
Affiliation(s)
- Qiao Zhu
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Li Gong
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Jun Wang
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Qian Tu
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Li Yao
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Jia-Rui Zhang
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Xiu-Juan Han
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Shao-Jun Zhu
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Shu-Mei Wang
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | - Yan-Hong Li
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China. .,Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China. .,Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Wei Zhang
- The Helmholtz Sino-German Laboratory for Cancer Research, Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China. .,Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
29
|
Sood RF, Arbabi S, Honari S, Gibran NS. Missense Variant in MAPK Inactivator PTPN5 Is Associated with Decreased Severity of Post-Burn Hypertrophic Scarring. PLoS One 2016; 11:e0149206. [PMID: 26872063 PMCID: PMC4752497 DOI: 10.1371/journal.pone.0149206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hypertrophic scarring (HTS) is hypothesized to have a genetic mechanism, yet its genetic determinants are largely unknown. The mitogen-activated protein kinase (MAPK) pathways are important mediators of inflammatory signaling, and experimental evidence implicates MAPKs in HTS formation. We hypothesized that single-nucleotide polymorphisms (SNPs) in MAPK-pathway genes would be associated with severity of post-burn HTS. METHODS We analyzed data from a prospective-cohort genome-wide association study of post-burn HTS. We included subjects with deep-partial-thickness burns admitted to our center who provided blood for genotyping and had at least one Vancouver Scar Scale (VSS) assessment. After adjusting for HTS risk factors and population stratification, we tested MAPK-pathway gene SNPs for association with the four VSS variables in a joint regression model. In addition to individual-SNP analysis, we performed gene-based association testing. RESULTS Our study population consisted of 538 adults (median age 40 years) who were predominantly White (76%) males (71%) admitted to our center from 2007-2014 with small-to-moderate-sized burns (median burn size 6% total body surface area). Of 2,146 SNPs tested, a rare missense variant in the PTPN5 gene (rs56234898; minor allele frequency 1.5%) was significantly associated with decreased severity of post-burn HTS (P = 1.3×10-6). In gene-based analysis, PTPN5 (P = 1.2×10-5) showed a significant association and BDNF (P = 9.5×10-4) a borderline-significant association with HTS severity. CONCLUSIONS We report PTPN5 as a novel genetic locus associated with HTS severity. PTPN5 is a MAPK inhibitor expressed in neurons, suggesting a potential role for neurotrophic factors and neuroinflammatory signaling in HTS pathophysiology.
Collapse
Affiliation(s)
- Ravi F. Sood
- Department of Surgery, UW Medicine Regional Burn Center, Harborview Medical Center, Seattle, WA, United States of America
| | - Saman Arbabi
- Department of Surgery, UW Medicine Regional Burn Center, Harborview Medical Center, Seattle, WA, United States of America
| | - Shari Honari
- Department of Surgery, UW Medicine Regional Burn Center, Harborview Medical Center, Seattle, WA, United States of America
| | - Nicole S. Gibran
- Department of Surgery, UW Medicine Regional Burn Center, Harborview Medical Center, Seattle, WA, United States of America
| |
Collapse
|
30
|
Abstract
OBJECTIVE To identify genetic variants associated with the severity of postburn hypertrophic scarring (HTS) using a genome-wide approach. BACKGROUND Risk of severe postburn HTS is known to depend on race, but the genetic determinants of HTS are unknown. METHODS We conducted a genome-wide association study (GWAS) in a prospective cohort of adults admitted with deep-partial-thickness burns from 2007 through 2014. Scar severity was assessed over time using the Vancouver Scar Scale (VSS), and DNA was genotyped with a >500,000-marker array. We performed association testing of single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) >0.01 using linear regression of VSS height score on genotype adjusted for patient and injury characteristics as well as population genetic structure. Array-wide significance was based on Bonferroni correction for multiple testing. RESULTS Of 538 patients (median age 40 years, median burn size 6.0% of body surface area), 71% were men and 76% were White. The mean VSS height score was 1.2 (range: 0-3). Of 289,639 SNPs tested, a variant in the CUB and Sushi multiple domains 1 (CSMD1) gene (rs11136645; MAF = 0.49), was significantly associated with decreased scar height (regression coefficient = -0.23, P = 7.9 × 10). CONCLUSIONS In the first published GWAS of HTS, we report that a common intronic variant in the CSMD1 gene is associated with reduced severity of postburn HTS. If this association is confirmed in an independent cohort, investigating the potential role of CSMD1 in wound healing may elucidate HTS pathophysiology.
Collapse
|
31
|
Wang W, Song XW, Bu XM, Zhang N, Zhao CH. PDCD2 and NCoR1 as putative tumor suppressors in gastric gastrointestinal stromal tumors. Cell Oncol (Dordr) 2015; 39:129-37. [PMID: 26589942 DOI: 10.1007/s13402-015-0258-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. Previously, PDCD2 (programmed cell death protein 2) has been identified as a putative tumor suppressor in gastric cancer. As yet, however, no reports on PDCD2 expression and its physical interactor NCoR1 (nuclear receptor co-repressor), and their effects in GIST have been reported. METHODS The expression of PDCD2 and NCoR1 was assessed in 43 primary gastric GIST and normal gastric tissue samples using Western blotting and quantitative real-time PCR. Next, associations between PDCD2 and NCoR1 expression and various clinicopathological features, including survival, were determined. To assess the effects of PDCD2 and NCoR1 expression in vitro, two GIST-derived cell lines (GIST-T1 and GIST882) were (co-)transfected with the expression vectors pEGFP-N1-PDCD2 and pcDNA3.1-NCoR1, after which the cells were subjected to CCK-8, PI staining and Annexin V-FITC/PI double staining assays, respectively. Finally, the mechanisms of action of PDCD2 and NCoR1 in GIST-derived cells were determined using immunoprecipitation and Western blotting assays. RESULTS We found that the PDCD2 and NCoR1 protein levels were lower in gastric GIST tissues than in normal gastric tissues. The PDCD2 and NCoR1 expression levels were found to be significantly associated with the survival of the patients. Through exogenous expression analyses, we found that PDCD2 and NCoR1 can decrease proliferation, and increase apoptosis and G1 cell cycle arrest, in GIST-derived cells. Furthermore, we found that PDCD2 and NCoR1 can activate Smad2 and Smad3. CONCLUSIONS Our data indicate that both PDCD2 and NCoR1 may act as tumor suppressors in GIST cells through the Smad signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiao-Wen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xian-Min Bu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Ning Zhang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Cheng-Hai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
32
|
Evasion and interactions of the humoral innate immune response in pathogen invasion, autoimmune disease, and cancer. Clin Immunol 2015; 160:244-54. [PMID: 26145788 DOI: 10.1016/j.clim.2015.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 02/07/2023]
Abstract
The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases. This review will examine how Gram positive bacteria, viruses, cancer, and the autoimmune conditions systemic lupus erythematosus and anti-phospholipid syndrome, interact with these immune system components. Through examining evasion techniques it becomes clear that an interplay between these three systems exists. By exploring the interplay and the evasion/disruption of the humoral innate immune system, we can develop a better understanding of pathogenic infections, cancer, and autoimmune disease development.
Collapse
|
33
|
Terao C, Ohmura K, Kochi Y, Ikari K, Okada Y, Shimizu M, Nishina N, Suzuki A, Myouzen K, Kawaguchi T, Takahashi M, Takasugi K, Murasawa A, Mizuki S, Iwahashi M, Funahashi K, Natsumeda M, Furu M, Hashimoto M, Ito H, Fujii T, Ezawa K, Matsubara T, Takeuchi T, Kubo M, Yamada R, Taniguchi A, Yamanaka H, Momohara S, Yamamoto K, Mimori T, Matsuda F. Anti-citrullinated peptide/protein antibody (ACPA)-negative RA shares a large proportion of susceptibility loci with ACPA-positive RA: a meta-analysis of genome-wide association study in a Japanese population. Arthritis Res Ther 2015; 17:104. [PMID: 25927497 PMCID: PMC4431175 DOI: 10.1186/s13075-015-0623-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 04/08/2015] [Indexed: 11/16/2022] Open
Abstract
Introduction Although susceptibility genes for anti-citrullinated peptide/protein antibodies (ACPA)-positive rheumatoid arthritis (RA) have been successfully discovered by genome-wide association studies (GWAS), little is known about the genetic background of ACPA-negative RA. We intended to elucidate genetic background of ACPA-negative RA. Method We performed a meta-analysis of GWAS comprising 670 ACPA-negative RA and 16,891 controls for 1,948,138 markers, followed by a replication study of the top 35 single nucleotide polymorphisms (SNPs) using 916 cases and 3,764 controls. Inverse-variance method was applied to assess overall effects. To assess overlap of susceptibility loci between ACPA-positive and -negative RA, odds ratios (ORs) of the 21 susceptibility markers to RA in Japanese were compared between the two subsets. In addition, SNPs were stratified by the p-values in GWAS meta-analysis for either ACPA-positive RA or ACPA-negative RA to address the question whether weakly-associated genes were also shared. The correlations between ACPA-positive RA and the subpopulations of ACPA-negative RA (rheumatoid factor (RF)-positive and RF-negative subsets) were also addressed. Results Rs6904716 in LEMD2 of the human leukocyte antigen (HLA) locus showed a borderline association with ACPA-negative RA (overall p = 5.7 × 10−8), followed by rs6986423 in CSMD1 (p = 2.4 × 10−6) and rs17727339 in FCRL3 (p = 1.4 × 10−5). ACPA-negative RA showed significant correlations of ORs with ACPA-positive RA for the 21 susceptibility SNPs and non-HLA SNPs with p-values far from significance. These significant correlations with ACPA-positive RA were true for ACPA-negative RF-positive and ACPA-negative RF-negative RA. On the contrary, positive correlations were not observed between the ACPA-negative two subpopulations. Conclusion Many of the susceptibility loci were shared between ACPA-positive and -negative RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0623-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chikashi Terao
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Yuta Kochi
- Laboratory for Autoimmune Diseases, Center for Genomic Medicine, RIKEN, Yokohama, Japan.
| | - Katsunori Ikari
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Yukinori Okada
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Masakazu Shimizu
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Naoshi Nishina
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, Center for Genomic Medicine, RIKEN, Yokohama, Japan.
| | - Keiko Myouzen
- Laboratory for Autoimmune Diseases, Center for Genomic Medicine, RIKEN, Yokohama, Japan.
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | - Akira Murasawa
- Department of Rheumatology, Niigata Rheumatic Center, Niigata, Japan.
| | - Shinichi Mizuki
- The Centre for Rheumatic Diseases, Matsuyama Red Cross Hospital, Matsuyama, Japan.
| | | | - Keiko Funahashi
- Pharm C, Matsubara Mayflower Hospital, 944-25 Fujita, Kato City, Hyogo, Japan.
| | | | - Moritoshi Furu
- Department of the Control for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Motomu Hashimoto
- Department of the Control for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Hiromu Ito
- Department of the Control for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Takao Fujii
- Department of the Control for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | - Tsukasa Matsubara
- Matsubara Mayflower Hospital, 944-25 Fujita, Kato City, Hyogo, Japan.
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Michiaki Kubo
- Laboratory for Autoimmune Diseases, Center for Genomic Medicine, RIKEN, Yokohama, Japan.
| | - Ryo Yamada
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Atsuo Taniguchi
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Hisashi Yamanaka
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Shigeki Momohara
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, Center for Genomic Medicine, RIKEN, Yokohama, Japan.
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Institut National de la Sante et de la Recherche Medicale (INSERM) Unite U852, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
34
|
Gollin SM. Cytogenetic alterations and their molecular genetic correlates in head and neck squamous cell carcinoma: a next generation window to the biology of disease. Genes Chromosomes Cancer 2014; 53:972-90. [PMID: 25183546 DOI: 10.1002/gcc.22214] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023] Open
Abstract
Cytogenetic alterations underlie the development of head and neck squamous cell carcinoma (HNSCC), whether tobacco and alcohol use, betel nut chewing, snuff or human papillomavirus (HPV) causes the disease. Many of the molecular genetic aberrations in HNSCC result from these cytogenetic alterations. This review presents a brief introduction to the epidemiology of HNSCC, and discusses the role of HPV in the disease, cytogenetic alterations and their frequencies in HNSCC, their molecular genetic and The Cancer Genome Atlas (TCGA) correlates, prognostic implications, and possible therapeutic considerations. The most frequent cytogenetic alterations in HNSCC are gains of 5p14-15, 8q11-12, and 20q12-13, gains or amplifications of 3q26, 7p11, 8q24, and 11q13, and losses of 3p, 4q35, 5q12, 8p23, 9p21-24, 11q14-23, 13q12-14, 18q23, and 21q22. To understand their effects on tumor cell biology and response to therapy, the cytogenetic findings in HNSCC are increasingly being examined in the context of the biochemical pathways they disrupt. The goal is to minimize morbidity and mortality from HNSCC using cytogenetic abnormalities to identify valuable diagnostic biomarkers for HNSCC, prognostic biomarkers of tumor behavior, recurrence risk, and outcome, and predictive biomarkers of therapeutic response to identify the most efficacious treatment for each individual patient's tumor, all based on a detailed understanding of the next generation biology of HNSCC.
Collapse
Affiliation(s)
- Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; Departments of Otolaryngology and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| |
Collapse
|
35
|
Yang CT, French A, Goh PA, Pagnamenta A, Mettananda S, Taylor J, Knight S, Nathwani A, Roberts DJ, Watt SM, Carpenter L. Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins. Br J Haematol 2014; 166:435-48. [PMID: 24837254 PMCID: PMC4375519 DOI: 10.1111/bjh.12910] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/09/2014] [Indexed: 12/23/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs), like embryonic stem cells, are under intense investigation for novel approaches to model disease and for regenerative therapies. Here, we describe the derivation and characterization of hiPSCs from a variety of sources and show that, irrespective of origin or method of reprogramming, hiPSCs can be differentiated on OP9 stroma towards a multi-lineage haemo-endothelial progenitor that can contribute to CD144(+) endothelium, CD235a(+) erythrocytes (myeloid lineage) and CD19(+) B lymphocytes (lymphoid lineage). Within the erythroblast lineage, we were able to demonstrate by single cell analysis (flow cytometry), that hiPSC-derived erythroblasts express alpha globin as previously described, and that a sub-population of these erythroblasts also express haemoglobin F (HbF), indicative of fetal definitive erythropoiesis. More notably however, we were able to demonstrate that a small sub-fraction of HbF positive erythroblasts co-expressed HbA in a highly heterogeneous manner, but analogous to cord blood-derived erythroblasts when cultured using similar methods. Moreover, the HbA expressing erythroblast population could be greatly enhanced (44·0 ± 6·04%) when a defined serum-free approach was employed to isolate a CD31(+) CD45(+) erythro-myeloid progenitor. These findings demonstrate that hiPSCs may represent a useful alternative to standard sources of erythrocytes (RBCs) for future applications in transfusion medicine.
Collapse
Affiliation(s)
- Cheng-Tao Yang
- Blood Research Laboratory, Radcliffe Department of Medicine, NHS Blood and Transplant and Nuffield Division of Clinical Laboratory Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK; Stem Cell Research Laboratory, Radcliffe Department of Medicine, NHS Blood and Transplant and Nuffield Division of Clinical Laboratory Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang R, Song C. Loss of CSMD1 or 2 may contribute to the poor prognosis of colorectal cancer patients. Tumour Biol 2014; 35:4419-23. [DOI: 10.1007/s13277-013-1581-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022] Open
|
37
|
Jayaraman SS, Rayhan DJ, Hazany S, Kolodney MS. Mutational Landscape of Basal Cell Carcinomas by Whole-Exome Sequencing. J Invest Dermatol 2014; 134:213-220. [DOI: 10.1038/jid.2013.276] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 11/09/2022]
|
38
|
Reyes-Botero G, Giry M, Mokhtari K, Labussière M, Idbaih A, Delattre JY, Laigle-Donadey F, Sanson M. Molecular analysis of diffuse intrinsic brainstem gliomas in adults. J Neurooncol 2013; 116:405-11. [PMID: 24242757 DOI: 10.1007/s11060-013-1312-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 11/10/2013] [Indexed: 12/18/2022]
Abstract
Diffuse intrinsic brainstem gliomas (DIBG) account for 1-2 % of adult gliomas. Their biological characteristics are scarcely understood and whether DIBG are biologically different from supratentorial gliomas remains to be established. We analyzed 17 DIBG samples for IDH1 R132H, alpha internexin, p53, and Ki67 expression, and, in a subset with sufficient DNA amount, for IDH1 and histone H3 mutational status, genomic profiling and MGMT promoter methylation status. A series of 738 adult supratentorial gliomas was used for comparison. Median age at diagnosis was 41 years (range 18.9-65.3 years). Median overall survival was 48.7 months (57 months for low-grade vs. 16 months for high-grade gliomas, p < 0.01). IDH1 sequencing revealed two mutations (IDH1 (R132G) , IDH1 (R132C) ) out of 7 DIBG whereas the R132H IDH1 enzyme was detected in 1/17 DIBG, suggesting that IDH1 mutations are mostly non R132H in DIBG (2/2), in contrast to supratentorial gliomas (31/313; p = 0.01). Mutations in histone genes H3F3A (encoding H3.3) and HIST1H3B (encoding H3.1) were found in 3/8 (37.5 %) of the DIBG (two H3F3A (K27M) and one HIST1H3B (K27M) ) versus 6/205 (2.9 %) of the supratentorial high-grade gliomas (four H3F3A (G34R) and two H3F3A (K27M) ) (p = 0.002). The CGH array showed a higher frequency of chromosome arm 1q gain, 9q gain and 11q loss in DIBG compared to the supratentorial high-grade gliomas, which had a less frequent chromosome 7 gain, and a less frequent chromosome 10 loss. No EGFR amplification was found. These data suggest that adult DIBG differ from adult supratentorial gliomas. In particular, histone genes (H3F3A (K27M) , HIST1H3B (K27M) ) mutations are frequent in adult DIBG whereas IDH1 (R132H) mutations are rare.
Collapse
Affiliation(s)
- German Reyes-Botero
- Service de Neurologie 2, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
PIAS1-modulated Smad2/4 complex activation is involved in zinc-induced cancer cell apoptosis. Cell Death Dis 2013; 4:e811. [PMID: 24052079 PMCID: PMC3789191 DOI: 10.1038/cddis.2013.333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/27/2022]
Abstract
Prostate cancer is one of the most frequently diagnosed cancers among men. Dietary intake of nutrients is considered crucial for preventing the initiation of events leading to the development of carcinoma. Many dietary compounds have been considered to contribute to cancer prevention including zinc, which has a pivotal role in modulating apoptosis. However, the mechanism for zinc-mediated prostate cancer chemoprevention remains enigmatic. In this study, we investigated the therapeutic effect of zinc in prostate cancer chemoprevention for the first time. Exposure to zinc induced apoptosis and resulted in transactivation of p21WAF1/Cip1 in a Smad-dependent and p53-independent manner in prostate cancer cells. Smad2 and PIAS1 proteins were significantly upregulated resulting in dramatically increased interactions between Smad2/4 and PIAS1 in the presence of zinc in LNCaP cells. Furthermore, it was found that the zinc-induced Smad4/2/PIAS1 transcriptional complex is responsible for Smad4 binding to SBE1 and SBE3 regions within the p21WAF1/Cip1 promoter. Exogenous expression of Smad2/4 and PIAS1 promotes zinc-induced apoptosis concomitant with Smad4 nuclear translocation, whereas endogenous Smad2/4 silencing inhibited zinc-induced apoptosis accompanying apparent p21WAF1/Cip1 reduction. Moreover, the knockdown of PIAS1 expression attenuated the zinc-induced recruitment of Smad4 on the p21WAF1/Cip1 promoter. The colony formation experiments demonstrate that PIAS1 and Smad2/4 silencing could attenuate zinc apoptotic effects, with a proliferation of promoting effects. We further demonstrate the correlation of apoptotic sensitivity to zinc and Smad4 and PIAS1 in multiple cancer cell lines, demonstrating that the important roles of PIAS1, Smad2, and Smad4 in zinc-induced cell death and p21WAF1/Cip1 transactivation were common biological events in different cancer cell lines. Our results suggest a new avenue for regulation of zinc-induced apoptosis, and provide a model that demonstrates zinc endorses the Smad2/4/PIAS1 complex to activate the p21WAF1/Cip1 gene that mediates apoptosis.
Collapse
|
40
|
Escudero-Esparza A, Kalchishkova N, Kurbasic E, Jiang WG, Blom AM. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly. FASEB J 2013; 27:5083-93. [PMID: 23964079 DOI: 10.1096/fj.13-230706] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CUB and Sushi multiple domains 1 (CSMD1) is a transmembrane protein containing 15 consecutive complement control protein (CCP) domains, which are characteristic for complement inhibitors. We expressed a membrane-bound fragment of human CSMD1 composed of the 15 C-terminal CCP domains and demonstrated that it inhibits deposition of C3b by the classical pathway on the surface of Chinese hamster ovary cells by 70% at 6% serum and of C9 (component of membrane attack complex) by 90% at 1.25% serum. Furthermore, this fragment of CSMD1 served as a cofactor to factor I-mediated degradation of C3b. In all functional assays performed, well-characterized complement inhibitors were used as positive controls, whereas Coxsackie adenovirus receptor, a protein with no effect on complement, was a negative control. Moreover, attenuation of expression in human T47 breast cancer cells that express endogenous CSMD1 significantly increased C3b deposition on these cells by 45% at 8% serum compared with that for the controls. Furthermore, by expressing a soluble 17-21 CCP fragment of CSMD1, we found that CSMD1 inhibits complement by promoting factor I-mediated C4b/C3b degradation and inhibition of MAC assembly at the level of C7. Our results revealed a novel complement inhibitor for the classical and lectin pathways.
Collapse
Affiliation(s)
- Astrid Escudero-Esparza
- 1Department of Laboratory Medicine Malmö, Section of Medical Protein Chemistry, Skåne University Hospital, The Wallenberg Laboratory, Inga Marie Nilssons gata 53, 20502 Malmö, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Xia P, Gou WF, Zhao S, Zheng HC. Crizotinib may be used in Lewis lung carcinoma: a novel use for crizotinib. Oncol Rep 2013; 30:139-48. [PMID: 23615728 DOI: 10.3892/or.2013.2424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/19/2013] [Indexed: 11/06/2022] Open
Abstract
Lung cancer accounts for 13% (1.6 million) of the total cases and 18% (1.4 million) of the deaths in 2008. Crizotinib (PF-02341066) is identified as an ATP competitive small-molecular inhibitor for anaplastic lymphoma kinase (ALK). The US Food and Drug Administration (FDA) approved crizotinib to be used for the treatment of patients with locally advanced or metastatic ALK-positive NSCLC in 2011. In the present study, the side population (SP) and main population (MP) cells were obtained from Lewis lung carcinoma cells (LLC) and analyzed by DNA dye (Hoechst 33342) and flow cytometry. LLC SP and MP cells were confirmed as no ALK fusion gene by fluorescence in situ hybridization. The effects of crizotinib on LLC SP and MP cells both in vivo and in vitro were identified. Our results indicate that crizotinib can induce apoptosis and G1 phase arrest in LLC MP cells. Crizotinib used in combination with verapamil can inhibit proliferation of LLC SP cells. Moreover, crizotinib decreased tumor size and weight and inhibited angiogenesis in established xenografted tumors. To analyze the signaling pathway involved, computer simulation, Affymetrix microarray analysis and western blot analysis were performed. In these assays, crizotinib was found to dock into Smad3 and activate the Smad signaling pathway. Overall, these studies demonstrate the antitumor activity of crizotinib in LLC cell line, and provide a novel use for crizotinib.
Collapse
Affiliation(s)
- Pu Xia
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, School of Basic Medical Science, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | | | | | | |
Collapse
|
42
|
Assessment of behaviors modeling aspects of schizophrenia in Csmd1 mutant mice. PLoS One 2012; 7:e51235. [PMID: 23284669 PMCID: PMC3524225 DOI: 10.1371/journal.pone.0051235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 10/31/2012] [Indexed: 11/27/2022] Open
Abstract
Schizophrenia is a debilitating psychotic disorder that affects up to 1.5% of the population worldwide. Two recent studies in humans identified genome-wide significant associations between schizophrenia and single-nucleotide polymorphisms (SNPs) in an intron of CSMD1. The effect of deleting CSMD1 on mouse behavior is unknown. The present study utilized mice with a mutant Csmd1 allele in which the first exon had been ablated (KO mice). All Csmd1 transcripts that included the first exon were absent in the brains of KO mice, but there was persistent expression of at least one other transcript that does not include the first exon. Wild type (WT), heterozygous (HET), and KO mice were assessed using several well-established behavioral paradigms that model aspects of schizophrenia. Csmd1 KO mice did not differ from wild-type littermates for sensorimotor gating (measured as prepulse inhibition), social interaction, anhedonia (measured by sucrose preference), or sensitivity to the locomotor stimulant effects of the dopaminergic agent d-amphetamine. These data demonstrate that loss of Csmd1 transcripts that include the first exon does not alter multiple well-established behaviors that model aspects of schizophrenia. The SNP most strongly associated with schizophrenia in humans is between exons 3 and 4; therefore, ablation of exon 1 appeared to be a logical animal model. Nevertheless, future studies should consider alternative mouse models including gain-of-function mutations, and loss-of-function mutations that target alternative transcripts of Csmd1.
Collapse
|