1
|
Ke M, Lin F, Wang H, He G, Feng J, Song L, Xu Y, Liu J. Sigma‑1 receptor overexpression promotes proliferation and ameliorates cell apoptosis in β‑cells. Mol Med Rep 2022; 25:170. [PMID: 35302175 PMCID: PMC8971912 DOI: 10.3892/mmr.2022.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Sigma‑1 receptor (Sig‑1R) is a class of orphan receptors, the potential role of which in pancreatic islet cells remains poorly understood. The present study aimed to investigate the role of Sig‑1R in islet β‑cell proliferation and examine the effects of Sig‑1R on islet β‑cell injury under lipotoxic conditions. Sig‑1R‑overexpressing MIN6 cells were generated by lentiviral vector transfection. The effect of Sig‑1R overexpression on cell proliferation detected by EdU staining, cell cycle progression by propidium iodide (PI), apoptosis by Annexin V‑APC/PI, mitochondrial membrane potential by Mitolite Red and cytoplasmic Ca2+ levelsby Fura‑2/AM in islet β‑cells were measured by flow cytometry. Western blot analysis was used to measure protein expression levels of endoplasmic reticulum (ER) stress markers glucose‑regulated protein 78 and C/EBP homologous protein, mitochondrial apoptotic proteins Bcl‑2‑associated X and Bcl‑2 and cytochrome c. In addition, ATP levels and insulin secretion were separately measured using ATP Assay and mouse insulin ELISA. Mitochondria‑associated ER membrane (MAM) structures in MIN6 cells were then detected using transmission electron microscopy. Protein disulfide isomerase expression and possible colocalization between inositol 1,4,5‑trisphosphate receptor and voltage‑dependent anion channel 1 were examined using immunofluorescence. Sig‑1R overexpression was found to promote β‑cell proliferation by accelerating cell cycle progression. Furthermore, Sig‑1R overexpression ameliorated the apoptosis rate whilst impairing insulin secretion induced by palmitic acid by relieving ER stress and mitochondrial dysfunction in MIN6 cells. Sig‑1R overexpression also promoted Ca2+ transport between mitochondria and ER by increasing the quantity of ER adjacent to mitochondria in the 50‑nm range. It was concluded that Sig‑1R overexpression conferred protective effects on β‑cells against lipotoxicity as a result of the promotion of cell proliferation and inhibition of ER stress and oxidative stress, by regulating the structure of MAM.
Collapse
Affiliation(s)
- Mengting Ke
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fengping Lin
- Department of Endocrinology, Xianning Central Hospital, Xianning, Hubei 437100, P.R. China
| | - Huawei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Guangzhen He
- Department of Pediatrics, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, Hubei 442002, P.R. China
| | - Jieyuan Feng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Linyang Song
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jie Liu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
2
|
Moya M, López-Valencia L, García-Bueno B, Orio L. Disinhibition-Like Behavior Correlates with Frontal Cortex Damage in an Animal Model of Chronic Alcohol Consumption and Thiamine Deficiency. Biomedicines 2022; 10:biomedicines10020260. [PMID: 35203470 PMCID: PMC8869694 DOI: 10.3390/biomedicines10020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 12/23/2022] Open
Abstract
Wernicke-Korsakoff syndrome (WKS) is induced by thiamine deficiency (TD) and mainly related to alcohol consumption. Frontal cortex dysfunction has been associated with impulsivity and disinhibition in WKS patients. The pathophysiology involves oxidative stress, excitotoxicity and inflammatory responses leading to neuronal death, but the relative contributions of each factor (alcohol and TD, either isolated or in interaction) to these phenomena are still poorly understood. A rat model was used by forced consumption of 20% (w/v) alcohol for 9 months (CA), TD hit (TD diet + pyrithiamine 0.25 mg/kg, i.p. daily injections the last 12 days of experimentation (TDD)), and both combined treatments (CA+TDD). Motor and cognitive performance and cortical damage were examined. CA caused hyperlocomotion as a possible sensitization of ethanol-induced excitatory effects and recognition memory deficits. In addition, CA+TDD animals showed a disinhibited-like behavior which appeared to be dependent on TDD. Additionally, combined treatment led to more pronounced alterations in nitrosative stress, lipid peroxidation, apoptosis and cell damage markers. Correlations between injury signals and disinhibition suggest that CA+TDD disrupts behaviors dependent on the frontal cortex. Our study sheds light on the potential disease-specific mechanisms, reinforcing the need for neuroprotective therapeutic approaches along with preventive treatments for the nutritional deficiency in WKS.
Collapse
Affiliation(s)
- Marta Moya
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Leticia López-Valencia
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
| | - Borja García-Bueno
- Departament of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación en Neuroquímica IUIN-UCM, Avda. Complutense s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioral Sciences, Faculty of Psychology, Complutense University of Madrid (UCM), 28223 Madrid, Spain; (M.M.); (L.L.-V.)
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
3
|
Ye L, Li S, Liu X, Zhang D, Li L, Jiang Y. CB1R Promotes Chronic Alcohol-Induced Neuronal Necroptosis in Mice Prefrontal Cortex. Alcohol Alcohol 2020; 56:230-239. [PMID: 33382401 DOI: 10.1093/alcalc/agaa135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
AIMS Alcohol abuse induces multiple neuropathology and causes global burden to human health. Prefrontal cortex (PFC) is one of the most susceptible regions to alcohol-induced neuropathology. However, precise mechanisms underlying these effects on PFC remain to be elucidated. Herein, we investigated whether RIP1/RIP3/MLKL-mediated necroptosis was involved in the alcohol-induced PFC injury, and explored the effect that cannabinoid receptors (CBRs) exerted on the neurotoxicity of alcohol. METHODS In this study, dynamic development of neuronal necroptosis in the PFC region was monitored after 95% (v/v) alcohol vapor administration for 15 and 30 days, respectively. Selective CBRs agonists or inverse agonists were pretreated according to the experimental design. All the PFC tissues were isolated and further examined by biochemical and histopathological analyses. RESULTS It was found that chronic alcohol exposure increased the protein level of MLKL and also the phosphorylated levels of RIP1, RIP3 and MLKL in a time-dependent manner, all of which indicated the activation of necroptosis signaling. Particularly, compared to astrocytes, neurons from the PFC showed more prototypical necrotic morphology in response to alcohol insults. In parallel, an increased protein level of CB1R was also found after 15 and 30 days alcohol exposure. Administration of specific inverse agonists of CB1R (AM251 and AM281), but not its agonists or CB2R modulators, significantly alleviated the RIP1/RIP3/MLKL-mediated neuronal necroptosis. CONCLUSION We reported the involvement of RIP1/RIP3/MLKL-mediated necroptosis in alcohol-induced PFC neurotoxicity, and identified CB1R as a critical regulator of neuronal necroptosis that enhanced our understanding of alcohol-induced neuropathology in the PFC.
Collapse
Affiliation(s)
- Lin Ye
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai 200032, China
| | - Shuhao Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai 200032, China
| | - Xiaochen Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai 200032, China
| | - Dingang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai 200032, China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai 200032, China
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW This is a review of the research on the effectiveness of vitamin supplementation for alcoholism and alcohol-related illnesses. The focus is on research, both clinical and basic on alcohol treatment and nutritional effectiveness of these vital nutrients. RECENT FINDINGS Most of the research involves basic experiments exploring the impact of vitamin depletion or deficits on physiological systems, especially liver and brain, in rodents. These often include behavioral measures that use cognitive, learning/memory and motivation experiments that model clinical studies. These provide support for hypotheses concerning the impact of such deficiencies in clinical populations. Clinical studies are rare and involve evaluation of the outcome of supplementation usually in the context of a treatment program. Specific vitamins, dosages and treatment programs vary. Deficiencies in retinoids (vitamin A), thiamine (B1) and niacin (B3) are the most frequently investigated. However, there is a greater need for further research on other vitamins, and for more uniform supplementation and treatment procedures. SUMMARY The literature is primarily basic research on specific vitamins. There are very significant findings with individual vitamin supplementation and combinations that show promise of our understanding of the role of vitamins in the disease of alcoholism and its treatment.
Collapse
Affiliation(s)
- Michael J Lewis
- Department of Psychology, Hunter College, City University of New York (CUNY), New York, New York, USA
| |
Collapse
|
5
|
Medeiros RDCN, Moraes JO, Rodrigues SDC, Pereira LM, Aguiar HQDS, de Cordova CAS, Yim Júnior A, de Cordova FM. Thiamine Deficiency Modulates p38 MAPK and Heme Oxygenase-1 in Mouse Brain: Association with Early Tissue and Behavioral Changes. Neurochem Res 2020; 45:940-955. [PMID: 31989470 DOI: 10.1007/s11064-020-02975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Thiamine deficiency (TD) produces severe neurodegenerative lesions. Studies have suggested that primary neurodegenerative events are associated with both oxidative stress and inflammation. Very little is known about the downstream effects on intracellular signaling pathways involved in neuronal death. The primary aim of this work was to evaluate the modulation of p38MAPK and the expression of heme oxygenase 1 (HO-1) in the central nervous system (CNS). Behavioral, metabolic, and morphological parameters were assessed. Mice were separated into six groups: control (Cont), TD with pyrithiamine (Ptd), TD with pyrithiamine and Trolox (Ptd + Tr), TD with pyrithiamine and dimethyl sulfoxide (Ptd + Dmso), Trolox (Tr) and DMSO (Dmso) control groups and treated for 9 days. Control groups received standard feed (AIN-93M), while TD groups received thiamine deficient feed (AIN-93DT). All the groups were subjected to behavioral tests, and CNS samples were collected for cell viability, histopathology and western blot analyses. The Ptd group showed a reduction in weight gain and feed intake, as well as a reduction in locomotor, grooming, and motor coordination activities. Also, Ptd group showed a robust increase in p38MAPK phosphorylation and mild HO-1 expression in the cerebral cortex and thalamus. The Ptd group showed a decreased cell viability, hemorrhage, spongiosis, and astrocytic swelling in the thalamus. Groups treated with Trolox and DMSO displayed diminished p38MAPK phosphorylation in both the structures, as well as attenuated thalamic lesions and behavioral activities. These data suggest that p38MAPK and HO-1 are involved in the TD-induced neurodegeneration in vivo, possibly modulated by oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Rita de Cássia Noronha Medeiros
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Juliana Oliveira Moraes
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Leidiano Martins Pereira
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Helen Quézia da Silva Aguiar
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Alberto Yim Júnior
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Fabiano Mendes de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil.
| |
Collapse
|
6
|
Wang SJ, Chen H, Tang LJ, Tu H, Liu B, Li NS, Luo XJ, Peng J. Upregulation of mitochondrial E3 ubiquitin ligase 1 in rat heart contributes to ischemia/reperfusion injury. Can J Physiol Pharmacol 2019; 98:259-266. [PMID: 31825666 DOI: 10.1139/cjpp-2019-0285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mitochondrial dysfunctions are responsible for myocardial injury upon ischemia/reperfusion (I/R), and mitochondrial E3 ubiquitin ligase 1 (Mul1) plays an important role in maintaining mitochondrial functions. This study aims to explore the function of Mul1 in myocardial I/R injury and the underlying mechanisms. The Sprague-Dawley rat hearts were subjected to 1 h of ischemia plus 3 h of reperfusion, which showed the I/R injury (increase in infarct size and creatine kinase release) and the elevated total and mitochondrial protein levels of Mul1 and p53 accompanied by the enhanced interactions between Mul1 and p53 as well as p53 and small a ubiquitin-like modifier (SUMO1). Consistently, hypoxia/reoxygenation (H/R) treated cardiac (H9c2) cells displayed cellular injury (apoptosis and necrosis), upregulation of total and mitochondrial protein levels of Mul1 and p53, and enhanced interactions between p53 and SUMO1 concomitant with mitochondrial dysfunctions (an increase in mitochondrial membrane potential and reactive oxygen species production with a decrease in ATP production); these phenomena were attenuated by knockdown of Mul1 expression. Based on these observations, we conclude that a novel role of Mul1 has been identified in the myocardial mitochondria, where Mul1 stabilizes and activates p53 through its function of SUMOylation following I/R, leading to p53-mediated mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Shi-Jing Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.,Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Heng Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Li-Jing Tang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Hua Tu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Nian-Sheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
7
|
Moraes JO, Rodrigues SDC, Pereira LM, Medeiros RDCN, de Cordova CAS, de Cordova FM. Amprolium exposure alters mice behavior and metabolism in vivo. Animal Model Exp Med 2018; 1:272-281. [PMID: 30891577 PMCID: PMC6388078 DOI: 10.1002/ame2.12040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Thiamine deficiency (TD) models have been developed, mainly using the thiamine analog pyrithiamine. Other analogs have not been used in rodents. We aimed to evaluate the effects and mechanisms of intraperitoneal (ip) amprolium-induced TD in mice. We also evaluated the associated pathogenesis using antioxidant and anti-inflammatory compounds (Trolox, dimethyl sulfoxide). METHODS Male mice were separated into two groups, one receiving a standard diet (control animals), and the other a TD diet (deficient groups) for 20 days. Control mice were further subdivided into three groups receiving daily ip injections of saline (NaCl 0.9%; Cont group), Tolox (Tr group) or dimethyl sulfoxide (DMSO; Dmso group). The three TD groups received amprolium (Amp group), amprolium and Trolox (Amp+Tr group), or amprolium and DMSO (Amp+Dmso group). The animals were subjected to behavioral tests and then euthanized. The brain and viscera were analyzed. RESULTS Amprolium exposure induced weight loss with hyporexia, reduced the behavioral parameters (locomotion, exploratory activity, and motor coordination), and induced changes in the brain (lower cortical cell viability) and liver (steatosis). Trolox co-treatment partially improved these conditions, but to a lesser extent than DMSO. CONCLUSIONS Amprolium-induced TD may be an interesting model, allowing the deficiency to develop more slowly and to a lesser extent. Amprolium exposure also seems to involve oxidative stress and inflammation, suggested as the main mechanisms of cell dysfunction in TD.
Collapse
Affiliation(s)
- Juliana Oliveira Moraes
- Programa de Pós‐Graduação em Sanidade Animal e Saúde Pública nos TrópicosUniversidade Federal do TocantinsAraguaínaTOBrazil
| | | | | | | | | | - Fabiano Mendes de Cordova
- Programa de Pós‐Graduação em Sanidade Animal e Saúde Pública nos TrópicosUniversidade Federal do TocantinsAraguaínaTOBrazil
| |
Collapse
|