1
|
Probst D, Twiddy J, Hatada M, Pavlidis S, Daniele M, Sode K. Development of Direct Electron Transfer-Type Extended Gate Field Effect Transistor Enzymatic Sensors for Metabolite Detection. Anal Chem 2024; 96:4076-4085. [PMID: 38408165 DOI: 10.1021/acs.analchem.3c04599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this work, direct electron transfer (DET)-type extended gate field effect transistor (EGFET) enzymatic sensors were developed by employing DET-type or quasi-DET-type enzymes to detect glucose or lactate in both 100 mM potassium phosphate buffer and artificial sweat. The system employed either a DET-type glucose dehydrogenase or a quasi-DET-type lactate oxidase, the latter of which was a mutant enzyme with suppressed oxidase activity and modified with amine-reactive phenazine ethosulfate. These enzymes were immobilized on the extended gate electrodes. Changes in the measured transistor drain current (ID) resulting from changes to the working electrode junction potential (φ) were observed as glucose and lactate concentrations were varied. Calibration curves were generated for both absolute measured ID and ΔID (normalized to a blank solution containing no substrate) to account for variations in enzyme immobilization and conjugation to the mediator and variations in reference electrode potential. This work resulted in a limit of detection of 53.9 μM (based on ID) for glucose and 2.12 mM (based on ID) for lactate, respectively. The DET-type and Quasi-DET-type EGFET enzymatic sensor was then modeled using the case of the lactate sensor as an equivalent circuit to validate the principle of sensor operation being driven through OCP changes caused by the substrate-enzyme interaction. The model showed slight deviation from collected empirical data with 7.3% error for the slope and 8.6% error for the y-intercept.
Collapse
Affiliation(s)
- David Probst
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Jack Twiddy
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Mika Hatada
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Spyridon Pavlidis
- Department of Electrical and Computer Engineering, NC State University, Raleigh, North Carolina 27606, United States
| | - Michael Daniele
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
- Department of Electrical and Computer Engineering, NC State University, Raleigh, North Carolina 27606, United States
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Mollaamin F, Kandemirli F, Mohammadian NT, Monajjemi M. Molecular Modeling of Biofuel Cells of BN Nanotube-FAD Structure. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Lee H, Lee YS, Reginald SS, Baek S, Lee EM, Choi IG, Chang IS. Biosensing and electrochemical properties of flavin adenine dinucleotide (FAD)-Dependent glucose dehydrogenase (GDH) fused to a gold binding peptide. Biosens Bioelectron 2020; 165:112427. [PMID: 32729543 DOI: 10.1016/j.bios.2020.112427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023]
Abstract
In the present work, direct electron transfer (DET) based biosensing system for the determination of glucose has been fabricated by utilizing gold binding peptide (GBP) fused flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Burkholderia cepacia. The GBP fused FAD-GDH was immobilized on the working electrode surface of screen-printed electrode (SPE) which consists of gold working electrode, a silver pseudo-reference electrode and a platinum counter electrode, to develop the biosensing system with compact design and favorable sensing ability. The bioelectrochemical and mechanical properties of GBP fused FAD-GDH (GDH-GBP) immobilized SPE (GDH-GBP/Au) were investigated. Here, the binding affinity of GDH-GBP on Au surface, was highly increased after fusion of gold binding peptide and its uniform monolayer was formed on Au surface. In the cyclic voltammetry (CV), GDH-GBP/Au displayed significantly high oxidative peak currents corresponding to glucose oxidation which is almost c.a. 10-fold enhanced value compared with that from native GDH immobilized SPE (GDH/Au). As well, GDH-GBP/Au has shown 92.37% of current retention after successive potential scans. In the chronoamperometry, its steady-state catalytic current was monitored in various conditions. The dynamic range of GDH-GBP/Au was shown to be 3-30 mM at 30 °C and exhibits high selectivity toward glucose in whole human blood. Additionally, temperature dependency of GDH-GBP/Au on DET capability was also investigated at 30-70 °C. Considering this efficient and stable glucose sensing with simple and easy sensor fabrication, GDH-GBP based sensing platform can provide new insight for future biosensor in research fields that rely on DET.
Collapse
Affiliation(s)
- Hyeryeong Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Yoo Seok Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Stacy Simai Reginald
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seungwoo Baek
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Eun Mi Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
4
|
Okuda-Shimazaki J, Yoshida H, Sode K. FAD dependent glucose dehydrogenases - Discovery and engineering of representative glucose sensing enzymes. Bioelectrochemistry 2019; 132:107414. [PMID: 31838457 DOI: 10.1016/j.bioelechem.2019.107414] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 11/10/2019] [Indexed: 11/17/2022]
Abstract
The history of the development of glucose sensors goes hand-in-hand with the history of the discovery and the engineering of glucose-sensing enzymes. Glucose oxidase (GOx) has been used for glucose sensing since the development of the first electrochemical glucose sensor. The principle utilizing oxygen as the electron acceptor is designated as the first-generation electrochemical enzyme sensors. With increasing demand for hand-held and cost-effective devices for the "self-monitoring of blood glucose (SMBG)", second-generation electrochemical sensor strips employing electron mediators have become the most popular platform. To overcome the inherent drawback of GOx, namely, the use of oxygen as the electron acceptor, various glucose dehydrogenases (GDHs) have been utilized in second-generation principle-based sensors. Among the various enzymes employed in glucose sensors, GDHs harboring FAD as the redox cofactor, FADGDHs, especially those derived from fungi, fFADGDHs, are currently the most popular enzymes in the sensor strips of second-generation SMBG sensors. In addition, the third-generation principle, employing direct electron transfer (DET), is considered the most elegant approach and is ideal for use in electrochemical enzyme sensors. However, glucose oxidoreductases capable of DET are limited. One of the most prominent GDHs capable of DET is a bacteria-derived FADGDH complex (bFADGDH). bFADGDH has three distinct subunits; the FAD harboring the catalytic subunit, the small subunit, and the electron-transfer subunit, which makes bFADGDH capable of DET. In this review, we focused on the two representative glucose sensing enzymes, fFADGDHs and bFADGDHs, by presenting their discovery, sources, and protein and enzyme properties, and the current engineering strategies to improve their potential in sensor applications.
Collapse
Affiliation(s)
- Junko Okuda-Shimazaki
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.
Collapse
Affiliation(s)
- Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Hong-Qi Xia
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Lu Bai
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lu Yan
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Serge Cosnier
- Université Grenoble-Alpes , DCM UMR 5250, F-38000 Grenoble , France.,Département de Chimie Moléculaire , UMR CNRS, DCM UMR 5250, F-38000 Grenoble , France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines UMR7281 , Institut de Microbiologie de la Méditerranée, IMM , FR 3479, 31, chemin Joseph Aiguier 13402 Marseille , Cedex 20 , France
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,College of Chemistry & Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
6
|
Ito Y, Okuda-Shimazaki J, Tsugawa W, Loew N, Shitanda I, Lin CE, La Belle J, Sode K. Third generation impedimetric sensor employing direct electron transfer type glucose dehydrogenase. Biosens Bioelectron 2019; 129:189-197. [PMID: 30721794 DOI: 10.1016/j.bios.2019.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/30/2023]
Abstract
Faradaic electrochemical impedance spectroscopy (faradaic EIS) is an attractive measurement principle for biosensors. However, there have been no reports on sensors employing direct electron transfer (DET)-type redox enzymes based on faradaic EIS principle. In this study, we have attempted to construct the 3rd-generation faradaic enzyme EIS sensor, which used DET-type flavin adenine dinucleotide (FAD) dependent glucose dehydrogenase (GDH) complex, to elucidate its characteristic properties as well as to investigate its potential application as the future immunosensor platform. The gold disk electrodes (GDEs) with DET-type FADGDH prepared using self-assembled monolayer (SAM) showed the glucose concentration dependent impedance change, which was confirmed by the change in the charge transfer resistance (Rct). The Δ(1/Rct) values were also affected by DC bias potential and the length of SAM. Based on the Nyquist plot and Bode plot simulations, glucose sensing by imaginary impedance monitoring under fixed frequency (5 mHz) was carried out, revealing the higher sensitivity at low glucose concentration with wider linear range (0.02-0.2 mM). Considering this high sensitivity toward glucose, the 3rd-generation faradaic enzyme EIS sensor would provide alternative platform for future impedimetric immunosensing system, which does not use redox probe.
Collapse
Affiliation(s)
- Yuka Ito
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Junko Okuda-Shimazaki
- Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and North Carolina State University, Raleigh, NC 27695, USA
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Noya Loew
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and North Carolina State University, Raleigh, NC 27695, USA
| | - Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Chi-En Lin
- School of Biological and Health System Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O.Box 879709, Tempe, AZ 85287-9719, USA
| | - Jeffrey La Belle
- School of Biological and Health System Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, P.O.Box 879709, Tempe, AZ 85287-9719, USA
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Iwasa H, Ozawa K, Sasaki N, Kinoshita N, Yokoyama K, Hiratsuka A. Fungal FAD-dependent glucose dehydrogenases concerning high activity, affinity, and thermostability for maltose-insensitive blood glucose sensor. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Algov I, Grushka J, Zarivach R, Alfonta L. Highly Efficient Flavin-Adenine Dinucleotide Glucose Dehydrogenase Fused to a Minimal Cytochrome C Domain. J Am Chem Soc 2017; 139:17217-17220. [PMID: 28915057 DOI: 10.1021/jacs.7b07011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Flavin-adenine dinucleotide (FAD) dependent glucose dehydrogenase (GDH) is a thermostable, oxygen insensitive redox enzyme used in bioelectrochemical applications. The FAD cofactor of the enzyme is buried within the proteinaceous matrix of the enzyme, which makes it almost unreachable for a direct communication with an electrode. In this study, FAD dependent glucose dehydrogenase was fused to a natural minimal cytochrome domain in its c-terminus to achieve direct electron transfer. We introduce a fusion enzyme that can communicate with an electrode directly, without the use of a mediator molecule. The new fusion enzyme, with its direct electron transfer abilities displays superior activity to that of the native enzyme, with a kcat that is ca. 3 times higher than that of the native enzyme, a kcat/KM that is more than 3 times higher than that of GDH and 5 to 7 times higher catalytic currents with an onset potential of ca. (-) 0.15 V vs Ag/AgCl, affording higher glucose sensing selectivity. Taking these parameters into consideration, the fusion enzyme presented can serve as a good candidate for blood glucose monitoring and for other glucose based bioelectrochemical systems.
Collapse
Affiliation(s)
- Itay Algov
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Jennifer Grushka
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Raz Zarivach
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer-Sheva 84105, Israel
| |
Collapse
|
9
|
Siepenkoetter T, Salaj-Kosla U, Xiao X, Conghaile PÓ, Pita M, Ludwig R, Magner E. Immobilization of Redox Enzymes on Nanoporous Gold Electrodes: Applications in Biofuel Cells. Chempluschem 2016; 82:553-560. [DOI: 10.1002/cplu.201600455] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/10/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Till Siepenkoetter
- Department of Chemical Sciences; Bernal Institute; University of Limerick; Limerick Ireland
| | - Urszula Salaj-Kosla
- Department of Chemical Sciences; Bernal Institute; University of Limerick; Limerick Ireland
| | - Xinxin Xiao
- Department of Chemical Sciences; Bernal Institute; University of Limerick; Limerick Ireland
| | - Peter Ó Conghaile
- School of Chemistry; Ryan Institute; National University of Ireland; Galway Ireland
| | - Marcos Pita
- Instituto de Catálisis y Petroleoquímica; Consejo Superior de Investigaciones Científicas; c/Marie Curie 2, L10 28049 Madrid Spain
| | - Roland Ludwig
- Department of Food Science and Technology; BOKU-University of Natural Resources and Life Sciences; Muthgasse18 1190 Vienna Austria
| | - Edmond Magner
- Department of Chemical Sciences; Bernal Institute; University of Limerick; Limerick Ireland
| |
Collapse
|
10
|
Chen H, Zhu Z, Huang R, Zhang YHP. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP + to NAD + with Its Application to Biobatteries. Sci Rep 2016; 6:36311. [PMID: 27805055 PMCID: PMC5090862 DOI: 10.1038/srep36311] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/13/2016] [Indexed: 01/30/2023] Open
Abstract
Engineering the coenzyme specificity of redox enzymes plays an important role in metabolic engineering, synthetic biology, and biocatalysis, but it has rarely been applied to bioelectrochemistry. Here we develop a rational design strategy to change the coenzyme specificity of 6-phosphogluconate dehydrogenase (6PGDH) from a hyperthermophilic bacterium Thermotoga maritima from its natural coenzyme NADP+ to NAD+. Through amino acid-sequence alignment of NADP+- and NAD+-preferred 6PGDH enzymes and computer-aided substrate-coenzyme docking, the key amino acid residues responsible for binding the phosphate group of NADP+ were identified. Four mutants were obtained via site-directed mutagenesis. The best mutant N32E/R33I/T34I exhibited a ~6.4 × 104-fold reversal of the coenzyme selectivity from NADP+ to NAD+. The maximum power density and current density of the biobattery catalyzed by the mutant were 0.135 mW cm−2 and 0.255 mA cm−2, ~25% higher than those obtained from the wide-type 6PGDH-based biobattery at the room temperature. By using this 6PGDH mutant, the optimal temperature of running the biobattery was as high as 65 °C, leading to a high power density of 1.75 mW cm−2. This study demonstrates coenzyme engineering of a hyperthermophilic 6PGDH and its application to high-temperature biobatteries.
Collapse
Affiliation(s)
- Hui Chen
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia 24061, USA
| | - Zhiguang Zhu
- Cell Free Bioinnovations Inc. 1800 Kraft Drive, Suite 222, Blacksburg, VA 24060, USA.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Rui Huang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia 24061, USA
| | - Yi-Heng Percival Zhang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia 24061, USA.,Cell Free Bioinnovations Inc. 1800 Kraft Drive, Suite 222, Blacksburg, VA 24060, USA.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
11
|
Hou C, Lang Q, Liu A. Tailoring 1,4-naphthoquinone with electron-withdrawing group: toward developing redox polymer and FAD-GDH based hydrogel bioanode for efficient electrocatalytic glucose oxidation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.078] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
|
13
|
Fapyane D, Lee Y, Lim CY, Ahn JH, Kim SW, Chang IS. Immobilisation of Flavin-Adenine-Dinucleotide-Dependent Glucose Dehydrogenase α Subunit in Free-Standing Graphitised Carbon Nanofiber Paper Using a Bifunctional Cross-Linker for an Enzymatic Biofuel Cell. ChemElectroChem 2014. [DOI: 10.1002/celc.201402035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Ding H, Gao F, Liu D, Li Z, Xu X, Wu M, Zhao Y. Significant improvement of thermal stability of glucose 1-dehydrogenase by introducing disulfide bonds at the tetramer interface. Enzyme Microb Technol 2013; 53:365-72. [DOI: 10.1016/j.enzmictec.2013.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
|
15
|
Bilirubin oxidases in bioelectrochemistry: Features and recent findings. Biosens Bioelectron 2013; 50:478-85. [DOI: 10.1016/j.bios.2013.07.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/01/2013] [Accepted: 07/09/2013] [Indexed: 11/18/2022]
|
16
|
Karunwi O, Guiseppi-Elie A. Supramolecular glucose oxidase-SWNT conjugates formed by ultrasonication: effect of tube length, functionalization and processing time. J Nanobiotechnology 2013; 11:6. [PMID: 23425592 PMCID: PMC3599492 DOI: 10.1186/1477-3155-11-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Generation-3 (Gen-3) biosensors and advanced enzyme biofuel cells will benefit from direct electron transfer to oxidoreductases facilitated by single-walled carbon nanotubes (SWNTs). METHODS Supramolecular conjugates of SWNT-glucose oxidase (GOx-SWNT) were produced via ultrasonic processing. Using a Plackett-Burman experimental design to investigate the process of tip ultrasonication (23 kHz), conjugate formation was investigated as a function of ultrasonication times (0, 5, 60 min) and functionalized SWNTs of various tube lengths (SWNT-X-L), (X = -OH or -COOH and L = 3.0 μm, 7.5 μm). RESULTS Enzyme activity (KM, kcat, kcat/KM, vmax and n (the Hill parameter)) of pGOx (pristine), sGOx (sonicated) and GOx-SWNT-X-L revealed that sonication of any duration increased both KM and kcat of GOx but did not change kcat/KM. Functionalized tubes had the most dramatic effect, reducing both KM and kcat and reducing kcat/KM. UV-vis spectra over the range of 300 to 550 nm of native enzyme-bound FAD (λmax at 381 and 452 nm) or the blue-shifted solvated FAD of the denatured enzyme (λmax at 377 and 448 nm) revealed that ultrasonication up to 60 minutes had no influence on spectral characteristics of FAD but that the longer SWNTs caused some partial denaturation leading to egress of FAD. Circular dichroism spectral analysis of the 2° structure showed that sonication of any duration caused enrichment in the α-helical content at the sacrifice of the unordered sequences in GOx while the presence of SWNTs, regardless of length and/or functionality, reduced the β-sheet content of pristine GOx. Surface profiling by white light interferometry revealed that ultrasonication produced some aggregation of GOx and that GOx effectively debundled the SWNT. CONCLUSIONS Supramolecular conjugates formed from shorter, -OH functionalized SWNTs using longer sonication times (60 min) gave the most favored combination for forming bioactive conjugates.
Collapse
Affiliation(s)
- Olukayode Karunwi
- Center for Bioelectronics, Biosensors and Biochips (C3B), Clemson University Advanced Materials Center, 100 Technology Drive, Anderson, SC 29625, USA
- Department of Bioengineering, Clemson University, 29634, Clemson, SC, USA
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B), Clemson University Advanced Materials Center, 100 Technology Drive, Anderson, SC 29625, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
- Department of Bioengineering, Clemson University, 29634, Clemson, SC, USA
- Department of Electrical and Computer Engineering, Clemson University, 29634, Clemson, SC, USA
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, 23219, Richmond, VA, USA
| |
Collapse
|
17
|
Kavanagh P, Leech D. Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives. Phys Chem Chem Phys 2013; 15:4859-69. [DOI: 10.1039/c3cp44617d] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Fapyane D, Lee SJ, Kang SH, Lim DH, Cho KK, Nam TH, Ahn JP, Ahn JH, Kim SW, Chang IS. High performance enzyme fuel cells using a genetically expressed FAD-dependent glucose dehydrogenase α-subunit of Burkholderia cepacia immobilized in a carbon nanotube electrode for low glucose conditions. Phys Chem Chem Phys 2013; 15:9508-12. [DOI: 10.1039/c3cp51864g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
|
20
|
Zafar MN, Beden N, Leech D, Sygmund C, Ludwig R, Gorton L. Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells. Anal Bioanal Chem 2012; 402:2069-77. [PMID: 22222911 PMCID: PMC3275720 DOI: 10.1007/s00216-011-5650-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/06/2011] [Accepted: 12/10/2011] [Indexed: 11/26/2022]
Abstract
In this study, different flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenases (FADGDHs) were characterized electrochemically after “wiring” them with an osmium redox polymer [Os(4,4′-dimethyl-2,2′-bipyridine)2(PVI)10Cl]+ on graphite electrodes. One tested FADGDH was that recently discovered in Glomerella cingulata (GcGDH), another was the recombinant form expressed in Pichia pastoris (rGcGDH), and the third was a commercially available glycosylated enzyme from Aspergillus sp. (AspGDH). The performance of the Os-polymer “wired” GDHs on graphite electrodes was tested with glucose as the substrate. Optimal operational conditions and analytical characteristics like sensitivity, linear ranges and current density of the different FADGDHs were determined. The performance of all three types of FADGDHs was studied at physiological conditions (pH 7.4). The current densities measured at a 20 mM glucose concentration were 494 ± 17, 370 ± 24, and 389 ± 19 μA cm−2 for GcGDH, rGcGDH, and AspGDH, respectively. The sensitivities towards glucose were 2.16, 1.90, and 1.42 μA mM−1 for GcGDH, rGcGDH, and AspGDH, respectively. Additionally, deglycosylated rGcGDH (dgrGcGDH) was investigated to see whether the reduced glycosylation would have an effect, e.g., a higher current density, which was indeed found. GcGDH/Os-polymer modified electrodes were also used and investigated for their selectivity for a number of different sugars. Comparison of different parameters for GDHs/Os-polymer modified electrodes ![]()
Collapse
|
21
|
SHIMIZU H, TSUGAWA W. Glucose Monitoring by Direct Electron Transfer Needle-Type Miniaturized Electrode. ELECTROCHEMISTRY 2012. [DOI: 10.5796/electrochemistry.80.375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris. Microb Cell Fact 2011; 10:106. [PMID: 22151971 PMCID: PMC3252255 DOI: 10.1186/1475-2859-10-106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/12/2011] [Indexed: 11/22/2022] Open
Abstract
Background FAD dependent glucose dehydrogenase (GDH) currently raises enormous interest in the field of glucose biosensors. Due to its superior properties such as high turnover rate, substrate specificity and oxygen independence, GDH makes its way into glucose biosensing. The recently discovered GDH from the ascomycete Glomerella cingulata is a novel candidate for such an electrochemical application, but also of interest to study the plant-pathogen interaction of a family of wide-spread, crop destroying fungi. Heterologous expression is a necessity to facilitate the production of GDH for biotechnological applications and to study its physiological role in the outbreak of anthracnose caused by Glomerella (anamorph Colletotrichum) spp. Results Heterologous expression of active G. cingulata GDH has been achieved in both Escherichia coli and Pichia pastoris, however, the expressed volumetric activity was about 4800-fold higher in P. pastoris. Expression in E. coli resulted mainly in the formation of inclusion bodies and only after co-expression with molecular chaperones enzymatic activity was detected. The fed-batch cultivation of a P. pastoris transformant resulted in an expression of 48,000 U L-1 of GDH activity (57 mg L-1). Recombinant GDH was purified by a two-step purification procedure with a yield of 71%. Comparative characterization of molecular and catalytic properties shows identical features for the GDH expressed in P. pastoris and the wild-type enzyme from its natural fungal source. Conclusions The heterologous expression of active GDH was greatly favoured in the eukaryotic host. The efficient expression in P. pastoris facilitates the production of genetically engineered GDH variants for electrochemical-, physiological- and structural studies.
Collapse
|
23
|
Zafar MN, Wang X, Sygmund C, Ludwig R, Leech D, Gorton L. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials. Anal Chem 2011; 84:334-41. [PMID: 22091984 DOI: 10.1021/ac202647z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new extracellular flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) was electrochemically studied as a recognition element in glucose biosensors. The redox enzyme was recombinantly produced in Pichia pastoris and homogeneously purified, and its glucose-oxidizing properties on spectrographic graphite electrodes were investigated. Six different Os polymers, the redox potentials of which ranged in a broad potential window between +15 and +489 mV versus the normal hydrogen electrode (NHE), were used to immobilize and "wire" GcGDH to the spectrographic graphite electrode's surface. The GcGDH/Os polymer modified electrodes were evaluated by chronoamperometry using flow injection analysis. The current response was investigated using a stepwisely increased applied potential. It was observed that the ratio of GcGDH/Os polymer and the overall loading of the enzyme electrode significantly affect the performance of the enzyme electrode for glucose oxidation. The best-suited Os polymer [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(PVI)Cl](+) had a potential of +309 mV versus NHE, and the optimum GcGDH/Os polymer ratio was 1:2 yielding a maximum current density of 493 μA·cm(-2) at a 30 mM glucose concentration.
Collapse
Affiliation(s)
- Muhammad Nadeem Zafar
- Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
Holland JT, Lau C, Brozik S, Atanassov P, Banta S. Engineering of Glucose Oxidase for Direct Electron Transfer via Site-Specific Gold Nanoparticle Conjugation. J Am Chem Soc 2011; 133:19262-5. [DOI: 10.1021/ja2071237] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Todd Holland
- Department of Chemical Engineering, Columbia University in the City of New York, New York, New York 10027, United States
- Department of Biosensors and Nanomaterials, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Carolin Lau
- Center for Emerging Energy Technologies, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Susan Brozik
- Department of Biosensors and Nanomaterials, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Plamen Atanassov
- Center for Emerging Energy Technologies, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University in the City of New York, New York, New York 10027, United States
| |
Collapse
|
25
|
Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase from Glomerella cingulata suggests a role in plant pathogenicity. Microbiology (Reading) 2011; 157:3203-3212. [DOI: 10.1099/mic.0.051904-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plant-pathogenic fungus Glomerella cingulata (anamorph Colletotrichum gloeosporoides) secretes high levels of an FAD-dependent glucose dehydrogenase (GDH) when grown on tomato juice-supplemented media. To elucidate its molecular and catalytic properties, GDH was produced in submerged culture. The highest volumetric activity was obtained in shaking flasks after 6 days of cultivation (3400 U l−1, 4.2 % of total extracellular protein). GDH is a monomeric protein with an isoelectric point of 5.6. The molecular masses of the glycoforms ranged from 95 to 135 kDa, but after deglycosylation, a single 68 kDa band was obtained. The absorption spectrum is typical for an FAD-containing enzyme with maxima at 370 and 458 nm and the cofactor is non-covalently bound. The preferred substrates are glucose and xylose. Suitable electron acceptors are quinones, phenoxy radicals, 2,6-dichloroindophenol, ferricyanide and ferrocenium hexafluorophosphate. In contrast, oxygen turnover is very low. The GDH-encoding gene was cloned and phylogenetic analysis of the translated protein reveals its affiliation to the GMC family of oxidoreductases. The proposed function of this quinone and phenoxy radical reducing enzyme is to neutralize the action of plant laccase, phenoloxidase or peroxidase activities, which are increased in infected plants to evade fungal attack.
Collapse
|
26
|
Rengaraj S, Kavanagh P, Leech D. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability. Biosens Bioelectron 2011; 30:294-9. [PMID: 22005596 DOI: 10.1016/j.bios.2011.09.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 11/30/2022]
Abstract
Glassy carbon and graphite electrodes modified with films of enzyme and osmium redox polymer, cross linked with poly (ethylene glycol) diglycidyl ether, were used for elaboration of a glucose/O(2) enzymatic fuel cell. The redox polymers [Os(4,4'-dimethoxy-2,2'-bipyridine)(2)(polyvinylimidazole)(10)Cl](+) and [Os(4,4'-dichloro-2,2'-bipyridine)(2)(polyvinylimidazole)(10)Cl](+) were selected to facilitate transfer of electrons from the glucose oxidase (GOx) active site to the T1 Cu site of multicopper oxygenases of Trametes hirsuta laccase (ThLacc) and Myrothecium verrucaria bilirubin oxidase (MvBOD). Maximum power density at pH 5.5 of 3.5 μW cm(-2) at a cell voltage of 0.35 V was obtained for an assembled membrane-less fuel cell based on ThLacc on glassy carbon as cathode, in the presence of 0.1 M glucose, 37 °C, with lower power observed at pH 7.4 and 4.5. Replacement of the ThLacc cathode with that of MvBOD produced 10 μW cm(-2) at 0.25 V under pseudo-physiological conditions. Replacement of glassy carbon with graphite as base electrode material resulted in increased redox polymer loading, leading to an increase in power output to 43 μW cm(-2) at 0.25 V under similar conditions. Improved stabilization of biofilms was achieved through covalent anchoring of enzyme and redox polymer on graphite electrodes, derivatized via electrochemical reduction of the diazonium cation generated in situ from p-phenylenediamine. Enzymatic fuel cells using this approach retained 70% power at 24 h, whereas fuel cells prepared without chemical anchoring to graphite retained only 10% of power over the same interval.
Collapse
Affiliation(s)
- Saravanan Rengaraj
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
27
|
Yehezkeli O, Tel-Vered R, Raichlin S, Willner I. Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS NANO 2011; 5:2385-91. [PMID: 21355610 DOI: 10.1021/nn200313t] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A three-dimensional composite consisting of the oxygen-insensitive flavin-dependent glucose dehydrogenase, GDH, and Au nanoparticles (NPs) is assembled on a Au surface using an electropolymerization process. The bis-aniline-cross-linked GDH/Au NPs composite reveals effective electrical contact with the electrode (ket=1100 s(-1)), and the effective bioelectrocatalyzed oxidation is driven by the enzyme/NPs matrix. The GDH/Au NPs-functionalized electrode is implemented as an amperometric glucose sensor, and it reveals superior functions when compared to an analogous glucose oxidase/Au NPs system. The O2-insensitive GDH/Au NPs composite electrode was further used as an anode in a membraneless glucose/O2 biofuel cell. The cathode in this system was composed of bilirubin oxidase cross-linked onto a carbon nanotube-modified glassy carbon electrode. The power output of the cell was 32 μW cm(-2).
Collapse
Affiliation(s)
- Omer Yehezkeli
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
28
|
|
29
|
Kolahi J, Abrishami M, Davidovitch Z. Microfabricated biocatalytic fuel cells: a new approach to accelerating the orthodontic tooth movement. Med Hypotheses 2009; 73:340-1. [PMID: 19427136 DOI: 10.1016/j.mehy.2009.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 11/30/2022]
Abstract
Direct electric current is a potent biologic mean to accelerate periodontal tissue turnover and orthodontic tooth movement. The main problem associated with this approach is the source of electricity. A noninvasive, removable enzymatic micro-battery, will administer minute electric currents to the alveolar bone and oral soft tissues, utilizing glucose as a fuel, becoming a possible source of the electrical power required for accelerating the velocity of orthodontic tooth movement.
Collapse
Affiliation(s)
- Jafar Kolahi
- Torabinejad Research Center, Isfahan University of Medical Sciences, No. 10, Sayt 180, Shahin Shahr, Isfahan Co 83188-65161, Iran.
| | | | | |
Collapse
|
30
|
Amir L, Tam TK, Pita M, Meijler MM, Alfonta L, Katz E. Biofuel Cell Controlled by Enzyme Logic Systems. J Am Chem Soc 2008; 131:826-32. [DOI: 10.1021/ja8076704] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liron Amir
- Department of Chemistry and Biomolecular Science, and NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, New York 13699-5810, and Departments of Biotechnology Engineering and Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tsz Kin Tam
- Department of Chemistry and Biomolecular Science, and NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, New York 13699-5810, and Departments of Biotechnology Engineering and Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Marcos Pita
- Department of Chemistry and Biomolecular Science, and NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, New York 13699-5810, and Departments of Biotechnology Engineering and Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Michael M. Meijler
- Department of Chemistry and Biomolecular Science, and NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, New York 13699-5810, and Departments of Biotechnology Engineering and Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Lital Alfonta
- Department of Chemistry and Biomolecular Science, and NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, New York 13699-5810, and Departments of Biotechnology Engineering and Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, and NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, New York 13699-5810, and Departments of Biotechnology Engineering and Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
31
|
Yamazaki T, Okuda-Shimazaki J, Sakata C, Tsuya T, Sode K. Construction and Characterization of Direct Electron Transfer-Type Continuous Glucose Monitoring System Employing Thermostable Glucose Dehydrogenase Complex. ANAL LETT 2008. [DOI: 10.1080/00032710802350567] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|