1
|
Lei Q, Deng M, Liu J, He J, Lan Z, Hu Z, Xiao H. SRC3 Promotes the Protective Effects of Bone Marrow Mesenchymal Stem Cell Transplantation on Cerebral Ischemia in a Mouse Model. ACS Chem Neurosci 2022; 13:112-119. [PMID: 34875163 DOI: 10.1021/acschemneuro.1c00599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from the bone marrow (BM) are reported to protect against ischemic brain injury. This study aimed to investigate whether the steroid receptor cofactor 3 (SRC3) was involved in MSC-induced neuroprotection. BM-MSCs were isolated from wild-type (WT) and SRC3 knockout (SRC3-/-) mice and transplanted into mice with middle cerebral artery occlusion (MCAO). The MSC identification and differentiation were determined by flow cytometry and Alizarin Red S staining after osteogenic and adipogenic stimulations. The effects of MSCs on brain injury were assessed by brain water content, modified neurological severity score (mNSS), Morris water maze test, and open field test. Finally, the effects of MSCs on MCAO-induced oxidative stress were assessed by measuring the levels of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) and mRNA levels of SOD1, SOD2, and CAT. We found that SRC3 deficiency did not impact the MSC identification or osteogenic and adipogenic differentiation. MSC-SRC3-/- transplantation in mice that underwent the MCAO procedure exhibited diminished effects on suppression of brain edema, neurological deficits, cognitive disruption, locomotor impairment, and anxiety compared to comparable levels of MSC-WT. Finally, MSC-WT transplantation inhibited MCAO-induced oxidative stress, and the effects were significantly attenuated in MCAO mice transplanted with MSC-SRC3-/-. MSCs suppressed the MCAO-induced upregulation of MDA activity and the inhibition of SOD, GSH, SOD1, SOD2, and CAT levels, and SRC3-deficient MSCs showed significantly reduced effects. Our results indicate that SRC3 plays an important role in mediating the neuroprotective effects of MSCs in mice that experienced ischemic stroke.
Collapse
Affiliation(s)
- Qiang Lei
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Mingyang Deng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jianyang Liu
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Jialin He
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Ziwei Lan
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Zhiping Hu
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Han Xiao
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
2
|
Hlebokazov F, Dakukina T, Ihnatsenko S, Kosmacheva S, Potapnev M, Shakhbazau A, Goncharova N, Makhrov M, Korolevich P, Misyuk N, Dakukina V, Shamruk I, Slobina E, Marchuk S. Treatment of refractory epilepsy patients with autologous mesenchymal stem cells reduces seizure frequency: An open label study. Adv Med Sci 2017; 62:273-279. [PMID: 28500900 DOI: 10.1016/j.advms.2016.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Existing anti-epileptic drugs (AED) have limited efficiency in many patients, necessitating the search for alternative approaches such as stem cell therapy. We report the use of autologous patient-derived mesenchymal stem cells (MSC) as a therapeutic agent in symptomatic drug-resistant epilepsy in a Phase I open label clinical trial (registered as NCT02497443). PATIENTS AND METHODS The patients received either standard treatment with AED (control group), or AED supplemented with single intravenous administration of undifferentiated autologous MSC (target dose of 1×106cells/kg), followed by a single intrathecal injection of neurally induced autologous MSC (target dose of 0.1×106cells/kg). RESULTS MSC injections were well tolerated and did not cause any severe adverse effects. Seizure frequency was designated as the main outcome and evaluated at 1 year time point. 3 out of 10 patients in MSC therapy group achieved remission (no seizures for one year and more), and 5 additional patients became responders to AEDs, while only 2 out of 12 patients became responders in control group (difference significant, P=0.0135). CONCLUSIONS MSC possess unique immunomodulatory properties and are a safe and promising candidate for cell therapy in AED resistant epilepsy patients.
Collapse
|
3
|
Shakhbazau A, Potapnev M. Autologous mesenchymal stromal cells as a therapeutic in ALS and epilepsy patients: Treatment modalities and ex vivo neural differentiation. Cytotherapy 2016; 18:1245-55. [DOI: 10.1016/j.jcyt.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/07/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
|
4
|
Shakhbazau A, Mishra M, Chu TH, Brideau C, Cummins K, Tsutsui S, Shcharbin D, Majoral JP, Mignani S, Blanchard-Desce M, Bryszewska M, Yong VW, Stys PK, van Minnen J. Fluorescent Phosphorus Dendrimer as a Spectral Nanosensor for Macrophage Polarization and Fate Tracking in Spinal Cord Injury. Macromol Biosci 2015; 15:1523-34. [PMID: 26175127 DOI: 10.1002/mabi.201500150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/29/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Antos Shakhbazau
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Manoj Mishra
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Tak-Ho Chu
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Craig Brideau
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Karen Cummins
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Shigeki Tsutsui
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | | | | | - Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique; Université Paris Descartes; Paris France
| | | | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection; University of Lodz; Lodz Poland
| | - V. Wee Yong
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Peter K. Stys
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| | - Jan van Minnen
- Hotchkiss Brain Institute and Cumming School of Medicine; University of Calgary; HRIC 1AA02, 3280 Hospital Drive, NW T2N4Z6 Calgary Canada
| |
Collapse
|
5
|
Shakhbazau A, Mohanty C, Kumar R, Midha R. Sensory recovery after cell therapy in peripheral nerve repair: effects of naïve and skin precursor-derived Schwann cells. J Neurosurg 2014; 121:423-31. [DOI: 10.3171/2014.5.jns132132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Object
Cell therapy is a promising candidate among biological or technological innovations sought to augment microsurgical techniques in peripheral nerve repair. This report describes long-term functional regenerative effects of cell therapy in the rat injury model with a focus on sensory recovery.
Methods
Schwann cells were derived from isogenic nerve or skin precursor cells and injected into the transected and immediately repaired sciatic nerve distal to the injury site. Sensory recovery was assessed at weeks 4, 7, and 10. Axonal regeneration was assessed at Week 11.
Results
By Week 10, thermal sensitivity in cell therapy groups returned to a level indistinguishable from the baseline (p > 0.05). Immunohistochemistry at 11 weeks after injury showed improved regeneration of NF+ and IB4+ axons.
Conclusions:
The results of this study show that cell therapy significantly improves thermal sensation and the number of regenerated sensory neurons at 11 weeks after injury. These findings contribute to the view of skin-derived stem cells as a reliable source of Schwann cells with therapeutic potential for functional recovery in damaged peripheral nerve.
Collapse
Affiliation(s)
- Antos Shakhbazau
- 1Department of Clinical Neuroscience, Faculty of Medicine,
- 2Hotchkiss Brain Institute, and
| | | | - Ranjan Kumar
- 1Department of Clinical Neuroscience, Faculty of Medicine,
- 2Hotchkiss Brain Institute, and
- 3Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rajiv Midha
- 1Department of Clinical Neuroscience, Faculty of Medicine,
- 2Hotchkiss Brain Institute, and
| |
Collapse
|
6
|
Yi T, Lee HJ, Cho YK, Jeon MS, Song SU. Molecular Characterization of Neurally Differentiated Human Bone Marrow-derived Clonal Mesenchymal Stem Cells. Immune Netw 2014; 14:54-65. [PMID: 24605081 PMCID: PMC3942508 DOI: 10.4110/in.2014.14.1.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, with the ability to differentiate into different cell types. Additionally, the immunomodulatory activity of MSCs can downregulate inflammatory responses. The use of MSCs to repair injured tissues and treat inflammation, including in neuroimmune diseases, has been extensively explored. Although MSCs have emerged as a promising resource for the treatment of neuroimmune diseases, attempts to define the molecular properties of MSCs have been limited by the heterogeneity of MSC populations. We recently developed a new method, the subfractionation culturing method, to isolate homogeneous human clonal MSCs (hcMSCs). The hcMSCs were able to differentiate into fat, cartilage, bone, neuroglia, and liver cell types. In this study, to better understand the properties of neurally differentiated MSCs, gene expression in highly homogeneous hcMSCs was analyzed. Neural differentiation of hcMSCs was induced for 14 days. Thereafter, RNA and genomic DNA was isolated and subjected to microarray analysis and DNA methylation array analysis, respectively. We correlated the transcriptome of hcMSCs during neural differentiation with the DNA methylation status. Here, we describe and discuss the gene expression profile of neurally differentiated hcMSCs. These findings will expand our understanding of the molecular properties of MSCs and contribute to the development of cell therapy for neuroimmune diseases.
Collapse
Affiliation(s)
- Tacghee Yi
- Translational Research Center, Inha University School of Medicine, Incheon 400-712, Korea. ; Inha Research Institute for Medical Sciences of Biomedical Sciences, Inha University School of Medicine, Incheon 400-712, Korea. ; HomeoTherapy Co. Ltd., Incheon 400-711, Korea
| | - Hyun-Joo Lee
- Drug Development Program, Department of Medicine, Inha University School of Medicine, Incheon 400-712, Korea
| | | | - Myung-Shin Jeon
- Translational Research Center, Inha University School of Medicine, Incheon 400-712, Korea. ; Inha Research Institute for Medical Sciences of Biomedical Sciences, Inha University School of Medicine, Incheon 400-712, Korea
| | - Sun U Song
- Translational Research Center, Inha University School of Medicine, Incheon 400-712, Korea. ; Translational Research Center, Inha University School of Medicine, Incheon 400-712, Korea
| |
Collapse
|
7
|
Kim SH, Bang SH, Park SA, Kang SY, Park KD, Oh IU, Yoo SH, Kim H, Kim CH, Baek SY. Character comparison of abdomen-derived and eyelid-derived mesenchymal stem cells. Cell Prolif 2013; 46:291-9. [PMID: 23692088 DOI: 10.1111/cpr.12027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/03/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES While most human adipose tissues, such as those located in the abdomen, hip and thigh, are of mesodermal origin, adipose tissues located in the face are of ectodermal origin. The present study has compared stem cell-related features of abdomen-derived adult stem cells (A-ASCs) with those of eyelid-derived adult stem cells (E-ASCs). MATERIALS AND METHODS Adipose tissue-derived cells were maintained in DMEM supplemented with 10% FBS. Before passage 6, cells were analysed using FACS, immunocytochemistry and quantitative real time PCR (qRT-PCR). To examine multi-differentiational potential, early passage ASCs were cultivated in each of a commercial Stempro(®) Differentiation kit. RESULTS Unlike fibroblast-like morphology of A-ASCs, E-ASCs had bipolar morphology. Both types of cell exhibited similar surface antigens, and neuronal cell-related genes and proteins. However, there were differences in mRNA expression levels of CD90 and CD146; neuron-specific enolase (NSE) and nuclear receptor-related protein 1 (Nurr1) were different between the two cell types. There was no difference in multi-differentiational potential between 3 E-ASCs lines, however, E-ASCs had higher expression levels of chondrocyte-related genes compared to A-ASCs. These cells underwent senescence and maintained normal karyotypes. CONCLUSIONS Although isolated from similar adipose tissues, both types of cells displayed many contrasting characteristics. Understanding defining phenotypes of such cells is useful for making suitable choices in differing clinical indications.
Collapse
Affiliation(s)
- S-H Kim
- National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Cheongwon-gun, Chuncheongbuk-do 363-700, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mohammad-Gharibani P, Tiraihi T, Delshad A, Arabkheradmand J, Taheri T. Improvement of contusive spinal cord injury in rats by co-transplantation of gamma-aminobutyric acid-ergic cells and bone marrow stromal cells. Cytotherapy 2013; 15:1073-85. [PMID: 23806239 DOI: 10.1016/j.jcyt.2013.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Cell therapy is considered a promising option for treatment of spinal cord injury (SCI). The purpose of this study is to use combined therapy of bone marrow stromal cells (BMSCs) and BMSC-derived gamma-aminobutyric acid (GABA)ergic inhibitory neurotransmitter cells (BDGCs) for the contusion model of SCI in rats. METHODS BDGCs were prepared from BMSCs by pre-inducing them with β-mercaptoethanol followed by retinoic acid and then inducing them by creatine. They were immunostained with BMSC, proneuronal, neural and GABA markers. The BDGCs were intraspinally transplanted into the contused rats, whereas the BMSCs were delivered intravenously. The animals were sacrificed after 12 weeks. RESULTS The Basso, Beattie and Bresnahan test showed improvement in the animals with the combined therapy compared with the untreated animals, the animals treated with GABAergic cells only and the animals that received BMSCs. The immunohistochemistry analysis of the tissue sections prepared from the animals receiving the combined therapy showed that the transplanted cells were engrafted and integrated into the injured spinal cord; in addition, a significant reduction was seen in the cavitation. CONCLUSIONS The study shows that the combination of GABAergic cells with BMSCs can improve SCI.
Collapse
Affiliation(s)
- Payam Mohammad-Gharibani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
9
|
Bi Y, Gong M, Zhang X, Zhang X, Jiang W, Zhang Y, Chen J, Liu Y, He TC, Li T. Pre-activation of retinoid signaling facilitates neuronal differentiation of mesenchymal stem cells. Dev Growth Differ 2010; 52:419-31. [PMID: 20507357 DOI: 10.1111/j.1440-169x.2010.01182.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into neurons in an appropriate cellular environment. Retinoid signaling pathway is required in neural development. However, the effect and mechanism through retinoid signaling regulates neuronal differentiation of MSCs are still poorly understood. Here, we report that all-trans-retinoic acid (ATRA) pre-induction improved neuronal differentiation of rat MSCs. We found that, when MSCs were exposed to different concentrations of ATRA (0.01-100 micromol/L) for 24 h and then cultured with modified neuronal induction medium (MNM), 1 micromol/L ATRA pre-induction significantly improved neuronal differentiation efficiency and neural-cell survival. Compared with MNM alone induced neural-like cells, ATRA/MNM induced cells expressed higher levels of Nestin, neuron specific enolase (NSE), microtubule-associated protein-2 (MAP-2), but lower levels of CD68, glial fibrillary acidic protein (GFAP), and glial cell line-derived neurotrophic factor(GDNF), also exhibited higher resting membrane potential and intracellular calcium concentration, supporting that ATRA pre-induction promotes maturation and function of derived neurons but not neuroglia cells from MSCs. Endogenous retinoid X receptors (RXR) RXRalpha and RXRgamma (and to a lesser extent, RXRbeta) were weakly expressed in MSCs. But the expression of RARalpha and RARgamma was readily detectable, whereas RARbeta was undetectable. However, at 24 h after ATRA treatment, the expression of RARbeta, not RARalpha or RARgamma, increased significantly. We further found the subnuclear redistribution of RARbeta in differentiated neurons, suggesting that RARbeta may function as a major mediator of retinoid signaling during neuronal differentiation from MSCs. ATRA treatment upregulated the expression of Vimentin and Stra13, while it downregulated the expression of Brachyury in MSCs. Thus, our results demonstrate that pre-activation of retinoid signaling by ATRA facilitates neuronal differentiation of MSCs.
Collapse
Affiliation(s)
- Yang Bi
- Nutritional Research Center, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|