1
|
Lee HY, Min KJ. Dietary Restriction and Lipid Metabolism: Unveiling Pathways to Extended Healthspan. Nutrients 2024; 16:4424. [PMID: 39771045 PMCID: PMC11678862 DOI: 10.3390/nu16244424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Dietary restriction (DR) has been reported to be a significant intervention that influences lipid metabolism and potentially modulates the aging process in a wide range of organisms. Lipid metabolism plays a pivotal role in the regulation of aging and longevity. In this review, we summarize studies on the significant role of lipid metabolism in aging in relation to DR. As a potent intervention to slow down aging, DR has demonstrated promising effects on lipid metabolism, influencing the aging processes across various species. The current review focuses on the relationships among DR-related molecular signaling proteins such as the sirtuins, signaling pathways such as the target of rapamycin and the insulin/insulin-like growth factor (IGF)-1, lipid metabolism, and aging. Furthermore, the review presents research results on diet-associated changes in cell membrane lipids and alterations in lipid metabolism caused by commensal bacteria, highlighting the importance of lipid metabolism in aging. Overall, the review explores the interplay between diet, lipid metabolism, and aging, while presenting untapped areas for further understanding of the aging process.
Collapse
Affiliation(s)
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea;
| |
Collapse
|
2
|
Lee HY, Min KJ. Betulinic Acid Increases the Lifespan of Drosophila melanogaster via Sir2 and FoxO Activation. Nutrients 2024; 16:441. [PMID: 38337725 PMCID: PMC10856809 DOI: 10.3390/nu16030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Betulinic acid (BetA), a triterpenoid derivative found abundantly in the plant kingdom, has emerged as a promising candidate for promoting longevity. Many research studies have shown its antioxidant, anti-inflammatory, antiviral, and anticancer activities, making it an interesting subject for investigating its potential influence on lifespan. This study aimed to investigate the effects of BetA on longevity and the mechanisms associated with it using the fruit fly Drosophila melanogaster as the organism model. The results showed that 50 μM BetA supplementation extended the mean lifespan of fruit flies by 13% in males and 6% in females without any adverse effects on their physiology, such as fecundity, feeding rate, or locomotion ability reduction. However, 50 μM BetA supplementation failed to increase the lifespan in mutants lacking functional silent information regulator 2 (Sir2) and Forkhead box O (FoxO)-null, implying that the longevity effect of BetA is related to Sir2 and FoxO activation. Our study contributes to the knowledge in the field of anti-aging research and inspires further investigations into natural compounds such as BetA to enhance organismal healthspan.
Collapse
Affiliation(s)
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea;
| |
Collapse
|
3
|
Calabrese EJ, Nascarella M, Pressman P, Hayes AW, Dhawan G, Kapoor R, Calabrese V, Agathokleous E. Hormesis determines lifespan. Ageing Res Rev 2024; 94:102181. [PMID: 38182079 DOI: 10.1016/j.arr.2023.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
This paper addresses how long lifespan can be extended via multiple interventions, such as dietary supplements [e.g., curcumin, resveratrol, sulforaphane, complex phytochemical mixtures (e.g., Moringa, Rhodiola)], pharmaceutical agents (e.g., metformin), caloric restriction, intermittent fasting, exercise and other activities. This evaluation was framed within the context of hormesis, a biphasic dose response with specific quantitative features describing the limits of biological/phenotypic plasticity for integrative biological endpoints (e.g., cell proliferation, memory, fecundity, growth, tissue repair, stem cell population expansion/differentiation, longevity). Evaluation of several hundred lifespan extending agents using yeast, nematode (Caenorhabditis elegans), multiple insect and other invertebrate and vertebrate models (e.g., fish, rodents), revealed they responded in a manner [average (mean/median) and maximum lifespans] consistent with the quantitative features [i.e., 30-60% greater at maximum (Hormesis Rule)] of the hormetic dose response. These lifespan extension features were independent of biological model, inducing agent, endpoints measured and mechanism. These findings indicate that hormesis describes the capacity to extend life via numerous agents and activities and that the magnitude of lifespan extension is modest, in the percentage, not fold, range. These findings have important implications for human aging, genetic diseases/environmental stresses and lifespan extension, as well as public health practices and long-term societal resource planning.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; University of Massachusetts, Morrill I - Room N344, Amherst, MA 01003, USA.
| | - Marc Nascarella
- Mass College of Pharmacy and Health Sciences University; School of Arts and Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health; University of South Florida, Tampa, FL, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China
| |
Collapse
|
4
|
Zhong M, Sun C, Zhou B. Anti-Mitochondrial and Insecticidal Effects of Artemisinin against Drosophila melanogaster. Int J Mol Sci 2023; 24:ijms24086912. [PMID: 37108079 PMCID: PMC10138759 DOI: 10.3390/ijms24086912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Artemisinin (ART) is an endoperoxide molecule derived from the medicinal plant Artemisia annua L. and is clinically used as an antimalarial drug. As a secondary metabolite, the benefit of ART production to the host plant and the possible associated mechanism are not understood. It has previously been reported that Artemisia annua L. extract or ART can inhibit both insect feeding behaviors and growth; however, it is not known whether these effects are independent of each other, i.e., if growth inhibition is a direct outcome of the drug's antifeeding activity. Using the lab model organism Drosophila melanogaster, we demonstrated that ART repels the feeding of larvae. Nevertheless, feeding inhibition was insufficient to explain its toxicity on fly larval growth. We revealed that ART provoked a strong and instant depolarization when applied to isolated mitochondria from Drosophila while exerting little effect on mitochondria isolated from mice tissues. Thus, ART benefits its host plant through two distinct activities on the insect: a feeding-repelling action and a potent anti-mitochondrial action which may underlie its insect inhibitory activities.
Collapse
Affiliation(s)
- Mengjiao Zhong
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chen Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bing Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
5
|
Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans. Nutrients 2022; 14:nu14194199. [PMID: 36235851 PMCID: PMC9570774 DOI: 10.3390/nu14194199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, both extracts improved the resistance towards oxidative stress, and decreased the intracellular level of reactive oxygen species. Chemical analyses of the extracts revealed the presence of several bioactive compounds such as chlorogenic acid, cinnamic acid, and quercetin. A fraction from the C. chinensis extract enriched in zingibroside R1 improved the lifespan, the survival after heat stress, and the locomotion in a manner similar to the full C. chinensis extract. Thus, zingibroside R1 could be (partly) responsible for the observed health benefits of C. chinensis. Furthermore, a hydroxygallic acid derivative and the sterol lipid 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol are abundantly present in the C. chinensis extract and its most bioactive fraction, but hardly in E. ulmoides, making them good candidates to explain the overall healthspan benefits of C. chinensis compared to the specific positive effects on stress resistance by E. ulmoides. Our findings highlight the overall anti-aging effects of C. chinensis in C. elegans and provide first hints about the components responsible for these effects.
Collapse
|
6
|
Pterostilbene Promotes Mean Lifespan in Both Male and Female Drosophila Melanogaster Modulating Different Proteins in the Two Sexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1744408. [PMID: 35222791 PMCID: PMC8865974 DOI: 10.1155/2022/1744408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Aging is a multifactorial phenomenon characterized by degenerative processes closely connected to oxidative damage and chronic inflammation. Recently, many studies have shown that natural bioactive compounds are useful in delaying the aging process. In this work, we studied the effects of an in vivo supplementation of the stilbenoid pterostilbene on lifespan extension in Drosophila melanogaster. We found that the average lifespan of flies of both sexes was increased by pterostilbene supplementation with a higher effect in females. The expression of longevity related genes (Sir2, Foxo, and Notch) was increased in both sexes but with different patterns. Pterostilbene counteracted oxidative stress induced by ethanol and paraquat and up-regulated the antioxidant enzymes Ho e Trxr-1 in male but not in female flies. On the other hand, pterostilbene decreased the inflammatory mediators dome and egr only in female flies. Proteomic analysis revealed that pterostilbene modulates 113 proteins in male flies and only 9 in females. Only one of these proteins was modulated by pterostilbene in both sexes: vacuolar H[+] ATPase 68 kDa subunit 2 (Vha68-2) that was strongly down-regulated. These findings suggest a potential role of pterostilbene in increasing lifespan both in male and female flies by mechanisms that seem to be different in the two sexes, highlighting the need to conduct nutraceutical supplementation studies on males and females separately in order to give more reliable results.
Collapse
|
7
|
Lee SH, Lee HY, Min KJ. Korean mistletoe (Viscum album var. coloratum) extends the lifespan via FOXO activation induced by dSir2 in Drosophila melanogaster. Geriatr Gerontol Int 2021; 21:725-731. [PMID: 34101322 DOI: 10.1111/ggi.14204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
AIM We examined the underlying mechanisms associated with the longevity effects of Korean mistletoe extract (KME) in Drosophila melanogaster. METHODS We measured the lifespan of sirtuin, chico and foxo mutant flies fed KME, the expression of the forkhead box O (FOXO) target genes and insulin-like peptide genes, and the localization of FOXO in flies fed the KME. RESULTS The longevity effect of KME was abolished in sirtuin, chico and foxo null mutant flies. In addition, the expression of FOXO target genes and the localization of FOXO into nuclei were increased in flies fed KME, but the expression of the insulin-like peptide genes was decreased by KME supplementation. CONCLUSIONS The results show that KME extends the fly lifespan through sirtuin-induced FOXO activation. We suggest that KME has potential use as a beneficial anti-aging and longevity supplement. Geriatr Gerontol Int 2021; 21: 725-731.
Collapse
Affiliation(s)
- Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Hye-Yeon Lee
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, South Korea
| |
Collapse
|
8
|
Ajagun-Ogunleye MO, Ebuehi OAT. Evaluation of the anti-aging and antioxidant action of Ananas sativa and Moringa oleifera in a fruit fly model organism. J Food Biochem 2020; 44:e13426. [PMID: 32875591 DOI: 10.1111/jfbc.13426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/16/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
Abstract
aging is an inevitable biological complex process. It involves the gradual loss of cellular vitality due to accumulative damage to cellular macromolecules by reactive oxygen species (ROS). These ROS are highly implicated in health, disease, and lifespan. The biochemical pathways involved in the aging process are highly influenced by both exogenous (environmental factors) and endogenous stress factors. These cellular processes are the same in most organisms including the fruit fly, nematode, yeast, mammalian cell line, and rodents. These model organisms have been extensively used in the screening of potent antioxidant botanicals for anti-aging bioactivity. Moringa oleifera and Ananas sativa are great sources of health-promoting nutrients and antioxidants, however, their anti-aging impact is still an evolving area of research interest. Therefore, this review focused on their anti-aging mode of action and some other anti-aging nutriceuticals in different model organisms including the fruit fly. PRACTICAL APPLICATIONS: Staying forever young and healthy is everyone's right. Aside from genetic trait, healthy feeding is peculiar to the world's longest-living people. Ananas sativa (pineapple) and Moringa oleifera leaves are highly valued fruit and herb with nourishing, antioxidant, and medicinal properties. Their extract exhibit antioxidant, anticancer, anti-inflammatory, and anti-aging activities. The ancient Greeks, Egyptians, and Romans used Moringa seed oil for cosmetics and perfumes. Moringa tea leaves is consumed for its nutritive and medicinal value. Its antioxidant potency endorses its use for anti-aging and other health-promoting purposes. The bioactive compound in pineapple, bromelain, promotes wound healing and it is a component of postsurgical applications due to its anti-inflammatory property. Consumption of Ananas fruit provides the recommended daily allowance of vitamin C, a potent antioxidant. To identify new anti-aging bioactive compounds of therapeutic importance, and understanding the mode of action of these nutriceuticals will contribute to new anti-aging research prospects.
Collapse
Affiliation(s)
- Mulkah Olufemi Ajagun-Ogunleye
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University Western Campus, Ishaka, Uganda.,Institute of Biomedical Research, Kampala International University Western Campus, Ishaka, Uganda
| | | |
Collapse
|
9
|
Martel J, Wu CY, Peng HH, Ko YF, Yang HC, Young JD, Ojcius DM. Plant and fungal products that extend lifespan in Caenorhabditis elegans. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:255-269. [PMID: 33015140 PMCID: PMC7517010 DOI: 10.15698/mic2020.10.731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
The nematode Caenorhabditis elegans is a useful model to study aging due to its short lifespan, ease of manipulation, and available genetic tools. Several molecules and extracts derived from plants and fungi extend the lifespan of C. elegans by modulating aging-related pathways that are conserved in more complex organisms. Modulation of aging pathways leads to activation of autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes in a manner similar to caloric restriction. Low and moderate concentrations of plant and fungal molecules usually extend lifespan, while high concentrations are detrimental, consistent with a lifespan-modulating mechanism involving hormesis. We review here molecules and extracts derived from plants and fungi that extend the lifespan of C. elegans, and explore the possibility that these natural substances may produce health benefits in humans.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - John D. Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA
| |
Collapse
|
10
|
Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030947] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plants and their corresponding botanical preparations have been used for centuries due to their remarkable potential in both the treatment and prevention of oxidative stress-related disorders. Aging and aging-related diseases, like cardiovascular disease, cancer, diabetes, and neurodegenerative disorders, which have increased exponentially, are intrinsically related with redox imbalance and oxidative stress. Hundreds of biologically active constituents are present in each whole plant matrix, providing promissory bioactive effects for human beings. Indeed, the worldwide population has devoted increased attention and preference for the use of medicinal plants for healthy aging and longevity promotion. In fact, plant-derived bioactives present a broad spectrum of biological effects, and their antioxidant, anti-inflammatory, and, more recently, anti-aging effects, are considered to be a hot topic among the medical and scientific communities. Nonetheless, despite the numerous biological effects, it should not be forgotten that some bioactive molecules are prone to oxidation and can even exert pro-oxidant effects. In this sense, the objective of the present review is to provide a detailed overview of plant-derived bioactives in age-related disorders. Specifically, the role of phytochemicals as antioxidants and pro-oxidant agents is carefully addressed, as is their therapeutic relevance in longevity, aging-related disorders, and healthy-aging promotion. Finally, an eye-opening look into the overall evidence of plant compounds related to longevity is presented.
Collapse
|
11
|
Kharat P, Sarkar P, Mouliganesh S, Tiwary V, Priya VBR, Sree NY, Annapoorna HV, Saikia DK, Mahanta K, Thirumurugan K. Ellagic acid prolongs the lifespan of Drosophila melanogaster. GeroScience 2019; 42:271-285. [PMID: 31786733 DOI: 10.1007/s11357-019-00135-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Wild-type Canton-S flies of Drosophila melanogaster were treated with ellagic acid at 100 μM and 200 μM concentrations. Longevity assay showed male flies fed with 200 μM ellagic acid displayed longer mean lifespan and maximum lifespan than control flies. Female flies fed with 200 μM ellagic acid laid less number of eggs than control. The eclosion time was less in female flies fed with 200 μM ellagic acid. Ellagic acid fed female flies performed better than male flies and control flies for heat shock tolerance and starvation stress. Male flies treated with 100 μM ellagic acid recovered faster from cold shock compared with control flies. Male and female flies treated with ellagic acid displayed increased survival following exposure to 5% hydrogen peroxide. Gene expression studies displayed upregulated expressions of CAT, dFOXO, ATG1, and SOD2 in ellagic acid-treated male flies, and upregulated expressions of dFOXO, CAT, and SOD2 in ellagic acid-treated female flies. Results from these studies show the pro-longevity effect of ellagic acid on Drosophila melanogaster.
Collapse
Affiliation(s)
- Priyanka Kharat
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Priyanka Sarkar
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - S Mouliganesh
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Vaibhav Tiwary
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - V B Ramya Priya
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - N Yamini Sree
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - H Vinu Annapoorna
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Diganta K Saikia
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Kaustav Mahanta
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Kavitha Thirumurugan
- 206, Structural Biology Laboratory, Centre for Biomedical Research, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
12
|
Lee SH, Lee HY, Yu M, Yeom E, Lee JH, Yoon A, Lee KS, Min KJ. Extension of Drosophila lifespan by Korean red ginseng through a mechanism dependent on dSir2 and insulin/IGF-1 signaling. Aging (Albany NY) 2019; 11:9369-9387. [PMID: 31672931 PMCID: PMC6874434 DOI: 10.18632/aging.102387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022]
Abstract
Many studies have indicated that Korean red ginseng (KRG) has anti-inflammatory and anti-oxidative effects, thereby inducing many health benefits in humans. Studies into the longevity effects of KRG are limited and have provided contradictory results, and the molecular mechanism of lifespan extension by KRG is not elucidated yet. Herein, the longevity effect of KRG was investigated in Drosophila melanogaster by feeding KRG extracts, and the molecular mechanism of lifespan extension was elucidated by using longevity-related mutant flies. KRG extended the lifespan of Drosophila when administrated at 10 and 25 μg/mL, and the longevity benefit of KRG was not due to reduced feeding, reproduction, and/or climbing ability in fruit flies, indicating that the longevity benefit of KRG is a direct effect of KRG, not of a secondary artifact. Diet supplementation with KRG increased the lifespan of flies on a full-fed diet but not of those on a restricted diet, and the longevity effect of KRG was diminished by the mutation of dSir2, a deacetylase known to mediate the benefits of dietary restriction. Similarly, the longevity effect of KRG was mediated by the reduction of insulin/IGF-1 signaling. In conclusion, KRG extends the lifespan of Drosophila through Sir2 and insulin/IGF-1 signaling and has potential as an anti-aging dietary-restriction mimetic and prolongevity supplement.
Collapse
Affiliation(s)
- Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Hye-Yeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Mira Yu
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Eunbyul Yeom
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon 34141, Korea
| | - Ji-Hyeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Ah Yoon
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, KRIBB, Daejeon 34141, Korea.,Department of Functional Genomics, UST, Daejeon 34141, Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| |
Collapse
|
13
|
Shen S, Yu H, Gan L, Ye Y, Lin L. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct 2019; 10:6967-6986. [PMID: 31599912 DOI: 10.1039/c9fo00912d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle wasting is highly correlated with not only reduced quality of life but also higher morbidity and mortality. Although an increasing number of patients are suffering from various kinds of muscle atrophy and weakness, there is still no effective therapy available, and skeletal muscle is considered as an under-medicated organ. Food provided not only essential macronutrients but also functional substances involved in the modulation of the physiological systems of our body. Natural constituents from commonly consumed dietary plants, either extracts or compounds, have attracted more and more attention to be developed as agents for preventing and treating muscle wasting due to their safety and effectiveness, as well as structural diversity. This review provides an overview of the mechanistic aspects of muscle wasting, and summarizes the extracts and compounds from food sources as potential therapeutic agents against muscle wasting.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
14
|
Lee SH, Min KJ. Drosophila melanogaster as a model system in the study of pharmacological interventions in aging. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Chattopadhyay D, Thirumurugan K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech Ageing Dev 2018. [PMID: 29526449 DOI: 10.1016/j.mad.2018.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Past investigations have shown that various plant extracts are capable of promoting longevity in lower model organisms like Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae, Bombyx mori etc. Longevity studies on such organisms provide a foundation to explore anti-aging efficacies of such plant extracts in higher organisms. Plant extracts of acai palm, apple, asparagus, blueberry, cinnamon, cocoa, Damnacanthus, maize, milk thistle, mistletoe, peach, pomegranate, Rhodiola, rose, Sasa, turmeric, and Withania have extended lifespan in lower model organisms via diverse mechanisms like insulin like growth factor (IGF) signaling pathway, and antioxidant defense mechanisms. Knowledge of pathways altered by the extracts can be investigated as potential drug-targets for natural anti-aging interventions. Thus, the aim of the review is to scrutinize longevity promoting efficacies of various plant extracts in lower model organisms.
Collapse
Affiliation(s)
- Debarati Chattopadhyay
- 206, Structural Biology Lab, Centre for Biomedical Research, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- 206, Structural Biology Lab, Centre for Biomedical Research, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
16
|
Ding AJ, Zheng SQ, Huang XB, Xing TK, Wu GS, Sun HY, Qi SH, Luo HR. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:335-404. [PMID: 28567542 PMCID: PMC5655361 DOI: 10.1007/s13659-017-0135-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
Aging is a process characterized by accumulating degenerative damages, resulting in the death of an organism ultimately. The main goal of aging research is to develop therapies that delay age-related diseases in human. Since signaling pathways in aging of Caenorhabditis elegans (C. elegans), fruit flies and mice are evolutionarily conserved, compounds extending lifespan of them by intervening pathways of aging may be useful in treating age-related diseases in human. Natural products have special resource advantage and with few side effect. Recently, many compounds or extracts from natural products slowing aging and extending lifespan have been reported. Here we summarized these compounds or extracts and their mechanisms in increasing longevity of C. elegans or other species, and the prospect in developing anti-aging medicine from natural products.
Collapse
Affiliation(s)
- Ai-Jun Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shan-Qing Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao-Bing Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ti-Kun Xing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hua-Ying Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shu-Hua Qi
- Guangdong Key Laboratory of Marine Material Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, Guangdong, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 134 Lanhei Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|
17
|
Hormetic efficacy of rutin to promote longevity in Drosophila melanogaster. Biogerontology 2017; 18:397-411. [PMID: 28389882 DOI: 10.1007/s10522-017-9700-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Hormetins are compounds that mediate hormesis by being beneficial at low doses but detrimental at high doses. Recent studies have highlighted that many compounds that extended lifespan in model organisms did so by mediating hormesis. Rutin is a glycosylate conjugate of quercetin and rutinose and is abundant in citrus fruits and buckwheat seeds. Rutin possess ROS scavenging, anti-cancer, cardio-protective, skin-regenerative and neuro-protective properties. Drosophila melanogaster is an attractive model organism for longevity studies owing to its homology of organ and cellular-pathways with mammals. In this study, we aimed to understand the effect of rutin on extending longevity in Drosophila melanogaster. Male and female flies were administered with a range of rutin doses (100-800 µM) to analyse whether rutin mediated lifespan-extension by hormesis. Effect of rutin on physiological parameters like food intake, fecundity, climbing activity, development and resistance to various stresses was also studied. Lifespan assays showed that rutin at 200 and 400 µM significantly extended median lifespan in both male and female flies beyond which flies exhibited drastically reduced longevity. Increase in survival at 400 µM was associated with reduced food intake and fecundity. Flies exhibited improved climbing capability with both 200 and 400 µM rutin. Flies fed with 100 and 200 µM rutin exhibited enhanced survival upon exposure to oxidative stress with 400 µM rutin exhibiting no improvement in median lifespan following oxidative stress. Analysis of endogenous peroxide upon treatment with rutin (100-400 µM) with or without 5% H2O2 showed elevated levels of endogenous peroxide with 400 µM rutin whereas no increase in hydrogen peroxide level was observed with rutin at 100 and 200 µM. Finally, gene expression studies in male flies revealed that rutin treatment at 200 and/or 400 µM elevated transcript levels of dFoxO, MnSod, Cat, dTsc1, dTsc2, Thor, dAtg1, dAtg5 and dAtg7 and reduced transcript levels of dTor. Collectively, rutin at 200 and 400 µM improved longevity in flies; 200 µM rutin acted as a mild stressor to prolong lifespan in flies by mediating hormesis whereas 400 µM, being a high dose for best positive effects.
Collapse
|
18
|
Jeong J, Park CH, Kim I, Kim YH, Yoon JM, Kim KS, Kim JB. Korean mistletoe (Viscum album coloratum) extract regulates gene expression related to muscle atrophy and muscle hypertrophy. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:68. [PMID: 28109285 PMCID: PMC5251312 DOI: 10.1186/s12906-017-1575-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 01/11/2017] [Indexed: 02/05/2023]
Abstract
Background Korean mistletoe (Viscum album coloratum) is a semi-parasitic plant that grows on various trees and has a diverse range of effects on biological functions, being implicated in having anti-tumor, immunostimulatory, anti-diabetic, and anti-obesity properties. Recently, we also reported that Korean mistletoe extract (KME) improves endurance exercise in mice, suggesting its beneficial roles in enhancing the capacity of skeletal muscle. Methods We examined the expression pattern of several genes concerned with muscle physiology in C2C12 myotubes cells to identify whether KME inhibits muscle atrophy or promotes muscle hypertrophy. We also investigated these effects of KME in denervated mice model. Results Interestingly, KME induced the mRNA expression of SREBP-1c, PGC-1α, and GLUT4, known positive regulators of muscle hypertrophy, in C2C12 cells. On the contrary, KME reduced the expression of Atrogin-1, which is directly involved in the induction of muscle atrophy. In animal models, KME mitigated the decrease of muscle weight in denervated mice. The expression of Atrogin-1 was also diminished in those mice. Moreover, KME enhanced the grip strength and muscle weight in long-term feeding mice. Conclusions Our results suggest that KME has beneficial effects on muscle atrophy and muscle hypertrophy.
Collapse
|
19
|
Chattopadhyay D, James J, Roy D, Sen S, Chatterjee R, Thirumurugan K. Effect of semolina-jaggery diet on survival and development of Drosophila melanogaster. Fly (Austin) 2016; 9:16-21. [PMID: 26252611 DOI: 10.1080/19336934.2015.1079361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Drosophila melanogaster is an ideal model organism for developmental studies. This study tests the potential of semolina-jaggery (SJ) diet as a new formulation for bulk rearing of flies. Semolina and jaggery are organic products obtained from wheat endosperm and cane sugar, respectively. Semolina is a rich source of carbohydrates and protein. Jaggery has a high content of dietary sugars. Moreover, preparation of semolina jaggery diet is cost-effective and easy. Thus, the current study aimed to compare survival and developmental parameters of flies fed the SJ diet to flies fed the standard cornmeal-sugar-yeast (CSY) diet. SJ diet enhanced survival of flies without affecting fecundity; male flies showed increased resistance to starvation. A higher number of flies emerged at F2 and F3 generation when fed the SJ diet than when fed the control CSY diet. SJ diet did not increase fly body weight and lipid percentage. Therefore, SJ diet can be used for bulk rearing of healthy flies at par with the standard cornmeal-sugar-yeast diet.
Collapse
Affiliation(s)
- Debarati Chattopadhyay
- a Structural Biology Lab; Center for Biomedical Research; VIT University ; Vellore , Tamil Nadu , India
| | | | | | | | | | | |
Collapse
|
20
|
Singh BN, Saha C, Galun D, Upreti DK, Bayry J, Kaveri SV. European Viscum album: a potent phytotherapeutic agent with multifarious phytochemicals, pharmacological properties and clinical evidence. RSC Adv 2016. [DOI: 10.1039/c5ra27381a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viscum albumL. or European mistletoe (Loranthaceae), a semi-parasitic shrub, has been used as a traditional medicine in Europe for centuries to treat various diseases like cancer, cardiovascular disorder, epilepsy, infertility, hypertension and arthritis.
Collapse
Affiliation(s)
- Brahma N. Singh
- Pharmacognosy & Ethnopharmacology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Chaitrali Saha
- Institut National de la Santé et de la Recherche Médicale Unité 1138
- Paris
- France
- Centre de Recherche des Cordeliers
- Equipe – Immunopathologie et immuno-intervention thérapeutique
| | - Danijel Galun
- Clinic for Digestive Surgery
- Clinical Centre of Serbia
- Belgrade
- Serbia
- Medical School
| | - Dalip K. Upreti
- Lichenology Division
- CSIR-National Botanical Research Institute
- Lucknow-226 001
- India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité 1138
- Paris
- France
- Centre de Recherche des Cordeliers
- Equipe – Immunopathologie et immuno-intervention thérapeutique
| | - Srini V. Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité 1138
- Paris
- France
- Centre de Recherche des Cordeliers
- Equipe – Immunopathologie et immuno-intervention thérapeutique
| |
Collapse
|
21
|
Lee SH, Do HS, Min KJ. Effects of Essential Oil from Hinoki Cypress, Chamaecyparis obtusa, on Physiology and Behavior of Flies. PLoS One 2015; 10:e0143450. [PMID: 26624577 PMCID: PMC4666656 DOI: 10.1371/journal.pone.0143450] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/04/2015] [Indexed: 11/22/2022] Open
Abstract
Phytoncides, which are volatile substances emitted from plants for protection against plant pathogens and insects, are known to have insecticidal, antimicrobial, and antifungal activities. In contrast to their negative effects on microorganisms and insects, phytoncides have been shown to have beneficial effects on human health. Essential oil from Hinoki cypress (Chamaecyparis obtusa) is mostly used in commercial products such as air purifiers. However, the physiological/behavioral impact of essential oil from C. obtusa on insects is not established. In this study, we tested the effects of essential oil extracted from C. obtusa on the physiologies and behaviors of Drosophila melanogaster and Musca domestica. Exposure to essential oil from C. obtusa decreased the lifespan, fecundity, locomotive activity, and developmental success rate of D. melanogaster. In addition, both fruit flies and house flies showed strong repellent behavioral responses to the essential oil, with duration times of about 5 hours at 70 μg/ml. These results suggest that essential oil from C. obtusa can be used as a ‘human-friendly’ alternative insect repellent.
Collapse
Affiliation(s)
- Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon, Korea
| | - Hyung-Seok Do
- Department of Biological Sciences, Inha University, Incheon, Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, Korea
- * E-mail:
| |
Collapse
|
22
|
Zhuang Z, Lv T, Li M, Zhang Y, Xue T, Yang L, Liu H, Zhang W. The lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2014; 69:304-309. [PMID: 25367047 DOI: 10.1007/s11130-014-0448-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nymphaea hybrid, a water lily from the Nymphaeaceae family, has been found to exhibit some in vivo beneficial effects. In the present study we investigated the lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. We found that Nymphaea hybrid root extract significantly extended the lifespan of C.elegans and improved its locomotion during aging. Moreover, Nymphaea hybrid root extract increased the resistance of C.elegans to both heat stress and oxidative stress. We found that the ability of Nymphaea hybrid root extract to increase lifespan was independent of its antimicrobial effects and was probably associated with its effects on the reproduction of C.elegans. In addition, the lifespan-extending effects of Nymphaea hybrid root extract were found to be dependent on the insulin/IGF signaling pathway. We also found that total flavones of Nymphaea hybrid could increase survival of C.elegans in both normal and adverse conditions, indicating that total flavones comprise the major fractions with lifespan-extending effects. Therefore, Nymphaea hybrid root extract has lifespan-extending effects in C.elegans and could be developed as a functional food.
Collapse
Affiliation(s)
- Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213164, China,
| | | | | | | | | | | | | | | |
Collapse
|