1
|
Li C, Ji KB, Choi HY, Liu H, Kim M. Schisandrin B enhances embryo competence and potentially mitigates endoplasmic reticulum stress during porcine preimplantation development. Theriogenology 2024; 220:26-34. [PMID: 38460201 DOI: 10.1016/j.theriogenology.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Endoplasmic reticulum (ER) stress induced by agents such as tunicamycin (TM) substantially impedes the developmental progression of porcine embryos. Lignan compounds such as Schisandrin B (Sch-B), may have the potential to mitigate this stress. However, there are few studies on the effects of Sch-B on embryo development. To address this research gap, this study evaluates the protective efficacy of Sch-B against TM-induced ER stress during pivotal stages of porcine embryogenesis. Notably, embryos treated with Sch-B exhibited pronounced resistance to TM-induced developmental arrest, particularly at the 4-cell stage, facilitating progression to the 8-cell stage and subsequent blastocyst formation. It was also observed that Sch-B effectively reduced reactive oxygen species (ROS) levels and improved mitochondrial membrane potential (MMP). Furthermore, Sch-B positively influenced the expression of several stress-related genes. These findings highlight the promising role of Sch-B in improving porcine embryo development and mitigating ER stress.
Collapse
Affiliation(s)
- Chuang Li
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Kuk Bin Ji
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Ho Yong Choi
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea
| | - Haixing Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Minkyu Kim
- Division of Animal and Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, South Korea; MK Biotech Inc., 99 Daehak-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
2
|
Lin QN, Liu YD, Guo SE, Zhou R, Huang Q, Zhang ZM, Qin X. Schisandrin B ameliorates high-glucose-induced vascular endothelial cells injury by regulating the Noxa/Hsp27/NF-κB signaling pathway. Biochem Cell Biol 2019; 97:681-692. [PMID: 30817212 DOI: 10.1139/bcb-2018-0321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
Background: To address the molecular mechanism of the anti-inflammation effects of schisandrin B (Sch B) in atherosclerosis, we examined injured HMEC-1, HBMEC, and HUVEC-12 cells induced by high glucose (HG). Methods: Western blot was performed to detect the levels of the proteins Hsp27, Noxa, TLR5, p-IκBα, and p-p65 in HG-induced cells, while ELISA was used to analyze the inflammatory cytokines TNF-α, IL-6, MCP-1, and IL-1β in cells with Hsp27 or Noxa stable expression. Results: Overexpression of Hsp27 upregulated the inflammatory cytokines and the release of IκBα, promoted transportation of p65 into the nucleus, and lastly, affected the inflammation process, while Sch B counteracted the upregulation. In addition, the effect of Noxa overexpression, which is different from Hsp27 overexpression, was consistent with that of Sch B treatment. Conclusions: Sch B may inhibit the inflammatory cascade and alleviate the injury to HMEC-1, HBMEC, and HUEVC-12 cells caused by HG by regulating the Noxa/Hsp27/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qiu-Ning Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Yong-Dong Liu
- Department of Vascular Surgery, Affiliated Liutie Central Hospital & Clinical Medical College of Guangxi Medical University, Liuzhou 545007, P.R. China
| | - Si-En Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Rui Zhou
- Department of Hepatobiliary Surgery, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang 537120, P.R. China
| | - Qun Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Zhan-Man Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Xiao Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| |
Collapse
|
3
|
Ding M, Shu P, Gao S, Wang F, Gao Y, Chen Y, Deng W, He G, Hu Z, Li T. Schisandrin B protects human keratinocyte-derived HaCaT cells from tert-butyl hydroperoxide-induced oxidative damage through activating the Nrf2 signaling pathway. Int J Mol Med 2018; 42:3571-3581. [PMID: 30272282 DOI: 10.3892/ijmm.2018.3901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2018] [Accepted: 09/06/2018] [Indexed: 11/05/2022] Open
Abstract
Schisandrin B (Sch B), an active extract of Schisandra chinensis, has demonstrated antioxidant activity in a number of in vitro and in vivo models. In the present study, the capacity of Sch B to protect against oxidative injury in keratinocytes using the human keratinocyte‑derived HaCaT cell line was investigated. To induce oxidative injury, tert‑Butyl hydroperoxide (tBHP) was employed. The results indicate that Sch B efficiently reduced tBHP‑induced cell death, reactive oxygen species (ROS) generation, protein oxidation, lipid peroxidation and DNA damage. Sch B also effectively attenuated the loss of mitochondrial membrane potential (MMP), and restored adenosine triphosphate (ATP) levels in tBHP‑injured HaCaT cells. Furthermore, Sch B enhanced the expression of key antioxidant enzymes, including catalase, heme oxygenase‑1, glutathione peroxidase, and superoxide dismutase, and further engaged the nuclear factor‑erythroid 2‑related factor 2 (Nrf2) signaling pathway by modulating its phosphorylation through activating multiple upstream kinases, including protein kinase B, adenosine monophosphate‑activated protein kinase and mitogen‑activated protein kinases (MAPKs). The present study suggests that Sch B provides a protective effect in keratinocytes in response to oxidative injury via reinforcing the endogenous antioxidant defense system. Therefore, it may be applied as an adjuvant therapy or in health foods to delay the skin aging process and the onset of skin diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Ming Ding
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, P.R. China
| | - Peng Shu
- Infinitus (China) Company, Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Shuang Gao
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fenglou Wang
- LB Cosmeceutical Technology Co., Ltd., Shanghai 200233, P.R. China
| | - Yitian Gao
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu Chen
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjuan Deng
- Infinitus (China) Company, Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Gaiying He
- LB Cosmeceutical Technology Co., Ltd., Shanghai 200233, P.R. China
| | - Zhenlin Hu
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tianduo Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, P.R. China
| |
Collapse
|
4
|
Wang SW, Wu FH, Zhang YB, Zhang L, Su J, Wong HK, Liu AH, Cheung HP, Ng TB, Tong Y, Sze SCW. Ameliorating effect of Erxian decoction combined with Fructus Schisandrae chinensis (Wu Wei Zi) on menopausal sweating and serum hormone profiles in a rat model. Chin Med 2016; 11:47. [PMID: 27895702 PMCID: PMC5118901 DOI: 10.1186/s13020-016-0117-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2015] [Accepted: 10/27/2016] [Indexed: 11/27/2022] Open
Abstract
Background Modified Erxian decoction (MEXD), i.e., Erxian decoction (EXD) with Fructus Schisandrae chinensis (Wu Wei Zi) added, has been used to alleviate menopausal symptoms. This study aimed to investigate the effects of MEXD on menopausal sweating and serum hormone levels in a rat model of menopause after oral administration of MEXD. Methods Quality control of MEXD was conducted by employing a reversed-phase high performance liquid chromatography column. The three treatment groups received oral administration of MEXD in 0.5% sodium carboxylmethyl cellulose (CMC-Na) at three different doses (5.5, 11, and 22 g/kg body weight) once-daily for 6 consecutive weeks, with 10 animals per group. Huangqijing oral liquor (5 mL/kg) prepared from the roots of Huang qi (Astragalus membranaceus) with an antiperspirant effect was used as a positive control. The negative control group received the same volume of vehicle (0.5% CMC-Na). Ten 3-month-old Sprague–Dawley rats were used as a young group for comparison with the treatment groups (12–14 months old rats). Blood was collected from all animals after 3–6 weeks of treatment. At the end of the treatment, the uterine weight, ovarian weight, and body weight were recorded. Serum malondialdehyde contents and superoxide dismutase activities were determined by thiobarbituric acid colorimetric assays and chemoluminescence assays, respectively. Serum levels of estradiol, follicle-stimulating hormone, and luteinizing hormone were measured by radioimmunoassays. Rat foot pad assays were used to determine the antiperspirant activity of MEXD and histological examinations were conducted on plantar sweat glands. Results Treatment with MEXD (11 g/kg) significantly inhibited sweat excretion in the menopause model rats after treatment for 3 (P = 0.0026) and 6 (P < 0.0001) weeks. The decoction markedly decreased the number of secretory cells in plantar sweat glands. In addition, MEXD (11 g/kg) significantly increased the serum estradiol levels (P < 0.001) and superoxide dismutase activities (P = 0.0405). Furthermore, MEXD (11 g/kg) markedly decreased the serum levels of follicle-stimulating hormone (P = 0.001), luteinizing hormone (P = 0.0213), and malondialdehyde (P = 0.01). Conclusion Modified Erxian decoction significantly inhibited sweat excretion, regulated serum levels of pituitary gonadotropins and estradiol, and exhibited antioxidative effects in a rat model of menopause. Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0117-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi Wei Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Fei Hua Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yan Bo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Liang Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Jing Su
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Hei Kei Wong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Ai Hua Liu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR ; Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ho Pan Cheung
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Yao Tong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR
| | - Stephen Cho Wing Sze
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR
| |
Collapse
|
5
|
Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol 2016; 157:92-116. [PMID: 27321753 DOI: 10.1016/j.pneurobio.2016.06.006] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2015] [Revised: 03/30/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are a major target in hypoxic/ischemic injury. Mitochondrial impairment increases with age leading to dysregulation of molecular pathways linked to mitochondria. The perturbation of mitochondrial homeostasis and cellular energetics worsens outcome following hypoxic-ischemic insults in elderly individuals. In response to acute injury conditions, cellular machinery relies on rapid adaptations by modulating posttranslational modifications. Therefore, post-translational regulation of molecular mediators such as hypoxia-inducible factor 1α (HIF-1α), peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), c-MYC, SIRT1 and AMPK play a critical role in the control of the glycolytic-mitochondrial energy axis in response to hypoxic-ischemic conditions. The deficiency of oxygen and nutrients leads to decreased energetic reliance on mitochondria, promoting glycolysis. The combination of pseudohypoxia, declining autophagy, and dysregulation of stress responses with aging adds to impaired host response to hypoxic-ischemic injury. Furthermore, intermitochondrial signal propagation and tissue wide oscillations in mitochondrial metabolism in response to oxidative stress are emerging as vital to cellular energetics. Recently reported intercellular transport of mitochondria through tunneling nanotubes also play a role in the response to and treatments for ischemic injury. In this review we attempt to provide an overview of some of the molecular mechanisms and potential therapies involved in the alteration of cellular energetics with aging and injury with a neurobiological perspective.
Collapse
|
6
|
Wat E, Ng CF, Wong ECW, Koon CM, Lau CP, Cheung DWS, Fung KP, Lau CBS, Leung PC. The hepatoprotective effect of the combination use of Fructus Schisandrae with statin--A preclinical evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:104-114. [PMID: 26666731 DOI: 10.1016/j.jep.2015.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/24/2015] [Revised: 10/23/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Schisandrae is traditionally used as a liver-toning Chinese herb. Recent studies suggested Fructus Schisandrae could prevent high-fat diet-induced hepatic steatosis as well as improving anti-oxidative status within the liver, which is a proposed mechanism against statin-induced liver toxicity. AIM The aim of the present study was to determine if the combination use of Atorvastatin (AS) and Fructus Schisandrae aqueous extract (FSE) could (a) exert potent therapeutic effects not only on high-fat diet-induced hyperlipidemia, but also on hepatomegaly (enlarge of liver size) and hepatic steatosis (fatty liver); and (b) reduce side effects caused by intake of statin alone including increased incidence of elevated liver enzymes and liver toxicity in Sprague Dawley rats. MATERIALS AND METHODS We studied 5 groups of Sprague Dawley rats that were given the following treatment for 8 weeks: (i) Normal-chow diet; (ii) High-fat diet (contains 21% fat and 0.15% cholesterol); (iii) High-fat diet (contains 21% fat and 0.15% cholesterol)+0.3% Atorvastatin; (iv) High-fat diet (contains 21% fat and 0.15% cholesterol)+0.45% FSE; (v) High-fat diet (contains 21% fat and 0.15% cholesterol)+0.3% Atorvastatin+0.45% FSE. After 8 weeks of treatment, body weight, adipose tissue and liver mass were measured, and liver and plasma lipid levels were determined to evaluate to effect of FSE with or without AS treatment on diet-induced obesity, hyperlipidemia and hepatic steatosis. Liver enzyme activities, anti-oxidative status and membrane permeability transition were also assessed to determine if FSE could reduce the side effects induced by AS. RESULTS From the results, FSE treatment alone resulted in significant inhibitory effect on diet-induced increase in: (a) body weight; (b) fat pad mass (epididymal, perirenal and inguinal fat); (c) liver weight; (d) total liver lipid; (e) liver triglyceride and cholesterol levels; and (f) plasma lipid levels, suggesting FSE has a potential preventive beneficial effect on weight control and lipid metabolism in Sprague Dawley rats with diet-induced obesity. However, FSE supplementation exerted no further beneficial effect on diet-induced metabolic syndrome when it is combined with AS treatment, compared with rats given AS-treatment alone. At the dose of 0.45%, dietary FSE supplementation resulted in: (a) reduced liver enzymes (ALT and AST) levels; (b) reduced macrophage infiltration (CD68); (c) improved liver glutathione levels (anti-oxidative status); (d) reduced liver reactive oxidative species; (e) a trend to reduce calcium-induced membrane permeability transition within the liver. Most importantly, these improvements induced by FSE treatment were not only observed in the livers of rats given high-fat-diet, but also in high-fat-fed rats with atorvastatin-induced hepatotoxicity. CONCLUSIONS Taken together, these data suggested FSE has a potential beneficial effect on weight control and lipid metabolism in Sprague Dawley rats with diet-induced obesity, and the combination use of FSE with AS could significantly prevent liver toxicity and anti-oxidative status induced by AS alone.
Collapse
Affiliation(s)
- Elaine Wat
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Chun Fai Ng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Eric Chun Wai Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Chi Man Koon
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Ching Po Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - David Wing Shing Cheung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Kwok Pui Fung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| |
Collapse
|
7
|
Hou W, Gao W, Wang D, Liu Q, Zheng S, Wang Y. The Protecting Effect of Deoxyschisandrin and Schisandrin B on HaCaT Cells against UVB-Induced Damage. PLoS One 2015; 10:e0127177. [PMID: 25978330 PMCID: PMC4433126 DOI: 10.1371/journal.pone.0127177] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2015] [Accepted: 04/12/2015] [Indexed: 02/06/2023] Open
Abstract
Schisandra chinensis is a traditional Chinese medicine that has multiple biological activities, including antioxidant, anticancer, tonic, and anti-aging effects. Deoxyschisandrin (SA) and schisandrin B (SB), the two major lignans isolated from S. chinensis, exert high antioxidant activities in vitro and in vivo by scavenging free radicals, such as reactive oxygen species (ROS). Ultraviolet B-ray (UVB) radiation induces the production of ROS and DNA damage, which eventually leads to cell death by apoptosis. However, it is unknown whether SA or SB protects cells against UVB-induced cellular DNA damage. Our study showed that both SA and SB effectively protected HaCaT cells from UVB-induced cell death by antagonizing UVB-mediated production of ROS and induction of DNA damage. Our results showed that both SA and SB significantly prevented UVB-induced loss of cell viability using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assays showed that the production of ROS following UVB exposure was inhibited by treatment with SA and SB. Moreover, SA and SB decreased the UVB-induced DNA damage in HaCaT cells by comet assays. In addition, SA and SB also prevented UVB-induced cell apoptosis and the cleavage of caspase-3, caspase-8 and caspase-9. In a word, our results imply that the antioxidants SA and SB could protect cells from UVB-induced cell damage via scavenging ROS.
Collapse
Affiliation(s)
- Wei Hou
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wei Gao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Datao Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qingxiu Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Siwen Zheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yingping Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- * E-mail:
| |
Collapse
|
8
|
Thandavarayan RA, Giridharan VV, Arumugam S, Suzuki K, Ko KM, Krishnamurthy P, Watanabe K, Konishi T. Schisandrin B prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through inhibition of MAPK/p53 signaling. PLoS One 2015; 10:e0119214. [PMID: 25742619 PMCID: PMC4351084 DOI: 10.1371/journal.pone.0119214] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2014] [Accepted: 01/26/2015] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin (Dox) is a highly effective antineoplastic drug. However, Dox-induced apoptosis in cardiomyocytes leads to irreversible degenerative cardiomyopathy, which limits Dox clinical application. Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against oxidative damage in liver, heart and brain tissues in rodents. In current study, we investigated possible protective effects of Sch B against Dox-induced cardiomyopathy in mice. Mice received a single injection of Dox (20 mg/kg IP). Five days after Dox administration, left ventricular (LV) performance was significantly depressed and was improved by Sch B treatment. Sch B prevented the Dox-induced increase in lipid peroxidation, nitrotyrosine formation, and metalloproteinase activation in the heart. In addition, the increased expression of phospho-p38 MAPK and phospho-MAPK activated mitogen kinase 2 levels by Dox were significantly suppressed by Sch B treatment. Sch B also attenuated Dox-induced higher expression of LV proinflammatory cytokines, cardiomyocyte DNA damage, myocardial apoptosis, caspase-3 positive cells and phopho-p53 levels in mice. Moreover, LV expression of NADPH oxidase subunits and reactive oxygen species were significantly less in Sch B treatment mice after Dox injection. These findings suggest that Sch B attenuates Dox-induced cardiotoxicity via antioxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Rajarajan A. Thandavarayan
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), Higashijima, Akiha Ku, Niigata, Japan
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, United States of America
| | | | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), Higashijima, Akiha Ku, Niigata, Japan
| | - Kenji Suzuki
- Department of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kam Ming Ko
- Section of Biochemistry and Cell Biology, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), Higashijima, Akiha Ku, Niigata, Japan
| | - Tetsuya Konishi
- Basic studies on second generation functional foods, NUPALS, NUPALS Liaison R/D promotion devision, Higashi-jima 265-1, Akiha-ku, Niigata, Japan, and Changchun University of Chinese Medicine, Bosuo Road #1035 Jingyue Economic Development District, Changchun, RP China
- * E-mail:
| |
Collapse
|
9
|
Yang/Qi invigoration: an herbal therapy for chronic fatigue syndrome with yang deficiency? EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:945901. [PMID: 25763095 PMCID: PMC4339790 DOI: 10.1155/2015/945901] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/05/2014] [Accepted: 12/10/2014] [Indexed: 11/18/2022]
Abstract
According to traditional Chinese medicine (TCM) theory, Yang and Qi are driving forces of biological activities in the human body. Based on the crucial role of the mitochondrion in energy metabolism, we propose an extended view of Yang and Qi in the context of mitochondrion-driven cellular and body function. It is of interest that the clinical manifestations of Yang/Qi deficiencies in TCM resemble those of chronic fatigue syndrome in Western medicine, which is pathologically associated with mitochondrial dysfunction. By virtue of their ability to enhance mitochondrial function and its regulation, Yang- and Qi-invigorating tonic herbs, such as Cistanches Herba and Schisandrae Fructus, may therefore prove to be beneficial in the treatment of chronic fatigue syndrome with Yang deficiency.
Collapse
|
10
|
Park HJ, Lee SJ, Song Y, Jang SH, Ko YG, Kang SN, Chung BY, Kim HD, Kim GS, Cho JH. Schisandra chinensis prevents alcohol-induced fatty liver disease in rats. J Med Food 2014; 17:103-10. [PMID: 24456360 DOI: 10.1089/jmf.2013.2849] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Abstract
Schisandra chinensis (SC), a traditional herbal medicine, has been prescribed for patients suffering from various liver diseases, including hepatic cancer, hypercholesterolemia, and CCl₄-induced liver injury. We investigated whether SC extract has a protective effect on alcohol-induced fatty liver and studied its underlying mechanisms. Rats were fed with ethanol by intragastric administration every day for 5 weeks to induce alcoholic fatty liver. Ethanol treatment resulted in a significant increase in alanine aminotransferase, aspartate aminotransferase, and hepatic triglyceride (TG) levels and caused fatty degeneration of liver. Ethanol administration also elevated serum TG and total cholesterol (TC) and decreased high-density lipoprotein (HDL) cholesterol levels. However, after administration of ethanol plus SC extracts, the ethanol-induced elevation in liver TC and TG levels was reversed. Elevation in serum TG was not observed after treatment with SC. Moreover, compared with the ethanol-fed group, the rats administered ethanol along with SC extracts for 5 weeks showed attenuated fatty degeneration and an altered lipid profile with decreased serum TC and TG, and increased HDL cholesterol levels. Chronic ethanol consumption did not affect peroxisome proliferator-activated receptor γ (PPARγ) levels, but it decreased PPARα and phospho-AMP-activated protein kinase (AMPK) levels in the liver. However, SC prevented the ethanol-induced decrease in PPARα expression and induced a significant decrease in sterol regulatory element-binding protein-1 expression and increase in phospho-AMPK expression in rats with alcoholic fatty liver. SC administration resulted in a significant decrease in intracellular lipid accumulation in hepatocytes along with a decrease in serum TG levels, and it reversed fatty liver to normal conditions, as measured by biochemical and histological analyses. Our results indicate that the protective effect of SC is accompanied by a significant increase in phospho-AMPK and PPARα expression in hepatic tissue of alcoholic rats, thereby suggesting that SC has the ability to prevent ethanol-induced fatty liver, possibly through activation of AMPK and PPARα signaling.
Collapse
Affiliation(s)
- Hyoung Joon Park
- 1 Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University , Jinju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zeng L, Tan J, Lu W, Lu T, Hu Z. The potential role of small heat shock proteins in mitochondria. Cell Signal 2013; 25:2312-9. [PMID: 23917209 DOI: 10.1016/j.cellsig.2013.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 01/10/2023]
Abstract
Mitochondria play a central role in cellular metabolism, calcium homeostasis, redox signaling and cell fates. Mitochondrial homeostasis is tightly regulated, and mitochondrial dysfunction is frequently associated with severe human pathologies. Small heat shock proteins are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy. The mechanisms that lie behind the cytoprotection of small heat shock proteins are related to the regulation of mitochondrial functions. This review recapitulates the current knowledge of the expression of various small heat shock proteins in mitochondria and discusses their implication in the role of mitochondria and their regulation. Based on their involvement in mitochondrial normal physiology and pathology, a better understanding of their roles and regulation will pave the way for innovative approaches for the successful treatment of a range of stress-related syndromes whose etiology is based upon dysfunction of mitochondria.
Collapse
Affiliation(s)
- Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | | | | | | | | |
Collapse
|
12
|
Influence of Supercritical CO<sub>2</sub> Extraction of Schisandra Chinensis on Antioxidant Status, Carcass and Meat Quality of AA Broilers. J Poult Sci 2013. [DOI: 10.2141/jpsa.0110171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
|
13
|
Lee TH, Jung CH, Lee DH. Neuroprotective effects of Schisandrin B against transient focal cerebral ischemia in Sprague–Dawley rats. Food Chem Toxicol 2012; 50:4239-45. [DOI: 10.1016/j.fct.2012.08.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/06/2023]
|
14
|
Leong PK, Chen N, Ko KM. Mitochondrial decay in ageing: 'Qi-invigorating' schisandrin B as a hormetic agent for mitigating age-related diseases. Clin Exp Pharmacol Physiol 2012; 39:256-64. [PMID: 21895737 DOI: 10.1111/j.1440-1681.2011.05600.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
1. The mitochondrial free radical theory of ageing (MFRTA) proposes a primary role for mitochondrial reactive oxygen species (ROS) in the ageing process. The reductive hot spot hypothesis of mammalian ageing serves as a supplement to the MFRTA by explaining how the relatively few cells that have lost oxidative phosphorylation capacity due to mitochondrial DNA mutations can be toxic to the rest of the body and result in the development of age-related diseases. 2. Schisandrin B (SchB), which can induce both a glutathione anti-oxidant and a heat shock response via redox-sensitive signalling pathways, is a hormetic agent potentially useful for increasing the resistance of tissues to oxidative damage. The enhanced cellular/mitochondrial anti-oxidant status and heat shock response afforded by SchB can preserve the structural and functional integrity of mitochondria, suggesting a potential role for SchB in ameliorating age-related diseases. 3. Future studies will focus on investigating whether SchB can produce the hormetic response in humans.
Collapse
Affiliation(s)
- Pou K Leong
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
15
|
Schisandrin B exerts anti-neuroinflammatory activity by inhibiting the Toll-like receptor 4-dependent MyD88/IKK/NF-κB signaling pathway in lipopolysaccharide-induced microglia. Eur J Pharmacol 2012; 692:29-37. [PMID: 22698579 DOI: 10.1016/j.ejphar.2012.05.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2012] [Revised: 04/23/2012] [Accepted: 05/16/2012] [Indexed: 12/19/2022]
|
16
|
Schisandrin B as a hormetic agent for preventing age-related neurodegenerative diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:250825. [PMID: 22666518 PMCID: PMC3359732 DOI: 10.1155/2012/250825] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/10/2012] [Revised: 02/24/2012] [Accepted: 03/06/2012] [Indexed: 11/17/2022]
Abstract
Oxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of neurodegenerative diseases, with the latter preceding the appearance of clinical symptoms. The energy failure resulting from mitochondrial dysfunction further impedes brain function, which demands large amounts of energy. Schisandrin B (Sch B), an active ingredient isolated from Fructus Schisandrae, has been shown to afford generalized tissue protection against oxidative damage in various organs, including the brain, of experimental animals. Recent experimental findings have further demonstrated that Sch B can protect neuronal cells against oxidative challenge, presumably by functioning as a hormetic agent to sustain cellular redox homeostasis and mitoenergetic capacity in neuronal cells. The combined actions of Sch B offer a promising prospect for preventing or possibly delaying the onset of neurodegenerative diseases, as well as enhancing brain health.
Collapse
|
17
|
Lam PY, Ko KM. Beneficial effect of (-)schisandrin B against 3-nitropropionic acid-induced cell death in PC12 cells. Biofactors 2012; 38:219-25. [PMID: 22488872 DOI: 10.1002/biof.1009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/14/2011] [Accepted: 01/07/2012] [Indexed: 01/15/2023]
Abstract
Huntington's disease (HD) is characterized by the dysfunction of mitochondrial energy metabolism, which is associated with the functional impairment of succinate dehydrogenase (mitochondrial complex II), and pyruvate dehydrogenase (PDH). Treatment with 3-nitropropionic acid (3-NP), a potent irreversible inhibitor of succinate dehydrogenase, replicates most of the pathophysiological features of HD. In the present study, we investigated the effect of (-)schisandrin B [(-)Sch B, a potent enantiomer of schisandrin B] on 3-NP-induced cell injury in rat differentiated neuronal PC12 cells. The 3-NP caused cell necrosis, as assessed by lactate dehydrogenase (LDH) leakage, and mitochondrion-dependent cell apoptosis, as assessed by caspase-3 and caspase-9 activation, in differentiated PC12 cells. The cytotoxicity induced by 3-NP was associated with a depletion of cellular reduced glutathione (GSH) as well as the activation of redox-sensitive c-Jun N-terminal kinase (JNK) pathway and the inhibition of PDH. (-)Sch B pretreatment (5 and 15 μM) significantly reduced the extent of necrotic and apoptotic cell death in 3-NP-challenged cells. The cytoprotection afforded by (-)Sch B pretreatment was associated with the attenuation of 3-NP-induced GSH depletion as well as JNK activation and PDH inhibition. (-)Sch B pretreatment enhanced cellular glutathione redox status and ameliorated the 3-NP-induced cellular energy crisis, presumably by suppressing the activated JNK-mediated PDH inhibition, thereby protecting against necrotic and apoptotic cell death in differentiated PC12 cells.
Collapse
Affiliation(s)
- Philip Y Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | |
Collapse
|
18
|
Yan M, Mao S, Dong H, Liu B, Zhang Q, Pan G, Fu Z. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35. Neural Regen Res 2012; 7:652-8. [PMID: 25745458 PMCID: PMC4347003 DOI: 10.3969/j.issn.1673-5374.2012.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2011] [Accepted: 01/03/2012] [Indexed: 11/18/2022] Open
Abstract
PC12 cell injury was induced using 20 μM amyloid β-protein 25-35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25-35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25-35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein.
Collapse
Affiliation(s)
- Mingmin Yan
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shanping Mao
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Huimin Dong
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qian Zhang
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Gaofeng Pan
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhiping Fu
- Department of Neurology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
19
|
Cytochrome P450-catalysed reactive oxygen species production mediates the (−)schisandrin B-induced glutathione and heat shock responses in AML12 hepatocytes. Cell Biol Int 2012; 36:321-6. [DOI: 10.1042/cbi20090451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
|
20
|
Liu W, Xu Z, Yang H, Deng Y, Xu B, Wei Y. The protective effects of tea polyphenols and schisandrin B on nephrotoxicity of mercury. Biol Trace Elem Res 2011; 143:1651-65. [PMID: 21369715 DOI: 10.1007/s12011-011-8996-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/28/2010] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) is an occupational and environmental contaminant that is a well-recognized health hazard. To approach the concrete mechanisms of mercury nephrotoxicity and find out a new way to prevent it, the rats were subcutaneously injected with different dosages of mercuric chloride (HgCl(2))--0, 2.2, 4.4, and 8.8 μmol/kg. The levels of Hg, blood urea nitrogen (BUN), urine protein, glutathione (GSH), malondialdehyde (MDA) and activities of N-acetyl-beta-D-glucosaminidase (NAG), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were investigated, and the levels of reactive oxygen species (ROS) and apoptosis and the pathological changes were also observed. In addition, the effects of 1 mmol/kg tea polyphenols (TP) and 0.04 mmol/kg schisandrin B (Sch B) were studied at 8.8 μmol/kg HgCl(2). It was observed that the levels of Hg, BUN, urine protein, GSH, and MDA and activities of NAG, ALP, and LDH increased significantly; the activities of SOD and GSH-Px decreased significantly; the levels of ROS and apoptosis increased obviously; and many pathological changes occurred dose-dependently in the HgCl(2) injection groups. Further investigation indicated that pretreatment with TP and Sch B significantly reversed the toxic effects of HgCl(2). These results suggested that TP and Sch B might antagonize the nephrotoxicity caused by HgCl(2) exposure.
Collapse
Affiliation(s)
- Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110001, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Lam PY, Leong PK, Chen N, Ko KM. Schisandrin B enhances the glutathione redox cycling and protects against oxidant injury in different types of cultured cells. Biofactors 2011; 37:439-46. [PMID: 22034285 DOI: 10.1002/biof.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/03/2011] [Accepted: 06/02/2011] [Indexed: 11/10/2022]
Abstract
Tert-butylhydroperoxide (tBHP) challenge caused an initial depletion of cellular reduced glutathione (GSH), which was followed by a gradual restoration of cellular GSH in AML12, H9c2, and differentiated PC12 cells. The time-dependent changes in cellular GSH induced by tBHP were monitored as a measure of GSH recovery capacity (GRC), of which glutathione reductase (GR)-mediated glutathione redox cycling and γ-glutamate cysteine ligase (GCL)-mediated GSH synthesis were found to play an essential role. While glutathione redox cycling sustained the GSH level during the initial tBHP-induced depletion, GSH synthesis restores the GSH level thereafter. The effects of (-)schisandrin B [(-)Sch B] and its analogs (Sch A and Sch C) on GRC were also examined in the cells. (-)Sch B and Sch C, but not Sch A, ameliorated the extent of tBHP-induced GSH depletion, indicative of enhanced glutathione redox cycling. However, the degree of restoration of GSH post-tBHP challenge was not affected or even decreased. Pretreatment with (-)Sch B and Sch C, but not Sch A, protected against oxidant injury in the cells. The (-)Sch B afforded cytoprotection was abolished by N,N'-bis(chloroethyl)-N-nitrosourea pretreatment suggesting the enhancement of glutathione redox cycling is crucially involved in the cytoprotection afforded by (-)Sch B against oxidative stress-induced cell injury.
Collapse
Affiliation(s)
- Philip Y Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | |
Collapse
|
22
|
Different role of Schisandrin B on mercury-induced renal damage in vivo and in vitro. Toxicology 2011; 286:48-57. [DOI: 10.1016/j.tox.2011.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2011] [Revised: 04/18/2011] [Accepted: 05/09/2011] [Indexed: 11/23/2022]
|
23
|
Giridharan VV, Thandavarayan RA, Sato S, Ko KM, Konishi T. Prevention of scopolamine-induced memory deficits by schisandrin B, an antioxidant lignan from Schisandra chinensis in mice. Free Radic Res 2011; 45:950-8. [PMID: 21615274 DOI: 10.3109/10715762.2011.571682] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
Abstract
The preventive effect of schisandrin B (Sch B), an antioxidant ingredient of Schisandra chinensis, was studied on scopolamine-induced dementia in mouse. Scopolamine developed oxidative stress in the brain with the decreased levels of antioxidant enzymes and increased nitrite level. At the same time, a significant impairment of learning and memory occurred when evaluated by passive avoidance task (PAT) and Morris water maze (MWM) with concomitant increase of acetylcholinesterase (AChE) activity and decreased acetylcholine levels. Pre-treatment by Sch B (10, 25, 50 mg/kg) effectively prevented scopolamine-induced oxidative stress and improved behavioural tasks. Further, the scopolamine-induced increase in AChE activity was significantly suppressed and the level of acetylcholine was maintained as normal by Sch B treatment. These results suggest that Sch B have protective function against cerebral functional defects such as dementia not only by antioxidant prevention but also exerting its potent cognitive-enhancing activity through modulation of acetylcholine level.
Collapse
Affiliation(s)
- Vijayasree V Giridharan
- Department of Functional and Analytical Food Sciences, Niigata University of Pharmacy & Applied Life Sciences (NUPALS), Niigata city 956 8603, Japan
| | | | | | | | | |
Collapse
|
24
|
Lam PY, Ko KM. (-)Schisandrin B ameliorates paraquat-induced oxidative stress by suppressing glutathione depletion and enhancing glutathione recovery in differentiated PC12 cells. Biofactors 2011; 37:51-7. [PMID: 21328628 DOI: 10.1002/biof.136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/15/2010] [Accepted: 10/19/2010] [Indexed: 11/12/2022]
Abstract
Exposure to paraquat (PQ; N,N'-dimethyl-4-4'-bipyridium), a potent herbicide, can lead to neuronal cell death and increased risk of Parkinson's disease because of oxidative stress. In this study, we investigated the effect of (-)schisandrin B [(-)Sch B, a potent enantiomer of schisandrin B] on PQ-induced cell injury in differentiated pheochromocytoma cells (PC12). PQ treatment caused cell injury in PC12 cells, as indicated by the significant increase in lactate dehydrogenase (LDH) leakage. Pretreatment with (-)Sch B (5 μM) protected against PQ-induced toxicity in PC12 cells, as evidenced by the significant decrease in LDH leakage. (-)Sch B induced the cytochrome P-450-mediated reactive oxygen species generation in differentiated PC12 cells. The cytoprotection afforded by (-)Sch B pretreatment was associated with an increase in cellular reduced glutathione (GSH) level as well as the enhancement of γ-glutamylcysteine ligase (GCL) and glutathione reductase (GR) activity in PQ-challenged cells. Both GCL and GR inhibitors abrogated the cytoprotective effect of (-)Sch B in PQ-challenged cells. The biochemical mechanism underlying the GSH-enhancing effect of (-)Sch B was further investigated in PC12 cells subjected to an acute peroxide challenge. Although the initial GSH depletion induced by peroxide was reduced through GR-catalyzed regeneration of GSH in (-)Sch B-pretreated cells, the later enhanced GSH recovery was mainly mediated by GCL-catalyzed GSH synthesis. The results suggest that (-)Sch B treatment may increase the resistance of dopaminergic cells against PQ-induced oxidative stress through reducing the extent of oxidant-induced GSH depletion and enhancing the subsequent GSH recovery.
Collapse
Affiliation(s)
- Philip Y Lam
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | |
Collapse
|
25
|
Lam PY, Chiu PY, Leung HY, Chen N, Leong PK, Ko KM. Schisandrin B co-treatment ameliorates the impairment on mitochondrial antioxidant status in various tissues of long-term ethanol treated rats. Fitoterapia 2010; 81:1239-45. [DOI: 10.1016/j.fitote.2010.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
|
26
|
Leong PK, Chen N, Chiu PY, Leung HY, Ma CW, Tang QT, Ko KM. Long-term treatment with shengmai san-derived herbal supplement (Wei Kang Su) enhances antioxidant response in various tissues of rats with protection against carbon tetrachloride hepatotoxicity. J Med Food 2010; 13:427-38. [PMID: 20192847 DOI: 10.1089/jmf.2009.1296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023] Open
Abstract
Wei Kang Su (WKS) is a commercial herbal product based on a Chinese herbal formula, Shengmai San. Here, we investigated the effects of long-term treatment with WKS on mitochondrial antioxidant status and functional ability, as well as heat shock protein (Hsp) 25/70 production, in various tissues of rats. WKS treatment enhanced mitochondrial antioxidant status and ATP generation capacity, as well as Hsp 25/70 production in various rat tissues. WKS treatment suppressed plasma reactive oxygen metabolite levels and protected against carbon tetrachloride hepatotoxicity in rats. Long-term WKS treatment may prevent diseases by enhancing the resistance of mitochondria to oxidative stress.
Collapse
Affiliation(s)
- Pou Kuan Leong
- Department of Biochemistry, Hong Kong University of Science & Technology, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Panossian A, Wikman G. Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress-Protective Activity. Pharmaceuticals (Basel) 2010; 3:188-224. [PMID: 27713248 PMCID: PMC3991026 DOI: 10.3390/ph3010188] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2009] [Revised: 01/11/2010] [Accepted: 01/16/2010] [Indexed: 12/17/2022] Open
Abstract
Adaptogens were initially defined as substances that enhance the "state of nonspecific resistance" in stress, a physiological condition that is linked with various disorders of the neuroendocrine-immune system. Studies on animals and isolated neuronal cells have revealed that adaptogens exhibit neuroprotective, anti-fatigue, antidepressive, anxiolytic, nootropic and CNS stimulating activity. In addition, a number of clinical trials demonstrate that adaptogens exert an anti-fatigue effect that increases mental work capacity against a background of stress and fatigue, particularly in tolerance to mental exhaustion and enhanced attention. Indeed, recent pharmacological studies of a number of adaptogens have provided a rationale for these effects also at the molecular level. It was discovered that the stress-protective activity of adaptogens was associated with regulation of homeostasis via several mechanisms of action, which was linked with the hypothalamic-pituitary-adrenal axis and the regulation of key mediators of stress response, such as molecular chaperons (e.g., HSP70), stress-activated c-Jun N-terminal protein kinase 1 (JNK1), Forkhead box O (FOXO) transcription factor DAF-16, cortisol and nitric oxide.
Collapse
Affiliation(s)
- Alexander Panossian
- Swedish Herbal Institute Research & Development, Spårvägen 2, SE-432 96 Åskloster, Sweden.
| | - Georg Wikman
- Swedish Herbal Institute Research & Development, Spårvägen 2, SE-432 96 Åskloster, Sweden
| |
Collapse
|
28
|
Stacchiotti A, Li Volti G, Lavazza A, Rezzani R, Rodella LF. Schisandrin B stimulates a cytoprotective response in rat liver exposed to mercuric chloride. Food Chem Toxicol 2009; 47:2834-40. [DOI: 10.1016/j.fct.2009.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2009] [Revised: 08/21/2009] [Accepted: 09/03/2009] [Indexed: 11/29/2022]
|
29
|
Chen N, Chiu PY, Ko KM. Schisandrin B enhances cerebral mitochondrial antioxidant status and structural integrity, and protects against cerebral ischemia/reperfusion injury in rats. Biol Pharm Bull 2008; 31:1387-91. [PMID: 18591780 DOI: 10.1248/bpb.31.1387] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to enhance mitochondrial antioxidant status in liver, heart and brain tissues in rodents. Whether or not long-term Sch B treatment can protect against oxidative stress-induced cerebral damage remains unclear. In the present study, the effect of long-term Sch B treatment (1-30 mg/kg/dx15) on cerebral ischemia/reperfusion (I/R) injury was examined in rats. Sch B treatment protected against I/R-induced cerebral damage, as evidenced by the significant increase in the percentage of 2,3,5-triphenyl tetrazolium chloride (TTC)-stained tissues in representative brain slices, when compared with the Sch B-untreated and I/R control. The cerebroprotection was associated with an enhancement in cerebral mitochondrial antioxidant status, as assessed by the level/activity of reduced glutathione, alpha-tocopherol and Mn-superoxide dismutase, as well as the improvement/preservation of mitochondrial structural integrity, as assessed by the extents of malondialdehyde production, Ca(2+) loading and cytochrome c release, as well as the sensitivity to Ca(2+)-induced permeability transition, in control and I/R-challenged rats. In conclusion, long-term Sch B treatment could enhance cerebral mitochondrial antioxidant status as well as improve mitochondrial structural integrity, thereby protecting against I/R injury.
Collapse
Affiliation(s)
- Na Chen
- Department of Biochemistry, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | | | | |
Collapse
|
30
|
Chiu PY, Leung HY, Ko KM. Schisandrin B Enhances Renal Mitochondrial Antioxidant Status, Functional and Structural Integrity, and Protects against Gentamicin-Induced Nephrotoxicity in Rats. Biol Pharm Bull 2008; 31:602-5. [PMID: 18379049 DOI: 10.1248/bpb.31.602] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against oxidative damage in liver, heart and brain tissues in rodents. In the present study, the effect of long-term Sch B treatment (1-10 mg/kg/d x 15) on gentamicin-induced nephrotoxicity was examined in rats. Sch B treatment protected against gentamicin-induced nephrotoxicity, as evidenced by significant decreases in plasma creatinine and blood urea nitrogen levels. The nephroprotection was associated with the enhancement in renal mitochondrial antioxidant status, as assessed by the level/activity of reduced glutathione, alpha-tocopherol and Mn-superoxide dismutase, as well as the improvement/preservation of mitochondrial functional and structural integrity, as assessed by the extents of ATP generation capacity, malondialdehyde production, Ca2+ loading and cytochrome c release, as well as the sensitivity to Ca2+-induced permeability transition, in control and gentamicin-intoxicated rats. In conclusion, long-term Sch B treatment could enhance renal mitochondrial antioxidant status as well as improve mitochondrial functional and structural integrity, thereby protecting against gentamicin nephrotoxicity.
Collapse
Affiliation(s)
- Po Yee Chiu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | |
Collapse
|
31
|
Chiu PY, Leung HY, Ling Siu AH, Chen N, Poon MK, Ko KM. Long-Term Treatment with a Yang-Invigorating Chinese Herbal Formula Produces Generalized Tissue Protection Against Oxidative Damage in Rats. Rejuvenation Res 2008; 11:43-62. [DOI: 10.1089/rej.2007.0577] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Po Yee Chiu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Hoi Yan Leung
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ada Hoi Ling Siu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Na Chen
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Michel K.T. Poon
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Kam Ming Ko
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
32
|
Larbi A, Kempf J, Wistuba-Hamprecht K, Haug C, Pawelec G. The heat shock proteins in cellular aging: is zinc the missing link? Biogerontology 2007; 7:399-408. [PMID: 17048072 DOI: 10.1007/s10522-006-9055-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022]
Abstract
T-cell functions are critical for the efficiency of the adaptive immune response. It is now clear that aging is associated with changes in the T-cell response to antigenic stimulation, one of the many changes collectively resulting in immune senescence. Several hypotheses have been proposed to explain such changes. We believe that chronic stimulation of T-cells enhances the appearance of apoptosis-resistant anergic dysfunctional cells; in humans in vivo these are predominantly specific for antigens of persistent viruses, especially CMV. Concomitantly, age-associated zinc deficiency is common and one hypothesis is that lack of zinc bioavailability contributes to impaired T-cell function. This could further compromise the integrity of T-cells under chronic antigenic stress, which can be modelled in long-term clonal cultures in vitro. Newly synthesized heat-shock proteins (HSPs) protect the cellular proteins from degradation under such conditions. In this short review we will briefly outline the role of heat-shock proteins and zinc deficiency in aging in order to finally discuss our own results in the context of a link between HSPs, aging and zinc.
Collapse
Affiliation(s)
- Anis Larbi
- Center for Medical Research, Tüebingen Aging and Tumor Immunology group, University of Tüebingen, Waldhornlestrasse 22, 72072, Tüebingen, Germany.
| | | | | | | | | |
Collapse
|
33
|
Rumora L, Lovrić J, Sairam MR, Maysinger D. Impairments of heat shock protein expression and MAPK translocation in the central nervous system of follitropin receptor knockout mice. Exp Gerontol 2007; 42:619-28. [PMID: 17470386 DOI: 10.1016/j.exger.2007.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2006] [Revised: 02/20/2007] [Accepted: 03/06/2007] [Indexed: 11/16/2022]
Abstract
The central nervous system is exposed to the chronic oxidative stress during aging when the endogenous defence weakens and the load of reactive oxygen species enhances. Sex hormones and heat shock proteins (Hsps) participate in these responses to stress. Their regulation is disturbed in aging. We assessed the expression of Hsps in hippocampus and cortex of follitropin receptor knockout (FORKO) mice, known to exhibit gender and age-dependent imbalance in sex steroids and gonadotropins. These imbalances could contribute to an impaired regulation of Hsps thereby increasing the risk of developing neurodegenerative disorders. Our study shows that, in the hippocampus the expression of Hsp70 and Hsp25 was reduced in 20-month-old FORKO mice. However, in the cortex both Hsps were significantly down regulated only in elderly females. There is a well-established co-regulation between Hsps and mitogen-activated protein kinases (MAPKs). Significant, gender-specific impairments in the translocation of phosphorylated ERK and JNK were found in the CNS structures in aged FORKO mice. Our results suggest that hormonal imbalances lead to a disturbed subcellular distribution of activated MAPKs which contribute to the impairments of signal transduction networks maintaining normal physiological functions in the cortex and hippocampus that are associated with neurodegenerative changes in aging.
Collapse
Affiliation(s)
- Lada Rumora
- Department of Medical Biochemistry and Haematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, Zagreb, Croatia
| | | | | | | |
Collapse
|
34
|
Chiu PY, Leung HY, Siu AHL, Poon MKT, Ko KM. Schisandrin B Decreases the Sensitivity of Mitochondria to Calcium Ion-Induced Permeability Transition and Protects against Carbon Tetrachloride Toxicity in Mouse Livers. Biol Pharm Bull 2007; 30:1108-12. [PMID: 17541162 DOI: 10.1248/bpb.30.1108] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against carbon tetrachloride (CCl4) hepatotoxicity in mice. In order to elucidate the molecular mechanism underlying the hepatoprotection afforded by Sch B, the effect of Sch B treatment on the sensitivity of mitochondria to Ca2+-stimulated permeability transition (PT) was investigated in mouse livers under normal and CCl4-intoxicated conditions. CCl4 hepatotoxicity caused an increase in the sensitivity of mitochondria to Ca2+-stimulated PT in vitro. The enhanced sensitivity to mitochondrial PT was associated with increases in mitochondrial Ca2+ content as well as the extent of reactive oxidant species (ROS) production and cytochrome c release. The hepatoprotection afforded by Sch B pretreatment against CCl4 toxicity was paralleled by the decrease in the sensitivity of hepatic mitochondria to Ca2+-stimulated PT as well as the attenuations of mitochondrial Ca2+ loading, ROS production and cytochrome c release under CCl4-intoxicated condition. In conclusion, the results suggest that the hepatoprotection afforded by Sch B pretreatment against CCl4 toxicity may be related to the increase in the resistance of hepatic mitochondria to Ca2+-stimulated PT.
Collapse
Affiliation(s)
- Po Yee Chiu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|