1
|
Bandura J, Chan C, Sun HS, Wheeler AR, Feng ZP. Distinct Proteomic Brain States Underlying Long-Term Memory Formation in Aversive Operant Conditioning. J Proteome Res 2024. [PMID: 39658033 DOI: 10.1021/acs.jproteome.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Long-term memory (LTM) formation relies on de novo protein synthesis; however, the full complement of proteins crucial to LTM formation remains unknown in any system. Using an aversive operant conditioning model of aerial respiratory behavior in the pond snail mollusk, Lymnaea stagnalis (L. stagnalis), we conducted a transcriptome-guided proteomic analysis on the central nervous system (CNS) of LTM, no LTM, and control animals. We identified 366 differentially expressed proteins linked to LTM formation, with 88 upregulated and 36 downregulated in LTM compared to both no LTM and controls. Functional annotation highlighted the importance of balancing protein synthesis and degradation for LTM, as indicated by the upregulation of proteins involved in proteasome activity and translation initiation, including EIF2D, mRNA levels of which were confirmed to be upregulated by conditioning and implicated nuclear factor Y as a potential regulator of LTM-related transcription in this model. This study represents the first transcriptome-guided proteomic analysis of LTM formation ability in this model and lays the groundwork for discovering orthologous proteins critical to LTM in mammals.
Collapse
Affiliation(s)
- Julia Bandura
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Calvin Chan
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hong-Shuo Sun
- Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
2
|
de Souza JM, Ferreira-Vieira TH, Maciel EMA, Silva NC, Lima IBQ, Doria JG, Olmo IG, Ribeiro FM. mGluR5 ablation leads to age-related synaptic plasticity impairments and does not improve Huntington’s disease phenotype. Sci Rep 2022; 12:8982. [PMID: 35643779 PMCID: PMC9148310 DOI: 10.1038/s41598-022-13029-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate receptors, including mGluR5, are involved in learning and memory impairments triggered by aging and neurological diseases. However, each condition involves distinct molecular mechanisms. It is still unclear whether the mGluR5 cell signaling pathways involved in normal brain aging differ from those altered due to neurodegenerative disorders. Here, we employed wild type (WT), mGluR5−/−, BACHD, which is a mouse model of Huntington’s Disease (HD), and mGluR5−/−/BACHD mice, at the ages of 2, 6 and 12 months, to distinguish the mGluR5-dependent cell signaling pathways involved in aging and neurodegenerative diseases. We demonstrated that the memory impairment exhibited by mGluR5−/− mice is accompanied by massive neuronal loss and decreased dendritic spine density in the hippocampus, similarly to BACHD and BACHD/mGluR5−/− mice. Moreover, mGluR5 ablation worsens some of the HD-related alterations. We also show that mGluR5−/− and BACHD/mGluR5−/− mice have decreased levels of PSD95, BDNF, and Arc/Arg3.1, whereas BACHD mice are mostly spared. PSD95 expression was affected exclusively by mGluR5 ablation in the aging context, making it a potential target to treat age-related alterations. Taken together, we reaffirm the relevance of mGluR5 for memory and distinguish the mGluR5 cell signaling pathways involved in normal brain aging from those implicated in HD.
Collapse
|
3
|
Potential evidence of peripheral learning and memory in the arms of dwarf cuttlefish, Sepia bandensis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:575-594. [PMID: 34121131 DOI: 10.1007/s00359-021-01499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
CREB (cAMP response element-binding) transcription factors are conserved markers of memory formation in the brain and peripheral circuits. We provide immunohistochemical evidence of CREB phosphorylation in the dwarf cuttlefish, Sepia bandensis, following the inaccessible prey (IP) memory experiment. During the IP experiment, cuttlefish are shown prey enclosed in a transparent tube, and tentacle strikes against the tube decrease over time as the cuttlefish learns the prey is inaccessible. The cues driving IP learning are unclear but may include sensory inputs from arms touching the tube. The neural activity marker, anti-phospho-CREB (anti-pCREB) was used to determine whether IP training stimulated cuttlefish arm sensory neurons. pCREB immunoreactivity occurred along the oral surface of the arms, including the suckers and epithelial folds surrounding the suckers. pCREB increased in the epithelial folds and suckers of trained cuttlefish. We found differential pCREB immunoreactivity along the distal-proximal axis of trained arms, with pCREB concentrated distally. Unequal CREB phosphorylation occurred among the 4 trained arm pairs, with arm pairs 1 and 2 containing more pCREB. The resulting patterns of pCREB in trained arms suggest that the arms obtain cues that may be salient for learning and memory of the IP experiment.
Collapse
|
4
|
Dong N, Lee DWK, Sun HS, Feng ZP. Dopamine-mediated calcium channel regulation in synaptic suppression in L. stagnalis interneurons. Channels (Austin) 2019; 12:153-173. [PMID: 29589519 PMCID: PMC5972806 DOI: 10.1080/19336950.2018.1457897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
D2 dopamine receptor-mediated suppression of synaptic transmission from interneurons plays a key role in neurobiological functions across species, ranging from respiration to memory formation. In this study, we investigated the mechanisms of D2 receptor-dependent suppression using soma-soma synapse between respiratory interneuron VD4 and LPeD1 in the mollusk Lymnaea stagnalis (L. stagnalis). We studied the effects of dopamine on voltage-dependent Ca2+ current and synaptic vesicle release from the VD4. We report that dopamine inhibits voltage-dependent Ca2+ current in the VD4 by both voltage-dependent and -independent mechanisms. Dopamine also suppresses synaptic vesicle release downstream of activity-dependent Ca2+ influx. Our study demonstrated that dopamine acts through D2 receptors to inhibit interneuron synaptic transmission through both voltage-dependent Ca2+ channel-dependent and -independent pathways. Taken together, these findings expand our understanding of dopamine function and fundamental mechanisms that shape the dynamics of neural circuit.
Collapse
Affiliation(s)
- Nancy Dong
- a Department of Physiology, Faculty of Medicine , University of Toronto , Toronto , ON , Canada
| | - David W K Lee
- a Department of Physiology, Faculty of Medicine , University of Toronto , Toronto , ON , Canada
| | - Hong-Shuo Sun
- a Department of Physiology, Faculty of Medicine , University of Toronto , Toronto , ON , Canada
| | - Zhong-Ping Feng
- a Department of Physiology, Faculty of Medicine , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
5
|
Zolochevska O, Bjorklund N, Woltjer R, Wiktorowicz JE, Taglialatela G. Postsynaptic Proteome of Non-Demented Individuals with Alzheimer's Disease Neuropathology. J Alzheimers Dis 2019; 65:659-682. [PMID: 30103319 PMCID: PMC6130411 DOI: 10.3233/jad-180179] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Some individuals, here referred to as Non-Demented with Alzheimer’s Neuropathology (NDAN), retain their cognitive function despite the presence of amyloid plaques and tau tangles typical of symptomatic Alzheimer’s disease (AD). In NDAN, unlike AD, toxic amyloid-β oligomers do not localize to the postsynaptic densities (PSDs). Synaptic resistance to amyloid-β in NDAN may thus enable these individuals to remain cognitively intact despite the AD-like pathology. The mechanism(s) responsible for this resistance remains unresolved and understanding such protective biological processes could reveal novel targets for the development of effective treatments for AD. The present study uses a proteomic approach to compare the hippocampal postsynaptic densities of NDAN, AD, and healthy age-matched persons to identify protein signatures characteristic for these groups. Subcellular fractionation followed by 2D gel electrophoresis and mass spectrometry were used to analyze the PSDs. We describe fifteen proteins which comprise the unique proteomic signature of NDAN PSDs, thus setting them apart from control subjects and AD patients.
Collapse
Affiliation(s)
- Olga Zolochevska
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicole Bjorklund
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Randall Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| | - John E Wiktorowicz
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Giulio Taglialatela
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
6
|
Gaiardo RB, Abreu TF, Tashima AK, Telles MM, Cerutti SM. Target Proteins in the Dorsal Hippocampal Formation Sustain the Memory-Enhancing and Neuroprotective Effects of Ginkgo biloba. Front Pharmacol 2019; 9:1533. [PMID: 30666208 PMCID: PMC6330356 DOI: 10.3389/fphar.2018.01533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
We have previously shown that standardized extracts of Ginkgo biloba (EGb) modulate fear memory formation, which is associated with CREB-1 (mRNA and protein) upregulation in the dorsal hippocampal formation (dHF), in a dose-dependent manner. Here, we employed proteomic analysis to investigate EGb effects on different protein expression patterns in the dHF, which might be involved in the regulation of CREB activity and the synaptic plasticity required for long-term memory (LTM) formation. Adult male Wistar rats were randomly assigned to four groups (n = 6/group) and were submitted to conditioned lick suppression 30 min after vehicle (12% Tween 80) or EGb (0.25, 0.50, and 1.00 g⋅kg-1) administration (p.o). All rats underwent a retention test session 48 h after conditioning. Twenty-four hours after the test session, the rats were euthanized via decapitation, and dHF samples were removed for proteome analysis using two-dimensional polyacrylamide gel electrophoresis, followed by peptide mass fingerprinting. In agreement with our previous data, no differences in the suppression ratios (SRs) were identified among the groups during first trial of CS (conditioned stimulus) presentation (P > 0.05). Acute treatment with 0.25 g⋅kg-1 EGb significantly resulted in retention of original memory, without prevent acquisition of extinction within-session. In addition, our results showed, for the first time, that 32 proteins were affected in the dHF following treatment with 0.25, 0.50, and 1.00 g⋅kg-1 doses of EGb, which upregulated seven, 19, and five proteins, respectively. Additionally, EGb downregulated two proteins at each dose. These proteins are correlated with remodeling of the cytoskeleton; the stability, size, and shape of dendritic spines; myelin sheath formation; and composition proteins of structures found in the membrane of the somatodendritic and axonal compartments. Our findings suggested that EGb modulates conditioned suppression LTM through differential protein expression profiles, which may be a target for cognitive enhancers and for the prevention or treatment of neurocognitive impairments.
Collapse
Affiliation(s)
- Renan Barretta Gaiardo
- Departamento de Ciências Biológicas, Laboratório de Farmacologia Celular e Comportamental, Universidade Federal de São Paulo, Diadema, Brazil
| | - Thiago Ferreira Abreu
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexandre Keiji Tashima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica Marques Telles
- Departamento de Ciências Biológicas, Laboratório de Fisiologia Metabólica, Universidade Federal de São Paulo, Diadema, Brazil
| | - Suzete Maria Cerutti
- Departamento de Ciências Biológicas, Laboratório de Farmacologia Celular e Comportamental, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
7
|
Doria JG, de Souza JM, Silva FR, Olmo IG, Carvalho TG, Alves-Silva J, Ferreira-Vieira TH, Santos JT, Xavier CQS, Silva NC, Maciel EMA, Conn PJ, Ribeiro FM. The mGluR5 positive allosteric modulator VU0409551 improves synaptic plasticity and memory of a mouse model of Huntington's disease. J Neurochem 2018; 147:222-239. [PMID: 30028018 DOI: 10.1111/jnc.14555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/19/2018] [Accepted: 07/13/2018] [Indexed: 01/17/2023]
Abstract
Huntington's Disease (HD) is an autosomal-dominant neurodegenerative disorder, characterized by involuntary body movements, cognitive impairment, and psychiatric disorder. The metabotropic glutamate receptor 5 (mGluR5) plays an important role in HD and we have recently demonstrated that mGluR5-positive allosteric modulators (PAMs) can ameliorate pathology and the phenotypic signs of a mouse model of HD. In this study, we investigated the molecular mechanisms involved in mGluR5 PAMs effect on memory. Our results demonstrate that subchronic treatment with the mGluR5 PAM VU0409551 was effective in reversing the memory deficits exhibited by BACHD mice, a mouse model for HD. Moreover, VU0409551 treatment stabilized mGluR5 at the cellular plasma membrane of BACHD mice, increasing the expression of several genes important for synaptic plasticity, including c-Fos, brain-derived neurotrophic factor, Arc/Arg3.1, syntaxin 1A, and post-synaptic density-95. In addition, VU0409551 treatment also increased dendritic spine density and maturation and augmented the number of pre-synaptic sites. In conclusion, our results demonstrate that VU0409551 triggered the activation of cell signaling pathways important for synaptic plasticity, enhancing the level of dendritic spine maturation and rescuing BACHD memory impairment. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Juliana G Doria
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jessica M de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flavia R Silva
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isabella G Olmo
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Toniana G Carvalho
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Alves-Silva
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Talita H Ferreira-Vieira
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jessica T Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Claudymara Q S Xavier
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathalia C Silva
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Esther M A Maciel
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Peter Jeffrey Conn
- Vanderbilt Center for Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Fabiola M Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Liang Q, Cai C, Duan D, Hu X, Hua W, Jiang P, Zhang L, Xu J, Gao Z. Postnatal Vitamin D Intake Modulates Hippocampal Learning and Memory in Adult Mice. Front Neurosci 2018; 12:141. [PMID: 29666565 PMCID: PMC5891641 DOI: 10.3389/fnins.2018.00141] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/21/2018] [Indexed: 01/27/2023] Open
Abstract
Vitamin D (VD) is a neuroactive steroid crucial for brain development, function and homeostasis. Its deficiency is associated with numerous brain conditions. As such, VD and its variants are routinely taken by a broad of groups with/without known VD deficiency. In contrast, the harmful effects of VD overdose have been poorly studied. Similarly, the developmental stage-specific VD deficiency and overdose have been rarely explored. In the present work, we showed that postnatal VD supplementation enhanced the motor function transiently in the young adult, but not in the older one. Postnatal VD intake abnormality did not impact the anxiety and depressive behavior but was detrimental to spatial learning and hippocampus-dependent memory. At the molecular level we failed to observe an obvious and constant change with the neural development and activity-related genes examined. However, disrupted developmental expression dynamics were observed for most of the genes, suggesting that the altered neural development dynamics and therefore aberrant adult plasticity might underlie the functional deficits. Our work highlights the essence of VD homeostasis in neural development and adult brain function. Further studies are needed to determine the short- and long-term effects VD intake status may have on brain development, homeostasis, and diseases.
Collapse
Affiliation(s)
- Qiujuan Liang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Advanced Institute of Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Chunhui Cai
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Advanced Institute of Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Dongxia Duan
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Hu
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wanhao Hua
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Advanced Institute of Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Peicheng Jiang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liu Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengliang Gao
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Advanced Institute of Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Dong N, Senzel A, Li K, Lu TZ, Guo CH, Aleksic M, Feng ZP. MEN1 Tumor Suppressor Gene is Required for Long-term Memory Formation in an Aversive Operant Conditioning Model of Lymnaea stagnalis. Neuroscience 2018; 379:22-31. [PMID: 29496634 DOI: 10.1016/j.neuroscience.2018.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 02/02/2023]
Abstract
Activity-dependent transcription factors critically coordinate the gene expression program underlying memory formation. The tumor suppressor gene, MEN1, encodes a ubiquitously expressed transcription regulator required for synaptogenesis and synaptic plasticity in invertebrate and vertebrate central neurons. In this study, we investigated the role of MEN1 in long-term memory (LTM) formation in an aversive operant conditioning paradigm in the freshwater pond snail Lymnaea stagnalis (L. stagnalis). We demonstrated that LTM formation is associated with an increased expression of MEN1 coinciding with an up-regulation of creb1 gene expression. In vivo knockdown of MEN1 prevented LTM formation and conditioning-induced changes in neuronal activity in the identified pacemaker neuron RPeD1. Our findings suggest the involvement of a new pathway in LTM consolidation that requires MEN1-mediated gene regulation.
Collapse
Affiliation(s)
- Nancy Dong
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Anthony Senzel
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kathy Li
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tom Z Lu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cong-Hui Guo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mila Aleksic
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
10
|
Briskin-Luchinsky V, Levy R, Halfon M, Susswein AJ. Molecular correlates of separate components of training that contribute to long-term memory formation after learning that food is inedible in Aplysia. ACTA ACUST UNITED AC 2018; 25:90-99. [PMID: 29339560 PMCID: PMC5772390 DOI: 10.1101/lm.046326.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
Training Aplysia with inedible food for a period that is too brief to produce long-term memory becomes effective in producing memory when training is paired with a nitric oxide (NO) donor. Lip stimulation for the same period of time paired with an NO donor is ineffective. Using qPCR, we examined molecular correlates of brief training versus lip stimulation, of treatment with an NO donor versus saline, and of the combined stimuli producing long-term memory. Changes were examined in mRNA expression of Aplysia homologs of C/EBP, CREB1, CREB1α, CREB1β, and CREB2, in both the buccal and cerebral ganglia controlling feeding. Both the brief training and the NO donor increased expression of C/EBP, CREB1, CREB1α, and CREB1β, but not CREB2 in the buccal ganglia. For CREB1α, there was a significant interaction between the effects of the brief training and of the NO donor. In addition, the NO donor, but not brief training, increased expression of all of the genes in the cerebral ganglion. These findings show that the components of learning that alone do not produce memory produce molecular changes in different ganglia. Thus, long-term memory is likely to arise by both additive and interactive increases in gene expression.
Collapse
Affiliation(s)
- Valeria Briskin-Luchinsky
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Roi Levy
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Maayan Halfon
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Abraham J Susswein
- The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
11
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
12
|
Dong N, Feng ZP. Inverse Relationship between Basal Pacemaker Neuron Activity and Aversive Long-Term Memory Formation in Lymnaea stagnalis. Front Cell Neurosci 2017; 10:297. [PMID: 28101006 PMCID: PMC5209385 DOI: 10.3389/fncel.2016.00297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Learning and memory formation are essential physiological functions. While quiescent neurons have long been the focus of investigations into the mechanisms of memory formation, there is increasing evidence that spontaneously active neurons also play key roles in this process and possess distinct rules of activity-dependent plasticity. In this study, we used a well-defined aversive learning model of aerial respiration in the mollusk Lymnaea stagnalis (L. stagnalis) to study the role of basal firing activity of the respiratory pacemaker neuron Right Pedal Dorsal 1 (RPeD1) as a determinant of aversive long-term memory (LTM) formation. We investigated the relationship between basal aerial respiration behavior and RPeD1 firing activity, and examined aversive LTM formation and neuronal plasticity in animals exhibiting different basal aerial respiration behavior. We report that animals with higher basal aerial respiration behavior exhibited early responses to operant conditioning and better aversive LTM formation. Early behavioral response to the conditioning procedure was associated with biphasic enhancements in the membrane potential, spontaneous firing activity and gain of firing response, with an early phase spanning the first 2 h after conditioning and a late phase that is observed at 24 h. Taken together, we provide the first evidence suggesting that lower neuronal activity at the time of learning may be correlated with better memory formation in spontaneously active neurons. Our findings provide new insights into the diversity of cellular rules of plasticity underlying memory formation.
Collapse
Affiliation(s)
- Nancy Dong
- Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto Toronto, ON, Canada
| |
Collapse
|
13
|
Lu TZ, Kostelecki W, Sun CLF, Dong N, Pérez Velázquez JL, Feng ZP. High sensitivity of spontaneous spike frequency to sodium leak current in a Lymnaea pacemaker neuron. Eur J Neurosci 2016; 44:3011-3022. [PMID: 27711993 DOI: 10.1111/ejn.13426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 11/28/2022]
Abstract
The spontaneous rhythmic firing of action potentials in pacemaker neurons depends on the biophysical properties of voltage-gated ion channels and background leak currents. The background leak current includes a large K+ and a small Na+ component. We previously reported that a Na+ -leak current via U-type channels is required to generate spontaneous action potential firing in the identified respiratory pacemaker neuron, RPeD1, in the freshwater pond snail Lymnaea stagnalis. We further investigated the functional significance of the background Na+ current in rhythmic spiking of RPeD1 neurons. Whole-cell patch-clamp recording and computational modeling approaches were carried out in isolated RPeD1 neurons. The whole-cell current of the major ion channel components in RPeD1 neurons were characterized, and a conductance-based computational model of the rhythmic pacemaker activity was simulated with the experimental measurements. We found that the spiking rate is more sensitive to changes in the Na+ leak current as compared to the K+ leak current, suggesting a robust function of Na+ leak current in regulating spontaneous neuronal firing activity. Our study provides new insight into our current understanding of the role of Na+ leak current in intrinsic properties of pacemaker neurons.
Collapse
Affiliation(s)
- T Z Lu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - W Kostelecki
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - C L F Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - N Dong
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - J L Pérez Velázquez
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Z-P Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
14
|
Borovok N, Nesher E, Levin Y, Reichenstein M, Pinhasov A, Michaelevski I. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation. Mol Cell Proteomics 2015; 15:523-41. [PMID: 26598641 DOI: 10.1074/mcp.m115.051318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/08/2023] Open
Abstract
Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams.
Collapse
Affiliation(s)
- Natalia Borovok
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Elimelech Nesher
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Yishai Levin
- ¶de Botton Institute for Protein Profiling, The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Reichenstein
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Albert Pinhasov
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Izhak Michaelevski
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel; ‖Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Hermann PM, Watson SN, Wildering WC. Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment. Front Genet 2014; 5:419. [PMID: 25538730 PMCID: PMC4255604 DOI: 10.3389/fgene.2014.00419] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023] Open
Abstract
The aging brain undergoes a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (per)oxidation of membrane lipids and activation of phospholipase A2 (PLA2) enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the biology of cognitive aging we portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.
Collapse
Affiliation(s)
- Petra M Hermann
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada
| | - Shawn N Watson
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Willem C Wildering
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
16
|
Fà M, Staniszewski A, Saeed F, Francis YI, Arancio O. Dynamin 1 is required for memory formation. PLoS One 2014; 9:e91954. [PMID: 24643165 PMCID: PMC3958425 DOI: 10.1371/journal.pone.0091954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/16/2014] [Indexed: 02/07/2023] Open
Abstract
Dynamin 1–3 isoforms are known to be involved in endocytotic processes occurring during synaptic transmission. No data has directly linked dynamins yet with normal animal behavior. Here we show that dynamin pharmacologic inhibition markedly impairs hippocampal-dependent associative memory. Memory loss was associated with changes in synaptic function occurring during repetitive stimulation that is thought to be linked with memory induction. Synaptic fatigue was accentuated by dynamin inhibition. Moreover, dynamin inhibition markedly reduced long-term potentiation, post-tetanic potentiation, and neurotransmitter released during repetitive stimulation. Most importantly, the effect of dynamin inhibition onto memory and synaptic plasticity was due to a specific involvement of the dynamin 1 isoform, as demonstrated through a genetic approach with siRNA against this isoform to temporally block it. Taken together, these findings identify dynamin 1 as a key protein for modulation of memory and release evoked by repetitive activity.
Collapse
Affiliation(s)
- Mauro Fà
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Faisal Saeed
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Yitshak I. Francis
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zhang C, Omran AG, He F, Deng X, Wu L, Peng J, Yin F. Screening and identification of dynamin-1 interacting proteins in rat brain synaptosomes. Brain Res 2013; 1543:17-27. [PMID: 24211660 DOI: 10.1016/j.brainres.2013.10.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 01/27/2023]
Abstract
Dynamin-1 is a multi-domain GTPase that is crucial for the fission stage of synaptic vesicle recycling and vesicle trafficking. In this study, we constructed prokaryotic expression plasmids for the four functional domains of dynamin-1, which are pGEX-4T-2-PH, pGEX-4T-2-PRD, pGEX-4T-2-GED and pGEX-4T-2-GTPase. Glutathione S-transferase pull-down, co-immunoprecipitation (co-IP), and liquid chromatography/mass spectrometry were used to screen and identify dynamin-1 interacting proteins in rat brain synaptosomes. We identified a set of 63 candidate protein interactions, including 36 proteins interacting with dynamin-1 C-terminal proline-rich domain (PRD), 14 with pleckstrin-homology domain (PH), 7 with GTPase effector domain (GED) and 6 with GTPase domain, consisting of synaptic vesicle-associated proteins, cytoskeletal proteins, metabolic enzymes and other proteins. We selected three previously unreported dynamin-1 interacting proteins to verify their interaction with dynamin-1 under native conditions. Using co-IP, we found that Rab GDP-dissociation inhibitor (Rab GDI) and chloride channel 3 (ClC-3) do interact with dynamin-1, but not with TUC-4b (the TOAD-64/Ulip/CRMP (TUC) family member). Those novel interactions detected in our study offer valuable insight into the protein-protein interacting network that could enhance our understanding of dynamin-1 mediated synaptic vesicle recycling.
Collapse
Affiliation(s)
- Ciliu Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Ahmed Galal Omran
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Lei Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, 87 Xiangya Road, Hunan 410008, PR China.
| |
Collapse
|
18
|
Wairkar YP, Trivedi D, Natarajan R, Barnes K, Dolores L, Cho P. CK2α regulates the transcription of BRP in Drosophila. Dev Biol 2013; 384:53-64. [PMID: 24080510 DOI: 10.1016/j.ydbio.2013.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 01/26/2023]
Abstract
Development and plasticity of synapses are brought about by a complex interplay between various signaling pathways. Typically, either changing the number of synapses or strengthening an existing synapse can lead to changes during synaptic plasticity. Altering the machinery that governs the exocytosis of synaptic vesicles, which primarily fuse at specialized structures known as active zones on the presynaptic terminal, brings about these changes. Although signaling pathways that regulate the synaptic plasticity from the postsynaptic compartments are well defined, the pathways that control these changes presynaptically are poorly described. In a genetic screen for synapse development in Drosophila, we found that mutations in CK2α lead to an increase in the levels of Bruchpilot (BRP), a scaffolding protein associated with the active zones. Using a combination of genetic and biochemical approaches, we found that the increase in BRP in CK2α mutants is largely due to an increase in the transcription of BRP. Interestingly, the transcripts of other active zone proteins that are important for function of active zones were also increased, while the transcripts from some other synaptic proteins were unchanged. Thus, our data suggest that CK2α might be important in regulating synaptic plasticity by modulating the transcription of BRP. Hence, we propose that CK2α is a novel regulator of the active zone protein, BRP, in Drosophila.
Collapse
Affiliation(s)
- Yogesh P Wairkar
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd., Rte#1045, Galveston, TX 77555, United States.
| | | | | | | | | | | |
Collapse
|
19
|
Spencer G, Rothwell C. Behavioural and network plasticity following conditioning of the aerial respiratory response of a pulmonate mollusc. CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most molluscs perform respiration using gills, but the pulmonate molluscs have developed a primitive lung with which they perform pulmonary respiration. The flow of air into this lung occurs through an opening called the pneumostome, and pulmonate molluscs travel to the surface of the water to obtain oxygen from the surrounding atmosphere. The aerial respiratory behaviour of the pulmonate mollusc, the great pond snail (Lymnaea stagnalis (L., 1758)), has been well studied, and a three-neuron central pattern generator (CPG) controlling this rhythmic behaviour has been identified. The aerial respiratory behaviour of L. stagnalis can be operantly conditioned and plasticity within the CPG has been associated with the conditioned response. In this review, we describe both the aerial respiratory behaviour and the underlying neuronal network of this pulmonate mollusc, and then discuss both the behavioural and network plasticity that results from the conditioning of this behaviour.
Collapse
Affiliation(s)
- G.E. Spencer
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| | - C.M. Rothwell
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
20
|
Cyriac A, Holmes G, Lass J, Belchenko D, Calin-Jageman RJ, Calin-Jageman IE. An Aplysia Egr homolog is rapidly and persistently regulated by long-term sensitization training. Neurobiol Learn Mem 2013; 102:43-51. [PMID: 23567107 DOI: 10.1016/j.nlm.2013.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/21/2013] [Accepted: 03/24/2013] [Indexed: 02/03/2023]
Abstract
The Egr family of transcription factors plays a key role in long-term plasticity and memory in a number of vertebrate species. Here we identify and characterize ApEgr (GenBank: KC608221), an Egr homolog in the marine mollusk Aplysia californica. ApEgr codes for a predicted 593-amino acid protein with the highly conserved trio of zinc-fingered domains in the C-terminus that characterizes the Egr family of transcription factors. Promoter analysis shows that the ApEgr protein selectively recognizes the GSG motif recognized by vertebrate Egrs. Like mammalian Egrs, ApEgr is constitutively expressed in a range of tissues, including the CNS. Moreover, expression of ApEgr is bi-directionally regulated by changes in neural activity. Of most interest, the association between ApEgr function and memory may be conserved in Aplysia, as we observe rapid and long-lasting up-regulation of expression after long-term sensitization training. Taken together, our results suggest that Egrs may have memory functions that are conserved from mammals to mollusks.
Collapse
Affiliation(s)
- Ashly Cyriac
- Neuroscience Program, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States
| | | | | | | | | | | |
Collapse
|
21
|
Sidhu VK, Huang BX, Kim HY. Effects of docosahexaenoic acid on mouse brain synaptic plasma membrane proteome analyzed by mass spectrometry and (16)O/(18)O labeling. J Proteome Res 2011; 10:5472-80. [PMID: 22003853 PMCID: PMC3458425 DOI: 10.1021/pr2007285] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Docosahexenoic acid (DHA, 22:6n-3) plays an important role in development of proper brain function in mammals. We have previously reported that DHA promotes synaptogenesis and synaptic function in hippocampal neurons while DHA-depletion in the brain due to n-3 fatty acid deficiency produces opposite effects. To gain insight into underlying molecular mechanisms, we investigated whether the brain DHA status affects the synaptic plasma membrane (SPM) proteome by using nanoLC-ESI-MS/MS and (16)O/(18)O labeling. The DHA level in mouse brains was lowered by dietary depletion of n-3 fatty acids, and SPM was prepared by differential centrifugation followed by osmotic shock. SPM proteins from DHA-adequate and depleted brains were analyzed by nanoLC-ESI-MS/MS after SDS-PAGE, in-gel digestion, and differential O(18)/O(16) labeling. This strategy allowed comparative quantitation of more than 200 distinct membrane or membrane-associated proteins from DHA-adequate or depleted brains. We found that 18 pre- and postsynaptic proteins that are relevant to synaptic physiology were significantly down-regulated in DHA-depleted mouse brains. The protein network analysis suggests involvement of CREB and caspase-3 pathways in the DHA-dependent modulation of synaptic proteome. Reduction of specific synaptic proteins due to brain DHA-depletion may be an important mechanism for the suboptimal brain function associated with n-3 fatty acid deficiency.
Collapse
Affiliation(s)
| | - Bill X. Huang
- Laboratory of Molecular Signaling, DICBR, NIAAA, NIH, Bethesda, MD, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, DICBR, NIAAA, NIH, Bethesda, MD, USA
| |
Collapse
|
22
|
Expression, phosphorylation, and glycosylation of CNS proteins in aversive operant conditioning associated memory in Lymnaea stagnalis. Neuroscience 2011; 186:94-109. [DOI: 10.1016/j.neuroscience.2011.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 11/18/2022]
|
23
|
A sodium leak current regulates pacemaker activity of adult central pattern generator neurons in Lymnaea stagnalis. PLoS One 2011; 6:e18745. [PMID: 21526173 PMCID: PMC3079709 DOI: 10.1371/journal.pone.0018745] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/09/2011] [Indexed: 11/22/2022] Open
Abstract
The resting membrane potential of the pacemaker neurons is one of the essential
mechanisms underlying rhythm generation. In this study, we described the
biophysical properties of an uncharacterized channel (U-type channel) and
investigated the role of the channel in the rhythmic activity of a respiratory
pacemaker neuron and the respiratory behaviour in adult freshwater snail
Lymnaea stagnalis. Our results show that the channel
conducts an inward leak current carried by Na+
(ILeak-Na). The ILeak-Na contributed to the resting
membrane potential and was required for maintaining rhythmic action potential
bursting activity of the identified pacemaker RPeD1 neurons. Partial knockdown
of the U-type channel suppressed the aerial respiratory behaviour of the adult
snail in vivo. These findings identified the
Na+ leak conductance via the U-type channel, likely a
NALCN-like channel, as one of the fundamental mechanisms regulating rhythm
activity of pacemaker neurons and respiratory behaviour in adult animals.
Collapse
|