1
|
Lakeev AP, Yanovskaya EA, Yanovsky VA, Andropov MO, Frelikh GA, Yu Chukicheva I, Kutchin AV. LC-MS/MS method for the determination of a semi-synthetic phenolic antioxidant 2,6-diisobornyl-4-methylphenol in rats after different administration routes. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1213:123537. [PMID: 36455390 DOI: 10.1016/j.jchromb.2022.123537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
IBP (2,6-diisobornyl-4-methylphenol) is a small drug molecule with antioxidant properties considered to be a promising neuro-, cardio-, and retinoprotective agent. In this study, a bioanalytical LC-MS/MS method for its determination in rat plasma was developed using 11H-indeno[1,2-b]quinoxalin-11-one oxime as an internal standard (IS). The analytes were extracted from plasma by liquid-liquid extraction technique using isopropyl alcohol:chloroform mixture (1:5, v/v) followed by evaporation and reconstitution of the residues in acetonitrile. The chromatographic separation was carried out on the EC Nucleodur C8 ec column (150 × 4.6 mm, 5 μm) under an isocratic elution mode using acetonitrile and water containing 0.1% (v/v) formic acid (97:3, v/v) as a mobile phase at a flow rate of 0.55 mL/min (40 °C). The IS and IBP were eluted at 3.79 ± 0.02 and 6.30 ± 0.02 min, respectively. The total analysis time was 7.00 min. Multiple reaction monitoring was used to conduct the MS/MS detection in the negative ion mode with transitions at m/z 245.9 → 214.9 (IS) and 379.2 → 256.0 (IBP). Validation studies of the developed method revealed good linearity over the range of 10-5,000 ng/mL. Within- and between-run accuracy was in the range of 92-110%, while within- and between-run precision was below 8%. Additionally, low matrix effects and high recovery (above 98%) were observed. IBP remained stable in rat plasma at room temperature for 4 h, at -80 °C for 21 days, over three freeze-thaw cycles, under vacuum concentrator (45 °C, dried residues) and auto-sampler (15 °C, processed samples) temperatures for 1 h and 24 h, respectively. Subsequently, the validated LC-MS/MS method has been successfully applied to quantitate IBP in actual plasma samples after a single oral, intramuscular, and subcutaneous dose of IBP (10 mg/kg in the peach oil) to rats. Pharmacokinetic studies show that more rapid and complete IBP absorption with a satisfactory excretion rate were observed after oral administration route compared to the intramuscular and subcutaneous ones.
Collapse
Affiliation(s)
- Alexander P Lakeev
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia; Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Elena A Yanovskaya
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia; Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia.
| | - Vyacheslav A Yanovsky
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia
| | - Mikhail O Andropov
- Scientific and Educational Center "Perspective Materials and Technologies in Subsoil Use", National Research Tomsk State University, Tomsk 634050, Russia
| | - Galina A Frelikh
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634028, Russia
| | - Irina Yu Chukicheva
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar 167000, Russia
| | - Aleksandr V Kutchin
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar 167000, Russia
| |
Collapse
|
2
|
Roldán Gallardo FF, Quintar AA. The pathological growth of the prostate gland in atherogenic contexts. Exp Gerontol 2021; 148:111304. [PMID: 33676974 DOI: 10.1016/j.exger.2021.111304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
The human prostate is an androgen-dependent gland where an imbalance in cell proliferation can lead to benign prostatic hyperplasia (BPH), which results in voiding lower urinary tract symptoms in the elderly. In the last decades, novel evidence has suggested that BPH might represent an element into the wide spectrum of disorders conforming the Metabolic Syndrome (MS). The dyslipidemic state and the other atherogenic factors of the MS have been shown to induce, maintain and/or aggravate the pathological growth of different organs, with data regarding the prostate being still limited. We here review the available epidemiological and experimental studies about the association of BPH with dyslipidemias. In particular, we have focused on Oxidized Low-Density Lipoproteins (OxLDL) as a potential trigger for vascular disease and cellular proliferation in atherogenic contexts, analyzing their putative molecular mechanisms, including the induction of specific extracellular vesicles (EVs)-derived miRNAs. In addition to the epidemiological evidence, OxLDL is proposed to play a fundamental role in the upregulation of prostatic cell proliferation by activating the Rho/Akt/p27Kip1 pathway in atherogenic contexts. miR-21, miR-141, miR-143, miR-145, miR-155, and miR-221 would be involved in the transcription of genes related to the proliferative process. Although much remains to be investigated regarding the impact of OxLDL, its receptors, and molecular mechanisms on the prostate, it is clear that EVs and miRNAs represent a promising target for proliferative pathologies of the prostate gland.
Collapse
Affiliation(s)
- Franco F Roldán Gallardo
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina
| | - Amado A Quintar
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud (INICSA), Córdoba, Argentina.
| |
Collapse
|
3
|
Buravlev EV, Fedorova IV, Shevchenko OG, Kutchin AV. Comparative evaluation of the antioxidant activity of some ortho-substituted mono- and dialkylphenols with the para-positioned hydroxymethyl group. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2937-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|