1
|
Bortolato M, Braccagni G, Pederson CA, Floris G, Fite PJ. "Weeding out" violence? Translational perspectives on the neuropsychobiological links between cannabis and aggression. AGGRESSION AND VIOLENT BEHAVIOR 2024; 78:101948. [PMID: 38828012 PMCID: PMC11141739 DOI: 10.1016/j.avb.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Recent shifts in societal attitudes towards cannabis have led to a dramatic increase in consumption rates in many Western countries, particularly among young people. This trend has shed light on a significant link between cannabis use disorder (CUD) and pathological reactive aggression, a condition involving disproportionate aggressive and violent reactions to minor provocations. The discourse on the connection between cannabis use and aggression is frequently enmeshed in political and legal discussions, leading to a polarized understanding of the causative relationship between cannabis use and aggression. However, integrative analyses from both human and animal research indicate a complex, bidirectional interplay between cannabis misuse and pathological aggression. On the one hand, emerging research reveals a shared genetic and environmental predisposition for both cannabis use and aggression, suggesting a common underlying biological mechanism. On the other hand, there is evidence that cannabis consumption can lead to violent behaviors while also being used as a self-medication strategy to mitigate the negative emotions associated with pathological reactive aggression. This suggests that the coexistence of pathological aggression and CUD may result from overlapping vulnerabilities, potentially creating a self-perpetuating cycle where each condition exacerbates the other, escalating into externalizing and violent behaviors. This article aims to synthesize existing research on the intricate connections between these issues and propose a theoretical model to explain the neurobiological mechanisms underpinning this complex relationship.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Casey A. Pederson
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Paula J. Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
2
|
Dziak JJ, Coffman DL, Lanza ST, Li R, Jermiin LS. Sensitivity and specificity of information criteria. Brief Bioinform 2021; 21:553-565. [PMID: 30895308 DOI: 10.1093/bib/bbz016] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 11/14/2022] Open
Abstract
Information criteria (ICs) based on penalized likelihood, such as Akaike's information criterion (AIC), the Bayesian information criterion (BIC) and sample-size-adjusted versions of them, are widely used for model selection in health and biological research. However, different criteria sometimes support different models, leading to discussions about which is the most trustworthy. Some researchers and fields of study habitually use one or the other, often without a clearly stated justification. They may not realize that the criteria may disagree. Others try to compare models using multiple criteria but encounter ambiguity when different criteria lead to substantively different answers, leading to questions about which criterion is best. In this paper we present an alternative perspective on these criteria that can help in interpreting their practical implications. Specifically, in some cases the comparison of two models using ICs can be viewed as equivalent to a likelihood ratio test, with the different criteria representing different alpha levels and BIC being a more conservative test than AIC. This perspective may lead to insights about how to interpret the ICs in more complex situations. For example, AIC or BIC could be preferable, depending on the relative importance one assigns to sensitivity versus specificity. Understanding the differences and similarities among the ICs can make it easier to compare their results and to use them to make informed decisions.
Collapse
Affiliation(s)
| | - Donna L Coffman
- Department of Epidemiology and Biostatistics at Temple University
| | - Stephanie T Lanza
- Department of Biobehavioral Health and a principal investigator at the Methodology Center
| | - Runze Li
- Department of Statistics and a principal investigator in the Methodology Center at Penn State
| | - Lars S Jermiin
- Research School of Biology at the Australian National University and a visiting researcher at the Earth Institute and School of Biology and Environmental Science, University College Dublin
| |
Collapse
|
3
|
Luo X, Guo X, Luo X, Tan Y, Zhang P, Yang K, Xie T, Shi J, Zhang Y, Xu J, Zuo L, Li CSR. Significant, replicable, and functional associations between KTN1 variants and alcohol and drug codependence. Addict Biol 2021; 26:e12888. [PMID: 32115811 PMCID: PMC7641293 DOI: 10.1111/adb.12888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023]
Abstract
The gray matter volume (GMV) of the putamen has been reported to be regulated by kinectin 1 gene (KTN1). As a hub of the dopaminergic circuit, the putamen is widely implicated in the etiological processes of substance use disorders (SUD). Here, we aimed to identify robust and reliable associations between KTN1 SNPs and SUD across multiple samples. We examined the associations between SUD and KTN1 SNPs in four independent population-based or family-based samples (n = 10,209). The potential regulatory effects of the risk alleles on the putamen GMVs, the effects of alcohol, nicotine, marijuana and cocaine on KTN1 mRNA expression, and the relationship between KTN1 mRNA expression and SUD were explored. We found that a total of 23 SNPs were associated with SUD across at least two independent samples (1.4 × 10-4 ≤ p ≤ 0.049), including one SNP (rs12895072) across three samples (8.8 × 10-3 ≤ p ≤ 0.049). Four other SNPs were significantly or suggestively associated with SUD only in European-Australians (4.8 × 10-4 ≤ p ≤ 0.058). All of the SUD-risk alleles of these 27 SNPs increased (β > 0) the putamen GMVs and represented major alleles (f > 0.5) in Europeans. Twenty-two SNPs were potentially biologically functional. Alcohol, nicotine and cocaine significantly affected the KTN1 mRNA expression, and the KTN1 mRNA was differentially expressed between nicotine or cocaine dependent and control subjects. We concluded that there was a replicable and robust relationship among the KTN1 variants, KTN1 mRNA expression, putamen GMVs, molecular effects of substances, and SUD, suggesting that some risk KTN1 alleles might increase kinectin 1 expression in the putamen, altering putamen structures and functions, and leading to SUD.
Collapse
Affiliation(s)
- Xingguang Luo
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Xiaoyun Guo
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai 200030, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xingqun Luo
- Department of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Ping Zhang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Kebing Yang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Ting Xie
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Jing Shi
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Yong Zhang
- Department of Psychiatry, Tianjin Mental Health Center, Tianjin 300222, China
| | - Jianying Xu
- Department of Obstetrics and Gynecology, Zhuhai Municipal Maternal and Children’s Health Hospital, Zhuhai, Guangdong 519000, China
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Maes HH. Notes on Three Decades of Methodology Workshops. Behav Genet 2021; 51:170-180. [PMID: 33585974 DOI: 10.1007/s10519-021-10049-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
Since 1987, a group of behavior geneticists have been teaching an annual methodology workshop on how to use state-of-the-art methods to analyze genetically informative data. In the early years, the focus was on analyzing twin and family data, using information of their known genetic relatedness to infer the role of genetic and environmental factors on phenotypic variation. With the rapid evolution of genotyping and sequencing technology and availability of measured genetic data, new methods to detect genetic variants associated with human traits were developed and became the focus of workshop teaching in alternate years. Over the years, many of the methodological advances in the field of statistical genetics have been direct outgrowths of the workshop, as evidence by the software and methodological publications authored by workshop faculty. We provide data and demographics of workshop attendees and evaluate the impact of the methodology workshops on scientific output in the field by evaluating the number of papers applying specific statistical genetic methodologies authored by individuals who have attended workshops.
Collapse
Affiliation(s)
- Hermine H Maes
- Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, PO Box 980033, Richmond, VA, 23298-0033, USA. .,Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Dziak JJ, Coffman DL, Lanza ST, Li R, Jermiin LS. Sensitivity and specificity of information criteria. Brief Bioinform 2020; 21:553-565. [PMID: 30895308 DOI: 10.1101/449751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 05/24/2023] Open
Abstract
Information criteria (ICs) based on penalized likelihood, such as Akaike's information criterion (AIC), the Bayesian information criterion (BIC) and sample-size-adjusted versions of them, are widely used for model selection in health and biological research. However, different criteria sometimes support different models, leading to discussions about which is the most trustworthy. Some researchers and fields of study habitually use one or the other, often without a clearly stated justification. They may not realize that the criteria may disagree. Others try to compare models using multiple criteria but encounter ambiguity when different criteria lead to substantively different answers, leading to questions about which criterion is best. In this paper we present an alternative perspective on these criteria that can help in interpreting their practical implications. Specifically, in some cases the comparison of two models using ICs can be viewed as equivalent to a likelihood ratio test, with the different criteria representing different alpha levels and BIC being a more conservative test than AIC. This perspective may lead to insights about how to interpret the ICs in more complex situations. For example, AIC or BIC could be preferable, depending on the relative importance one assigns to sensitivity versus specificity. Understanding the differences and similarities among the ICs can make it easier to compare their results and to use them to make informed decisions.
Collapse
Affiliation(s)
| | - Donna L Coffman
- Department of Epidemiology and Biostatistics at Temple University
| | - Stephanie T Lanza
- Department of Biobehavioral Health and a principal investigator at the Methodology Center
| | - Runze Li
- Department of Statistics and a principal investigator in the Methodology Center at Penn State
| | - Lars S Jermiin
- Research School of Biology at the Australian National University and a visiting researcher at the Earth Institute and School of Biology and Environmental Science, University College Dublin
| |
Collapse
|
6
|
Aroche AP, Rovaris DL, Grevet EH, Stolf AR, Sanvicente-Vieira B, Kessler FHP, von Diemen L, Grassi-Oliveira R, Bau CHD, Schuch JB. Association of CHRNA5 Gene Variants with Crack Cocaine Addiction. Neuromolecular Med 2020; 22:384-390. [PMID: 32152934 DOI: 10.1007/s12017-020-08596-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Genome-wide studies provide increasing evidence of association of genetic variants with different behaviors. However, there is a growing need for replication and subsequent characterization of specific findings. In this sense, the CHRNA5 gene has been associated with nicotine (with genome-wide significance), alcohol and cocaine addictions. So far, this gene has not been evaluated in smoked (crack) cocaine. We aimed to analyze the influence of CHRNA5 variants in crack addiction susceptibility and severity. The sample includes 300 crack-addicted patients and 769 non-addicted individuals. The CHRNA5 SNPs evaluated were rs588765, rs16969968, and rs514743. Homozygosity for rs16969968 and rs588765 major alleles was nominally associated with a risk to crack addiction (GG, P = 0.032; CC, P = 0.036, respectively). Haplotype analyses reveal significant associations (rs588765|rs16969968|rs514743 pglobal-corrected = 7.66 × 10-5) and suggest a substantial role for rs16969968. These findings corroborate previous reports in cocaine addiction-in line with the expected effects of cocaine in the cholinergic system-and in the opposite direction of significant GWAS findings for nicotine addiction susceptibility. These results are strengthened by the first report of an association of rs588765 with crack addiction and by the haplotype findings. In summary, our study highlights the relevance of the α5 subunit on crack cocaine addiction, replicating previous results relating CHRNA5 with the genetics and pathophysiology of addiction of different drugs.
Collapse
Affiliation(s)
- Angelita P Aroche
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego L Rovaris
- Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Universidade de Sao Paulo, São Paulo, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eugenio H Grevet
- Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,ADHD Outpatient Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Anderson R Stolf
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Breno Sanvicente-Vieira
- Developmental Cognitive Neuroscience Lab, Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Felix H P Kessler
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Lisia von Diemen
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab, Biomedical Research Institute, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
Scarnati MS, Halikere A, Pang ZP. Using human stem cells as a model system to understand the neural mechanisms of alcohol use disorders: Current status and outlook. Alcohol 2019; 74:83-93. [PMID: 30087005 DOI: 10.1016/j.alcohol.2018.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
Abstract
Alcohol use disorders (AUDs), which include alcohol abuse and dependence, are among the most common types of neuropsychiatric disorders in the United States (U.S.). Approximately 14% of the U.S. population is affected in a single year, thus placing a tremendous burden on individuals from all socioeconomic backgrounds. Animal models have been pivotal in revealing the basic mechanisms of how alcohol impacts neuronal function, yet there are currently limited effective therapies developed based on these studies. This is mainly due to a limited understanding of the exact cellular and molecular mechanisms underlying AUDs in humans, which leads to a lack of targeted therapeutics. Furthermore, compounding factors including genetic background, gene copy number variants, single nucleotide polymorphisms (SNP) as well as environmental and social factors that affect and promote the development of AUDs are complex and heterogeneous. Recent developments in stem cell biology, especially the human induced pluripotent stem (iPS) cell development and differentiation technologies, has provided us a unique opportunity to model neuropsychiatric disorders like AUDs in a manner that is highly complementary to animal studies, but that maintains fidelity with complex human genetic contexts. Patient-specific neuronal cells derived from iPS cells can then be used for drug discovery and precision medicine, e.g. for pathway-directed development in alcoholism. Here, we review recent work employing iPS cell technology to model and elucidate the genetic, molecular and cellular mechanisms of AUDs in a human neuronal background and provide our perspective on future development in this direction.
Collapse
Affiliation(s)
- Matthew S Scarnati
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA.
| | - Apoorva Halikere
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Rutgers University-Robert Wood Johnson Medical School, Room 3233D, 89 French Street, New Brunswick, NJ 08901, USA.
| |
Collapse
|
8
|
Kamens HM, Silva C, Peck C, Miller CN. Varenicline modulates ethanol and saccharin consumption in adolescent male and female C57BL/6J mice. Brain Res Bull 2017; 138:20-25. [PMID: 28778837 DOI: 10.1016/j.brainresbull.2017.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 11/27/2022]
Abstract
Adolescence is a critical period in brain development that coincides with the initiation of alcohol use. Nicotinic acetylcholine receptors (nAChR) have been shown to modulate ethanol behaviors in adult humans and in animal models; however, the role of these receptors in adolescent ethanol behaviors has not been explored. Throughout adolescence, nAChR expression undergoes large-scale developmental changes which may alter behavioral responses to ethanol. Here we examined the effect of varenicline, a nAChR partial agonist, on ethanol consumption, ataxia, sedation, and metabolism in adolescent male and female C57BL/6J mice. The effect of varenicline on ethanol consumption was tested through the Drinking-in-the-Dark (DID) paradigm that models binge-like ethanol consumption. To ensure that results were specific for ethanol, we also tested the effect of varenicline on saccharin consumption. Additionally, varenicline was administered 30min prior to an acute injection of ethanol before being tested for ataxia on the balance beam, sedation using the loss of righting reflex, or ethanol metabolism. Varenicline dose dependently decreased ethanol consumption, but also influenced saccharin intake. Varenicline showed no significant effect on ethanol metabolism, ataxia, or sedation. Unlike its effects in adult animals, varenicline is able to reduce ethanol consumption without increasing the ataxic and sedative effects of ethanol. This work suggests that the neurobiological mechanisms of ethanol behaviors may change across the lifespan and highlights the need for more research on the role of nAChRs in ethanol behaviors throughout development.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Constanza Silva
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Colette Peck
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Carley N Miller
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| |
Collapse
|
9
|
Richmond-Rakerd LS, Otto JM, Slutske WS, Ehlers CL, Wilhelmsen KC, Gizer IR. A Novel Tobacco Use Phenotype Suggests the 15q25 and 19q13 Loci May be Differentially Associated With Cigarettes per Day and Tobacco-Related Problems. Nicotine Tob Res 2017; 19:426-434. [PMID: 27663783 PMCID: PMC5968625 DOI: 10.1093/ntr/ntw260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Tobacco use is associated with variation at the 15q25 gene cluster and the cytochrome P450 (CYP) genes CYP2A6 and CYP2B6. Despite the variety of outcomes associated with these genes, few studies have adopted a data-driven approach to defining tobacco use phenotypes for genetic association analyses. We used factor analysis to generate a tobacco use measure, explored its incremental validity over a simple indicator of tobacco involvement: cigarettes per day (CPD), and tested both phenotypes in a genetic association study. METHODS Data were from the University of California, San Francisco Family Alcoholism Study (n = 1942) and a Native American sample (n = 255). Factor analyses employed a broad array of tobacco use variables to establish the candidate phenotype. Subsequently, we conducted tests for association with variants in the nicotinic acetylcholine receptor and CYP genes. We explored associations with CPD and our measure. We then examined whether the variants most strongly associated with our measure remained associated after controlling for CPD. RESULTS Analyses identified one factor that captured tobacco-related problems. Variants at 15q25 were significantly associated with CPD after multiple testing correction (rs938682: p = .00002, rs1051730: p = .0003, rs16969968: p = .0003). No significant associations were obtained with the tobacco use phenotype; however, suggestive associations were observed for variants in CYP2B6 near CYP2A6 (rs45482602: ps = .0082, .0075) and CYP4Z2P (rs10749865: ps = .0098, .0079). CONCLUSIONS CPD captures variation at 15q25. Although strong conclusions cannot be drawn, these finding suggest measuring additional dimensions of problems may detect genetic variation not accounted for by smoking quantity. Replication in independent samples will help further refine phenotype definition efforts. IMPLICATIONS Different facets of tobacco-related problems may index unique genetic risk. CPD, a simple measure of tobacco consumption, is associated with variants at the 15q25 gene cluster. Additional dimensions of tobacco problems may help to capture variation at 19q13. Results demonstrate the utility of adopting a data-driven approach to defining phenotypes for genetic association studies of tobacco involvement and provide results that can inform replication efforts.
Collapse
Affiliation(s)
- Leah S Richmond-Rakerd
- Department of Psychological Sciences, University of Missouri, Columbia, MO
- Alcoholism Research Center at Washington University School of Medicine, St. Louis, MO
| | - Jacqueline M Otto
- Department of Psychological Sciences, University of Missouri, Columbia, MO
- Alcoholism Research Center at Washington University School of Medicine, St. Louis, MO
| | - Wendy S Slutske
- Department of Psychological Sciences, University of Missouri, Columbia, MO
- Alcoholism Research Center at Washington University School of Medicine, St. Louis, MO
| | - Cindy L Ehlers
- Department of Molecular and Cellular Neurosciences (CLE), The Scripps Research Institute, La Jolla, CA
| | - Kirk C Wilhelmsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ian R Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO
- Alcoholism Research Center at Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
10
|
Shmulewitz D, Stohl M, Keyes KM, Brown Q, Saha TD, Hasin D. Effects of State-Level Tobacco Environment on Cigarette Smoking are Stronger Among Those With Individual-Level Risk Factors. Nicotine Tob Res 2016; 18:2020-2030. [PMID: 27130948 PMCID: PMC5016847 DOI: 10.1093/ntr/ntw114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/15/2016] [Indexed: 11/14/2022]
Abstract
INTRODUCTION To better understand the impact of the state-level tobacco environment (eg, tobacco control policies, attitudes towards smoking) on cigarette smoking, we examined whether the relationship of state tobacco environments to smoking is modified by individual-level vulnerability factors. METHODS In a nationally representative sample of US adults (N = 34 638), past-year smoking and heavy smoking were examined. State-level tobacco environment was defined by tobacco-related control policies and attitudes, ranging from permissive to restrictive; individual vulnerability was defined by childhood maltreatment and/or parental substance problems. Additive interaction tested differences in state-level tobacco environment effects on smoking and heavy smoking by individual-level vulnerability. RESULTS Significant interactions (P values < .01) indicated that the state tobacco environment had the strongest relationship to smoking outcomes among individuals with greatest individual vulnerability. For example, among respondents with childhood maltreatment and parental substance problems, those in states with permissive tobacco environments had 13.3% greater prevalence of smoking than those in restrictive states. Among respondents with neither individual-level risk factor, those in permissive states had 2.8% greater prevalence than those in restrictive states (interaction P value = .0002). CONCLUSIONS Further restricting states' smoking environments could help reduce the prevalence of smoking and heavy smoking, particularly among those at increased individual risk in the general population. IMPLICATIONS This study shows that the protective effect of restrictive state-level tobacco environments on smoking or heavy smoking was stronger among those especially vulnerable due to individual-level risk factors (parental substance problems, childhood maltreatment). Thus, public health campaigns to influence attitudes towards smoking or legislation to strengthen tobacco control could have a broad effect, particularly impacting those with vulnerability to smoking, which may help decrease smoking prevalence and reduce the massive public health burden of tobacco-related morbidity and mortality.
Collapse
Affiliation(s)
- Dvora Shmulewitz
- Department of Psychiatry, Columbia University Medical Center, New York, NY
- Clinical Phenomenology, New York State Psychiatric Institute, New York, NY
| | - Malka Stohl
- Clinical Phenomenology, New York State Psychiatric Institute, New York, NY
| | - Katherine M. Keyes
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Qiana Brown
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Tulshi D. Saha
- Laboratory of Epidemiology and Biometry, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - Deborah Hasin
- Department of Psychiatry, Columbia University Medical Center, New York, NY
- Clinical Phenomenology, New York State Psychiatric Institute, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
11
|
Cross SJ, Lotfipour S, Leslie FM. Mechanisms and genetic factors underlying co-use of nicotine and alcohol or other drugs of abuse. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:171-185. [PMID: 27532746 DOI: 10.1080/00952990.2016.1209512] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Concurrent use of tobacco and alcohol or psychostimulants represents a major public health concern, with use of one substance influencing consumption of the other. Co-abuse of these drugs leads to substantial negative health outcomes, reduced cessation, and high economic costs, but the underlying mechanisms are poorly understood. Epidemiological data suggest that tobacco use during adolescence plays a particularly significant role. Adolescence is a sensitive period of development marked by major neurobiological maturation of brain regions critical for reward processing, learning and memory, and executive function. Nicotine exposure during this time produces a unique and long-lasting vulnerability to subsequent substance use, likely via actions at cholinergic, dopaminergic, and serotonergic systems. In this review, we discuss recent clinical and preclinical data examining the genetic factors and mechanisms underlying co-use of nicotine and alcohol or cocaine and amphetamines. We evaluate the critical role of nicotinic acetylcholine receptors throughout, and emphasize the dearth of preclinical studies assessing concurrent drug exposure. We stress important age and sex differences in drug responses, and highlight a brief, low-dose nicotine exposure paradigm that may better model early use of tobacco products. The escalating use of e-cigarettes among youth necessitates a closer look at the consequences of early adolescent nicotine exposure on subsequent alcohol and drug abuse.
Collapse
Affiliation(s)
- Sarah J Cross
- a Department of Anatomy & Neurobiology , School of Medicine, University of California , Irvine , CA , USA
| | - Shahrdad Lotfipour
- b Department of Emergency Medicine , School of Medicine, University of California , Irvine , CA , USA.,c Department of Pharmacology , School of Medicine, University of California , Irvine , CA , USA
| | - Frances M Leslie
- a Department of Anatomy & Neurobiology , School of Medicine, University of California , Irvine , CA , USA.,c Department of Pharmacology , School of Medicine, University of California , Irvine , CA , USA
| |
Collapse
|
12
|
Kamens HM, Corley RP, Richmond PA, Darlington TM, Dowell R, Hopfer CJ, Stallings MC, Hewitt JK, Brown SA, Ehringer MA. Evidence for Association Between Low Frequency Variants in CHRNA6/CHRNB3 and Antisocial Drug Dependence. Behav Genet 2016; 46:693-704. [PMID: 27085880 DOI: 10.1007/s10519-016-9792-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 04/05/2016] [Indexed: 11/24/2022]
Abstract
Common SNPs in nicotinic acetylcholine receptor genes (CHRN genes) have been associated with drug behaviors and personality traits, but the influence of rare genetic variants is not well characterized. The goal of this project was to identify novel rare variants in CHRN genes in the Center for Antisocial Drug Dependence (CADD) and Genetics of Antisocial Drug Dependence (GADD) samples and to determine if low frequency variants are associated with antisocial drug dependence. Two samples of 114 and 200 individuals were selected using a case/control design including the tails of the phenotypic distribution of antisocial drug dependence. The capture, sequencing, and analysis of all variants in 16 CHRN genes (CHRNA1-7, 9, 10, CHRNB1-4, CHRND, CHRNG, CHRNE) were performed independently for each subject in each sample. Sequencing reads were aligned to the human reference sequence using BWA prior to variant calling with the Genome Analysis ToolKit (GATK). Low frequency variants (minor allele frequency < 0.05) were analyzed using SKAT-O and C-alpha to examine the distribution of rare variants among cases and controls. In our larger sample, the region containing the CHRNA6/CHRNB3 gene cluster was significantly associated with disease status using both SKAT-O and C-alpha (unadjusted p values <0.05). More low frequency variants in the CHRNA6/CHRNB3 gene region were observed in cases compared to controls. These data support a role for genetic variants in CHRN genes and antisocial drug behaviors.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO, 80309, USA
| | | | - Todd M Darlington
- Institute for Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO, 80309, USA
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Christian J Hopfer
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO, 80309, USA.,Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO, 80309, USA.,Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - Sandra A Brown
- Department of Psychology and Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO, 80309, USA. .,Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
13
|
Melroy-Greif WE, Stitzel JA, Ehringer MA. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use. GENES, BRAIN, AND BEHAVIOR 2016; 15:89-107. [PMID: 26351737 PMCID: PMC4780670 DOI: 10.1111/gbb.12251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain's reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use.
Collapse
Affiliation(s)
- Whitney E. Melroy-Greif
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Jerry A. Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| | - Marissa A. Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| |
Collapse
|
14
|
Rahman S, Engleman EA, Bell RL. Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:183-201. [PMID: 26810002 PMCID: PMC4754113 DOI: 10.1016/bs.pmbts.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA.
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Hines LA, Morley KI, Mackie C, Lynskey M. Genetic and Environmental Interplay in Adolescent Substance Use Disorders. CURRENT ADDICTION REPORTS 2015; 2:122-129. [PMID: 26301173 DOI: 10.1007/s40429-015-0049-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Adolescent substance use is of considerable public health importance. This narrative review provides a brief background to genetically informative research methodologies and highlights key recent literature examining the interplay between genetic and environmental influences in the etiology of substance use. Twin studies have quantified the magnitude of genetic and environmental influences, and more recently co-relative and Children of Twin designs have shown environments can moderate heritability. Studies have identified a number of specific gene variants (e.g. OPRM1, DRD4, 5HTTLPR) that interact with parenting and peer influence, and the effectiveness of interventions may vary by genotype. However, little research has taken into account the stage-sequential nature of substance use. This may obscure important differences in the genetic and environmental influences, and their interplay, at the stages of escalation to problem use. Future research needs to build on existing methodologies to disentangle the complexities of progression in adolescent substance use.
Collapse
Affiliation(s)
- Lindsey A Hines
- Addictions Department, King's College London Institute of Psychiatry, Psychology and Neuroscience, 4 Windsor Walk, London SE5 8BB
| | - Katherine I Morley
- Addictions Department, King's College London Institute of Psychiatry, Psychology and Neuroscience, 4 Windsor Walk, London SE5 8BB
| | - Clare Mackie
- Addictions Department, King's College London Institute of Psychiatry, Psychology and Neuroscience, 4 Windsor Walk, London SE5 8BB
| | - Michael Lynskey
- Addictions Department, King's College London Institute of Psychiatry, Psychology and Neuroscience, 4 Windsor Walk, London SE5 8BB
| |
Collapse
|
16
|
Vandenbergh DJ, Schlomer GL, Cleveland HH, Schink AE, Hair KL, Feinberg ME, Neiderhiser JM, Greenberg MT, Spoth RL, Redmond C. An Adolescent Substance Prevention Model Blocks the Effect of CHRNA5 Genotype on Smoking During High School. Nicotine Tob Res 2015; 18:212-20. [PMID: 25941207 DOI: 10.1093/ntr/ntv095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/27/2015] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Prevention intervention programs reduce substance use, including smoking, but not all individuals respond. We tested whether response to a substance use prevention/intervention program varies based upon a set of five markers (rs16969968, rs1948, rs578776, rs588765, and rs684513) within the cluster of nicotinic acetylcholine receptor subunit genes (CHRNA5/A3/B4). METHODS Participants (N = 424) were randomly assigned to either control condition, or a family-based intervention in grade 6 and a school-based drug preventive intervention in grade 7. Smoking in the past month was assessed in grades 9-12 using a four-point scale (0 = never smoked, 1 = smoked but not in last month, 2 = one or a few times, 3 = about once a week or more). RESULTS There was a main effect of both the intervention (b = -0.24, P < .05) and genotype at rs16969968 (b = 0.14, P < .05) on high school smoking. Using dummy coding to allow for nonlinear effects, individuals with the A/A genotype smoked more often than those with G/G (b = 0.33, P < .05). A genotype × intervention effect was found with reduced smoking among those with A/A and G/A genotypes to levels similar to those with the G/G genotype (G/G vs. A/A: b = -0.67, P < .05; A/G vs. A/A: b = -0.61, P < .05; G/G vs. A/G ns). Results were nonsignificant for the other four markers. CONCLUSIONS Preventive interventions can reduce the genetic risk for smoking from rs16969968.
Collapse
Affiliation(s)
- David J Vandenbergh
- Department of Biobehavioral Health, Penn State University, University Park, PA; Institute for the Neurosciences, Penn State University, University Park, PA; Molecular Cellular and Integrative Biosciences Program, Penn State University, University Park, PA;
| | - Gabriel L Schlomer
- Department of Biobehavioral Health, Penn State University, University Park, PA; Department of Human Development and Family Studies, Penn State University, University Park, PA
| | - H Harrington Cleveland
- Department of Human Development and Family Studies, Penn State University, University Park, PA
| | - Alisa E Schink
- Molecular Cellular and Integrative Biosciences Program, Penn State University, University Park, PA
| | - Kerry L Hair
- Department of Biobehavioral Health, Penn State University, University Park, PA; Department of Human Development and Family Studies, Penn State University, University Park, PA
| | - Mark E Feinberg
- Bennett Pierce Prevention Research Center, Penn State University, University Park, PA
| | | | - Mark T Greenberg
- Department of Human Development and Family Studies, Penn State University, University Park, PA; Bennett Pierce Prevention Research Center, Penn State University, University Park, PA
| | - Richard L Spoth
- Partnerships in Prevention Science Institute, Iowa State University, Ames, IA
| | - Cleve Redmond
- Partnerships in Prevention Science Institute, Iowa State University, Ames, IA
| |
Collapse
|
17
|
Rahman S, Engleman EA, Bell RL. Nicotinic receptor modulation to treat alcohol and drug dependence. Front Neurosci 2015; 8:426. [PMID: 25642160 PMCID: PMC4295535 DOI: 10.3389/fnins.2014.00426] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/04/2014] [Indexed: 01/10/2023] Open
Abstract
Alcohol and drug dependence are serious public health problems worldwide. The prevalence of alcohol and drug dependence in the United States and other parts of the world is significant. Given the limitations in the efficacy of current pharmacotherapies to treat these disorders, research in developing alternative pharmacotherapies continues. Preclinical and clinical evidence thus far has indicated that brain nicotinic acetylcholine receptors (nAChRs) are important pharmacological targets for the development of medications to treat alcohol and drug dependence. The nAChRs are a super family of ligand gated ion channels, and are expressed throughout the brain with twelve neuronal nAChR subunits (α2–α10 and β2–β4) identified. Here, we review preclinical and clinical evidence involving a number of nAChR ligands that target different nAChR subtypes in alcohol and nicotine addiction. The important ligands include cytisine, lobeline, mecamylamine, varenicline, sazetidine A and others that target α4β2* nAChR subtypes as small molecule modulators of the brain nicotinic cholinergic system are also discussed. Taken together, both preclinical and clinical data exist that support nAChR–based ligands as promising therapeutic agents for the treatment of alcohol and drug dependence.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University Brookings, SD, USA
| | - Eric A Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| |
Collapse
|
18
|
Rahman S, Engleman EA, Bell RL. Nicotinic receptor modulation to treat alcohol and drug dependence. Front Neurosci 2015. [DOI: https://doi.org/10.3389/fnins.2014.00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Choquet H, Joslyn G, Lee A, Kasberger J, Robertson M, Brush G, Schuckit MA, White R, Jorgenson E. Examination of rare missense variants in the CHRNA5-A3-B4 gene cluster to level of response to alcohol in the San Diego Sibling Pair study. Alcohol Clin Exp Res 2013; 37:1311-6. [PMID: 23458267 DOI: 10.1111/acer.12099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/22/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Common variants in the CHRNA5-A3-B4 gene cluster have been shown to be associated with nicotine dependence and alcohol use disorders (AUDs) and related traits, including the level of response (LR) to alcohol. Recently, rare variants (MAF < 0.05) in CHRNB4 have been reported to be associated with a decreased risk of developing nicotine dependence. However, the role of rare variants in the CHRNA5-A3-B4 gene cluster to the LR to alcohol has not yet been established. METHODS To determine whether rare variants in the CHRNA5-A3-B4 gene cluster contribute to the LR to alcohol, the coding regions of these 3 genes were sequenced in 538 subjects from the San Diego Sibling Pair study. RESULTS The analyses identified 16 rare missense variants, 9 of which were predicted to be damaging using in silico analysis tools. Carriers of these variants were compared to noncarriers using a family-based design for each gene and for the gene cluster as a whole. In these analyses, a CHRNA5 carrier status was significantly associated with the phenotype related to the feeling of intoxication experienced during the alcohol challenge (p = 0.039). CONCLUSIONS These results indicate that rare genetic variation in the CHRNA5-A3-B4 gene cluster contributes modestly to the LR to alcohol in the San Diego Sibling Pair study and may protect against AUDs. However, replication studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Hélène Choquet
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA 94110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hendrickson LM, Guildford MJ, Tapper AR. Neuronal nicotinic acetylcholine receptors: common molecular substrates of nicotine and alcohol dependence. Front Psychiatry 2013; 4:29. [PMID: 23641218 PMCID: PMC3639424 DOI: 10.3389/fpsyt.2013.00029] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/16/2013] [Indexed: 01/28/2023] Open
Abstract
Alcohol and nicotine are often co-abused. As many as 80-95% of alcoholics are also smokers, suggesting that ethanol and nicotine, the primary addictive component of tobacco smoke, may functionally interact in the central nervous system and/or share a common mechanism of action. While nicotine initiates dependence by binding to and activating neuronal nicotinic acetylcholine receptors (nAChRs), ligand-gated cation channels normally activated by endogenous acetylcholine (ACh), ethanol is much less specific with the ability to modulate multiple gene products including those encoding voltage-gated ion channels, and excitatory/inhibitory neurotransmitter receptors. However, emerging data indicate that ethanol interacts with nAChRs, both directly and indirectly, in the mesocorticolimbic dopaminergic (DAergic) reward circuitry to affect brain reward systems. Like nicotine, ethanol activates DAergic neurons of the ventral tegmental area (VTA) which project to the nucleus accumbens (NAc). Blockade of VTA nAChRs reduces ethanol-mediated activation of DAergic neurons, NAc DA release, consumption, and operant responding for ethanol in rodents. Thus, ethanol may increase ACh release into the VTA driving activation of DAergic neurons through nAChRs. In addition, ethanol potentiates distinct nAChR subtype responses to ACh and nicotine in vitro and in DAergic neurons. The smoking cessation therapeutic and nAChR partial agonist, varenicline, reduces alcohol consumption in heavy drinking smokers and rodent models of alcohol consumption. Finally, single nucleotide polymorphisms in nAChR subunit genes are associated with alcohol dependence phenotypes and smoking behaviors in human populations. Together, results from pre-clinical, clinical, and genetic studies indicate that nAChRs may have an inherent role in the abusive properties of ethanol, as well as in nicotine and alcohol co-dependence.
Collapse
Affiliation(s)
- Linzy M Hendrickson
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School Worcester, MA, USA
| | | | | |
Collapse
|