1
|
Gulevich AY, Skorokhodova AY, Debabov VG. Biosynthesis of C4-C8 3-Hydroxycarboxylic Acids from Glucose through the Inverted Fatty Acid β-Oxidation by Metabolically Engineered Escherichia coli. Biomolecules 2024; 14:449. [PMID: 38672466 PMCID: PMC11048500 DOI: 10.3390/biom14040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Inverted fatty acid β-oxidation represents a versatile biochemical platform for biosynthesis by the engineered microbial strains of numerous value-added chemicals from convenient and abundant renewable carbon sources, including biomass-derived sugars. Although, in recent years, significant progress has been made in the production through this pathway of n-alcohols, 1,3-diols, and carboxylic acids and its 2,3-unsaturated derivatives, the potential of the pathway for the biosynthesis of 3-hydroxycarboxylic acids remained almost undisclosed. In this study, we demonstrate the microaerobic production of even-chain-length C4-C8 3-hydroxycarboxylic acids from glucose through the inverted fatty acid β-oxidation by engineered E. coli strains. The notable accumulation of target compounds was achieved upon the strong constitutive expression of the genes atoB, fadA, fadB, fadE/fabI, and tesB, which code for the key enzymes catalysing reactions of aerobic fatty acid β-oxidation and thioesterase II, in strains devoid of mixed-acid fermentation pathways and lacking nonspecific thioesterase YciA. The best performing recombinants were able to synthesise up to 14.5 mM of 3-hydroxycarboxylic acids from glucose with a total yield of 0.34 mol/mol and a C4/C6/C8 ratio averaging approximately 63/28/9. The results provide a framework for the development of highly efficient strains and processes for the bio-based production of valuable 3-hydroxycarboxylates from renewable raw materials.
Collapse
Affiliation(s)
- Andrey Yu. Gulevich
- Research Center of Biotechnology, Russian Academy of Sciences, 33, bld. 2. Leninsky Ave., Moscow 119071, Russia; (A.Y.S.); (V.G.D.)
| | | | | |
Collapse
|
2
|
Su H, Lin J. Biosynthesis pathways of expanding carbon chains for producing advanced biofuels. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:109. [PMID: 37400889 DOI: 10.1186/s13068-023-02340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/11/2023] [Indexed: 07/05/2023]
Abstract
Because the thermodynamic property is closer to gasoline, advanced biofuels (C ≥ 6) are appealing for replacing non-renewable fossil fuels using biosynthesis method that has presented a promising approach. Synthesizing advanced biofuels (C ≥ 6), in general, requires the expansion of carbon chains from three carbon atoms to more than six carbon atoms. Despite some specific biosynthesis pathways that have been developed in recent years, adequate summary is still lacking on how to obtain an effective metabolic pathway. Review of biosynthesis pathways for expanding carbon chains will be conducive to selecting, optimizing and discovering novel synthetic route to obtain new advanced biofuels. Herein, we first highlighted challenges on expanding carbon chains, followed by presentation of two biosynthesis strategies and review of three different types of biosynthesis pathways of carbon chain expansion for synthesizing advanced biofuels. Finally, we provided an outlook for the introduction of gene-editing technology in the development of new biosynthesis pathways of carbon chain expansion.
Collapse
Affiliation(s)
- Haifeng Su
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, The Ministry of Natural and Resources, Xian, 710075, Shanxi, China
| | - JiaFu Lin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
3
|
Gulevich AY, Skorokhodova AY, Debabov VG. Evaluation of the Efficiency of Functional Reversal of Fatty Acid Β-Oxidation in Escherichia coli upon the Action of Various Native Acyl-CoA Dehydrogenases. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Using Escherichia coli strain MG1655 lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆fadE, PL‑SDφ10-atoB, Ptrc-ideal-4-SDφ10-fadB, PL-SDφ10-tesB, ∆yciA as a core strain, the efficiency of the reversal of fatty acid β-oxidation upon the action of native cellular enzymes capable of serving as acyl-CoA dehydrogenases was examined. Increased expression of fadE, fabI, and ydiO/ydiQRST genes encoding the corresponding enzymes was ensured in derivatives of the core strain by substituting their native regulatory regions with artificial regulatory element Ptrc-ideal-4-SDφ10. A three-turn reversal of the cycle in the engineered recombinants was demonstrated that was accompanied by considerable secretion of butyric, caproic, and caprylic acids. The highest level of six- and eight-carbon carboxylates production was achieved upon the overexpression of the fabI gene, while the lowest levels of secretion of the corresponding compounds were demonstrated by the strain with the enhanced expression of the ydiO and ydiQRST genes. The recombinant with the individually enhanced expression of ydiO did not produce detectable amounts of the derivatives of the complete and successful β-oxidation reversal.
Collapse
|
4
|
Engineering E. coli to synthesize butanol. Biochem Soc Trans 2022; 50:867-876. [PMID: 35356968 DOI: 10.1042/bst20211009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Biobutanol is gaining much attention as a potential biofuel due to its superior properties over ethanol. Butanol has been naturally produced via acetone-butanol-ethanol (ABE) fermentation by many Clostridium species, which are not very user-friendly bacteria. Therefore, to improve butanol titers and yield, various butanol synthesis pathways have been engineered in Escherichia coli, a much more robust and convenient host than Clostridium species. This review mainly focuses on the biosynthesis of n-butanol in engineered E. coli with an emphasis on efficient enzymes for butanol production in E. coli, butanol competing pathways, and genome engineering of E. coli for butanol production. In addition, the use of alternate strategies for butanol biosynthesis/enhancement, alternate substrates for the low cost of butanol production, and genetic improvement for butanol tolerance in E. coli have also been discussed.
Collapse
|
5
|
Jeucken A, Zhou M, Wösten MMSM, Brouwers JF. Control of n-Butanol Induced Lipidome Adaptations in E. coli. Metabolites 2021; 11:metabo11050286. [PMID: 33947169 PMCID: PMC8145963 DOI: 10.3390/metabo11050286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
The versatile compound n-butanol is one of the most promising biofuels for use in existing internal combustion engines, contributing to a smooth transition towards a clean energy society. Furthermore, n-butanol is a valuable resource to produce more complex molecules such as bioplastics. Microbial production of n-butanol from waste materials is hampered by the biotoxicity of n-butanol as it interferes with the proper functioning of lipid membranes. In this study we perform a large-scale investigation of the complete lipid-related enzyme machinery and its response to exposure to a sublethal concentration of n-butanol. We profiled, in triplicate, the growth characteristics and phospholipidomes of 116 different genetic constructs of E. coli, both in the presence and absence of 0.5% n-butanol (v/v). This led to the identification of 230 lipid species and subsequently to the reconstruction of the network of metabolites, enzymes and lipid properties driving the homeostasis of the E. coli lipidome. We were able to identify key lipids and biochemical pathways leading to altered n-butanol tolerance. The data led to new conceptual insights into the bacterial lipid metabolism which are discussed.
Collapse
Affiliation(s)
- Aike Jeucken
- Membrane Enzymology, Groningen Biomolecular and Biotechnology Institute (GBB), University of Groningen, 9747 AG Groningen, The Netherlands;
| | - Miaomiao Zhou
- Research Group Analysis Techniques in the Life Sciences, School of Life Sciences and Environmental Technology ATGM, Avans University of Applied Sciences, 4818 AJ Breda, The Netherlands;
| | - Marc M. S. M. Wösten
- Infection Biology, Department of Biomolecular Health Sciences, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Jos F. Brouwers
- Research Group Analysis Techniques in the Life Sciences, School of Life Sciences and Environmental Technology ATGM, Avans University of Applied Sciences, 4818 AJ Breda, The Netherlands;
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Correspondence: or
| |
Collapse
|
6
|
Gulevich AY, Skorokhodova AY, Debabov VG. Optimization of (S)-3-Hydroxybutyric Acid Biosynthesis from Glucose through the Reversed Fatty Acid β-Oxidation Pathway by Recombinant Escherichia coli Strains. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821020046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
The microaerobic synthesis of 3-hydroxybutyric acid by the Escherichia coli strain BOX3.1 ∆4 PL-atoB PL-tesB (MG1655 lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, ∆fadE, PL-SDphi10-atoB, Ptrc-ideal-4-SDphi10-fadB, PL-SDphi10-tesB), which was previously directly engineered for the biosynthesis of the target compound from glucose through the reversed fatty acid β-oxidation pathway, was studied. A target product yield of 0.12 mol/mol was achieved. Inactivation of the nonspecific YciA thioesterase gene in the strain led to an increase in the yield of 3-hydroxybutyric acid to 0.15 mol/mol. For the optimization of biosynthesis of target product the strain MG∆4 PL-tesB (MG1655 ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, PL-SDphi10-tesB) was engineered, and the genes encoding key enzymes of fatty acid β-oxidation were overexpressed in the strain from the plasmid pMW118m-atoB-fadB. The level of microaerobic synthesis of 3-hydroxybutyric acid by the strain MG∆4 PL-tesB (pMW118m-atoB-fadB) achieved in primary evaluation conditions reached 0.35 mol/mol. Inactivation in the strain of the gene of nonspecific thioesterase YciA led to only minor decrease in acetate byproduction. Further inactivation in the strain of gene encoding nonspecific thioesterase YdiI had virtually no effect on the level of synthesis of side products. Cultivation of the constructed strain MG∆4 PL-tesB ∆yciA (pMW118m-atoB-fadB) in bioreactor under the controlled conditions ensured achievement of a yield of 3‑hydroxybutyric acid amounting to 0.75 mol/mol.
Collapse
|
7
|
Gulevich AY, Skorokhodova AY, Debabov VG. Study of the Potential of the Reversal of the Fatty-Acid Beta-Oxidation Pathway for Stereoselective Biosynthesis of (S)-1,3-Butanediol from Glucose by Recombinant Escherichia coli Strains. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820080049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ferreira S, Pereira R, Liu F, Vilaça P, Rocha I. Discovery and implementation of a novel pathway for n-butanol production via 2-oxoglutarate. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:230. [PMID: 31583016 PMCID: PMC6767645 DOI: 10.1186/s13068-019-1565-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/07/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND One of the European Union directives indicates that 10% of all fuels must be bio-synthesized by 2020. In this regard, biobutanol-natively produced by clostridial strains-poses as a promising alternative biofuel. One possible approach to overcome the difficulties of the industrial exploration of the native producers is the expression of more suitable pathways in robust microorganisms such as Escherichia coli. The enumeration of novel pathways is a powerful tool, allowing to identify non-obvious combinations of enzymes to produce a target compound. RESULTS This work describes the in silico driven design of E. coli strains able to produce butanol via 2-oxoglutarate by a novel pathway. This butanol pathway was generated by a hypergraph algorithm and selected from an initial set of 105,954 different routes by successively applying different filters, such as stoichiometric feasibility, size and novelty. The implementation of this pathway involved seven catalytic steps and required the insertion of nine heterologous genes from various sources in E. coli distributed in three plasmids. Expressing butanol genes in E. coli K12 and cultivation in High-Density Medium formulation seem to favor butanol accumulation via the 2-oxoglutarate pathway. The maximum butanol titer obtained was 85 ± 1 mg L-1 by cultivating the cells in bioreactors. CONCLUSIONS In this work, we were able to successfully translate the computational analysis into in vivo applications, designing novel strains of E. coli able to produce n-butanol via an innovative pathway. Our results demonstrate that enumeration algorithms can broad the spectrum of butanol producing pathways. This validation encourages further research to other target compounds.
Collapse
Affiliation(s)
- Sofia Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Pereira
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
- Present Address: Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Filipe Liu
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Present Address: Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL USA
| | - Paulo Vilaça
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
9
|
Clomburg JM, Contreras SC, Chou A, Siegel JB, Gonzalez R. Combination of type II fatty acid biosynthesis enzymes and thiolases supports a functional β-oxidation reversal. Metab Eng 2017; 45:11-19. [PMID: 29146470 DOI: 10.1016/j.ymben.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/13/2017] [Accepted: 11/04/2017] [Indexed: 01/05/2023]
Abstract
An engineered reversal of the β-oxidation cycle (r-BOX) and the fatty acid biosynthesis (FAB) pathway are promising biological platforms for advanced fuel and chemical production in part due to their iterative nature supporting the synthesis of various chain length products. While diverging in their carbon-carbon elongation reaction mechanism, iterative operation of each pathway relies on common chemical conversions (reduction, dehydration, and reduction) differing only in the attached moiety (acyl carrier protein (ACP) in FAB vs Coenzyme A in r-BOX). Given this similarity, we sought to determine whether FAB enzymes can be used in the context of r-BOX as a means of expanding available r-BOX components with a ubiquitous set of well characterized enzymes. Using enzymes from the type II FAB pathway (FabG, FabZ, and FabI) in conjunction with a thiolase catalyzing a non-decarboxylative condensation, we demonstrate that FAB enzymes support a functional r-BOX. Pathway operation with FAB enzymes was improved through computationally directed protein design to develop FabZ variants with amino acid substitutions designed to disrupt hydrogen bonding at the FabZ-ACP interface and introduce steric and electrostatic repulsion between the FabZ and ACP. FabZ with R126W and R121E substitutions resulted in improved carboxylic acid and alcohol production from one- and multiple-turn r-BOX compared to the wild-type enzyme. Furthermore, the ability for FAB enzymes to operate on functionalized intermediates was exploited to produce branched chain carboxylic acids through an r-BOX with functionalized priming. These results not only provide an expanded set of enzymes within the modular r-BOX pathway, but can also potentially expand the scope of products targeted through this pathway by operating with CoA intermediates containing various functional groups.
Collapse
Affiliation(s)
- James M Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Stephanie C Contreras
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Alexander Chou
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Justin B Siegel
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Biochemistry & Molecular Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA.
| |
Collapse
|
10
|
Kallscheuer N, Vogt M, Marienhagen J. A Novel Synthetic Pathway Enables Microbial Production of Polyphenols Independent from the Endogenous Aromatic Amino Acid Metabolism. ACS Synth Biol 2017; 6:410-415. [PMID: 27936616 DOI: 10.1021/acssynbio.6b00291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Numerous plant polyphenols have potential applications as pharmaceuticals or nutraceuticals. Stilbenes and flavonoids as most abundant polyphenols are synthesized from phenylpropanoids, which are exclusively derived from aromatic amino acids in nature. Several microorganisms were engineered for the synthesis of biotechnologically interesting plant polyphenols; however, low activity of heterologous ammonia lyases, linking endogenous microbial aromatic amino acid biosynthesis to phenylpropanoid synthesis, turned out to be the limiting step during microbial synthesis. We here developed an alternative strategy for polyphenol production from cheap benzoic acids by reversal of a β-oxidative phenylpropanoid degradation pathway avoiding any ammonia lyase activity. The synthetic pathway running in the non-natural direction is feasible with respect to thermodynamics and involved reaction mechanisms. Instantly, product titers of 5 mg/L resveratrol could be achieved in recombinant Corynebacterium glutamicum strains indicating that phenylpropanoid synthesis from 4-hydroxybenzoic acid can in principle be implemented independently from aromatic amino acids and ammonia lyase activity.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Michael Vogt
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences,
IBG-1: Biotechnology, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
11
|
Gulevich AY, Skorokhodova AY, Sukhozhenko AV, Debabov VG. Biosynthesis of enantiopure (S)-3-hydroxybutyrate from glucose through the inverted fatty acid β-oxidation pathway by metabolically engineered Escherichia coli. J Biotechnol 2017; 244:16-24. [PMID: 28131860 DOI: 10.1016/j.jbiotec.2017.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/04/2017] [Accepted: 01/24/2017] [Indexed: 11/16/2022]
Abstract
Enantiomers of 3-hydroxybutyric acid (3-HB) can be used as the chiral precursors for the production of various optically active fine chemicals, including drugs, perfumes, and pheromones. In this study, Escherichia coli was engineered to produce (S)-3-HB from glucose through the inverted reactions of the native aerobic fatty acid β-oxidation pathway. Expression of only specific genes encoding enzymes responsible for the conversion of acetyl-CoA to acetoacetyl-CoA, reduction of acetoacetyl-CoA to 3-hydroxybutyryl-CoA and subsequent hydrolysis of 3-hydroxybutyryl-CoA to 3-HB was directly upregulated in an engineered strain. The operation of multiple turns of the inverted fatty acid β-oxidation was precluded by the deletion of gene encoding enzyme that catalyse the terminal stage of the respective cycle. While the overexpression of the C-acetyltransferase gene enabled 3-HB biosynthesis through the inverted fatty acid β-oxidation, the efficient conversion of glucose to the target product was achieved resulting from the additional overexpression of the gene encoding appropriate termination thioesterase II. The engineered strain synthesised the (S)-stereoisomer of 3-HB with an enantiomeric excess of more than 99%. Under microaerobic conditions, up to 9.58g/L of enantiopure (S)-3-HB was produced from glucose, with a yield of 66% of the theoretical maximum.
Collapse
Affiliation(s)
- Andrey Yu Gulevich
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia.
| | - Alexandra Yu Skorokhodova
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia
| | - Alexey V Sukhozhenko
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia
| | - Vladimir G Debabov
- Research Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1, 117545 Moscow, Russia
| |
Collapse
|
12
|
Cuenca MDS, Roca A, Molina-Santiago C, Duque E, Armengaud J, Gómez-Garcia MR, Ramos JL. Understanding butanol tolerance and assimilation in Pseudomonas putida BIRD-1: an integrated omics approach. Microb Biotechnol 2016; 9:100-15. [PMID: 26986205 PMCID: PMC4720416 DOI: 10.1111/1751-7915.12328] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas putida
BIRD‐1 has the potential to be used for the industrial production of butanol due to its solvent tolerance and ability to metabolize low‐cost compounds. However, the strain has two major limitations: it assimilates butanol as sole carbon source and butanol concentrations above 1% (v/v) are toxic. With the aim of facilitating BIRD‐1 strain design for industrial use, a genome‐wide mini‐Tn5 transposon mutant library was screened for clones exhibiting increased butanol sensitivity or deficiency in butanol assimilation. Twenty‐one mutants were selected that were affected in one or both of the processes. These mutants exhibited insertions in various genes, including those involved in the TCA cycle, fatty acid metabolism, transcription, cofactor synthesis and membrane integrity. An omics‐based analysis revealed key genes involved in the butanol response. Transcriptomic and proteomic studies were carried out to compare short and long‐term tolerance and assimilation traits. Pseudomonas putida initiates various butanol assimilation pathways via alcohol and aldehyde dehydrogenases that channel the compound to central metabolism through the glyoxylate shunt pathway. Accordingly, isocitrate lyase – a key enzyme of the pathway – was the most abundant protein when butanol was used as the sole carbon source. Upregulation of two genes encoding proteins PPUBIRD1_2240 and PPUBIRD1_2241 (acyl‐CoA dehydrogenase and acyl‐CoA synthetase respectively) linked butanol assimilation with acyl‐CoA metabolism. Butanol tolerance was found to be primarily linked to classic solvent defense mechanisms, such as efflux pumps, membrane modifications and control of redox state. Our results also highlight the intensive energy requirements for butanol production and tolerance; thus, enhancing TCA cycle operation may represent a promising strategy for enhanced butanol production.
Collapse
Affiliation(s)
- María del Sol Cuenca
- Abengoa Research, Abengoa, C/ Energía Solar 1, Palmas Altas, Sevilla, 41014, Spain
| | - Amalia Roca
- Bio-Iliberis R&D. Polígono Juncaril, C/ Capileira 7, Peligros, Granada, 18210, Spain
| | | | - Estrella Duque
- Abengoa Research, Abengoa, C/ Energía Solar 1, Palmas Altas, Sevilla, 41014, Spain
| | - Jean Armengaud
- DSV, IBiTec-S, SPI, Li2D, Laboratory 'Innovative Technologies for Detection and Diagnostics', CEA, Bagnols-sur-Cèze, F-30200, France
| | - María R Gómez-Garcia
- Abengoa Research, Abengoa, C/ Energía Solar 1, Palmas Altas, Sevilla, 41014, Spain
| | - Juan L Ramos
- Abengoa Research, Abengoa, C/ Energía Solar 1, Palmas Altas, Sevilla, 41014, Spain
| |
Collapse
|
13
|
Wong SS, Mi L, Liao JC. Microbial Production of Butanols. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sio Si Wong
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| | - Luo Mi
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| | - James C. Liao
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| |
Collapse
|
14
|
Gulevich AY, Skorokhodova AY, Stasenko AA, Shakulov RS, Debabov VG. Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816010051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Karim AS, Jewett MC. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metab Eng 2016; 36:116-126. [PMID: 26996382 DOI: 10.1016/j.ymben.2016.03.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/12/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Speeding up design-build-test (DBT) cycles is a fundamental challenge facing biochemical engineering. To address this challenge, we report a new cell-free protein synthesis driven metabolic engineering (CFPS-ME) framework for rapid biosynthetic pathway prototyping. In our framework, cell-free cocktails for synthesizing target small molecules are assembled in a mix-and-match fashion from crude cell lysates either containing selectively enriched pathway enzymes from heterologous overexpression or directly producing pathway enzymes in lysates by CFPS. As a model, we apply our approach to n-butanol biosynthesis showing that Escherichia coli lysates support a highly active 17-step CoA-dependent n-butanol pathway in vitro. The elevated degree of flexibility in the cell-free environment allows us to manipulate physiochemical conditions, access enzymatic nodes, discover new enzymes, and prototype enzyme sets with linear DNA templates to study pathway performance. We anticipate that CFPS-ME will facilitate efforts to define, manipulate, and understand metabolic pathways for accelerated DBT cycles without the need to reengineer organisms.
Collapse
Affiliation(s)
- Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E-136, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E-136, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
16
|
Spakowicz DJ, Strobel SA. Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 2015; 99:4943-51. [PMID: 25957494 DOI: 10.1007/s00253-015-6641-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Recent advances in the biological production of fuels have relied on the optimization of pathways involving genes from diverse organisms. Several recent articles have highlighted the potential to expand the pool of useful genes by looking to filamentous fungi. This review highlights the enzymes and organisms used for the production of a variety of fuel types and commodity chemicals with a focus on the usefulness and promise of those from filamentous fungi.
Collapse
Affiliation(s)
- Daniel J Spakowicz
- Department of Molecular Biophysics and Biochemistry, Yale University, 260/266 Whitney Avenue, PO Box 208114, New Haven, CT, 06520-8114, USA
| | | |
Collapse
|
17
|
Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metab Eng 2015; 28:202-212. [DOI: 10.1016/j.ymben.2015.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/05/2015] [Accepted: 01/20/2015] [Indexed: 12/28/2022]
|
18
|
Kim S, Clomburg JM, Gonzalez R. Synthesis of medium-chain length (C6-C10) fuels and chemicals via β-oxidation reversal in Escherichia coli. J Ind Microbiol Biotechnol 2015; 42:465-75. [PMID: 25645093 DOI: 10.1007/s10295-015-1589-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/14/2015] [Indexed: 11/30/2022]
Abstract
The recently engineered reversal of the β-oxidation cycle has been proposed as a potential platform for the efficient synthesis of longer chain (C ≥ 4) fuels and chemicals. Here, we demonstrate the utility of this platform for the synthesis of medium-chain length (C6-C10) products through the manipulation of key components of the pathway. Deletion of endogenous thioesterases provided a clean background in which the expression of various thiolase and termination components, along with required core enzymes, resulted in the ability to alter the chain length distribution and functionality of target products. This approach enabled the synthesis of medium-chain length carboxylic acids and primary alcohols from glycerol, a low-value feedstock. The use of BktB as the thiolase component with thioesterase TesA' as the termination enzyme enabled the synthesis of about 1.3 g/L C6-C10 saturated carboxylic acids. Tailoring of product formation to primary alcohol synthesis was achieved with the use of various acyl-CoA reductases. The combination of AtoB and FadA as the thiolase components with the alcohol-forming acyl-CoA reductase Maqu2507 from M. aquaeolei resulted in the synthesis of nearly 0.3 g/L C6-C10 alcohols. These results further demonstrate the versatile nature of a β-oxidation reversal, and highlight several key aspects and control points that can be further manipulated to fine-tune the synthesis of various fuels and chemicals.
Collapse
Affiliation(s)
- Seohyoung Kim
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | | | | |
Collapse
|
19
|
Köhler KAK, Rühl J, Blank LM, Schmid A. Integration of biocatalyst and process engineering for sustainable and efficientn-butanol production. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Jana Rühl
- Laboratory of Chemical Biotechnology; TU Dortmund University; Dortmund Germany
| | - Lars M. Blank
- Institute of Applied Microbiology (iAMB); Aachen Biology and Biotechnology (ABBt); RWTH Aachen University; Aachen Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Leipzig Germany
| |
Collapse
|
20
|
Dong H, Zhao C, Zhang T, Lin Z, Li Y, Zhang Y. Engineering Escherichia coli Cell Factories for n-Butanol Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:141-63. [PMID: 25662903 DOI: 10.1007/10_2015_306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The production of n-butanol, as a widely applied solvent and potential fuel, is attracting much attention. The fermentative production of butanol coupled with the production of acetone and ethanol by Clostridium (ABE fermentation) was once one of the oldest biotechnological processes, ranking second in scale behind ethanol fermentation. However, there remain problems with butanol production by Clostridium, especially the difficulty in genetically manipulating clostridial strains. In recent years, many efforts have been made to produce butanol using non-native strains. Until now, the most advanced effort was the engineering of the user-friendly and widely studied Escherichia coli for butanol production. This paper reviews the current progress and problems relating to butanol production by engineered E. coli in terms of prediction using mathematical models, pathway construction, novel enzyme replacement, butanol toxicity, and tolerance engineering strategies.
Collapse
Affiliation(s)
- Hongjun Dong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianrui Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhao Lin
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Development of a plasmid addicted system that is independent of co-inducers, antibiotics and specific carbon source additions for bioproduct (1-butanol) synthesis in Escherichia coli. Metab Eng Commun 2014; 2:6-12. [PMID: 34150503 PMCID: PMC8193244 DOI: 10.1016/j.meteno.2014.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 10/29/2022] Open
Abstract
Synthetic biology approaches for the synthesis of value-based products provide interesting and potentially fruitful possibilities for generating a wide variety of useful compounds and biofuels. However, industrial production is hampered by the costs associated with the need to supplement large microbial cultures with expensive but necessary co-inducer compounds and antibiotics that are required for up-regulating synthetic gene expression and maintaining plasmid-borne synthetic genes, respectively. To address these issues, a metabolism-based plasmid addiction system, which relies on lipopolysaccharide biosynthesis and maintenance of cellular redox balance for 1-butanol production; and utilizes an active constitutive promoter, was developed in Escherichia coli. Expression of the plasmid is absolutely required for cell viability and 1-butanol production. This system abrogates the need for expensive antibiotics and co-inducer molecules so that plasmid-borne synthetic genes may be expressed at high levels in a cost-effective manner. To illustrate these principles, high level and sustained production of 1-butanol by E. coli was demonstrated under different growth conditions and in semi-continuous batch cultures, in the absence of antibiotics and co-inducer molecules.
Collapse
|
22
|
Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 2014; 25:140-58. [DOI: 10.1016/j.ymben.2014.07.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 11/17/2022]
|
23
|
Cintolesi A, Clomburg JM, Gonzalez R. In silico assessment of the metabolic capabilities of an engineered functional reversal of the β-oxidation cycle for the synthesis of longer-chain (C≥4) products. Metab Eng 2014; 23:100-15. [PMID: 24569100 DOI: 10.1016/j.ymben.2014.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 12/23/2022]
Abstract
The modularity and versatility of an engineered functional reversal of the β-oxidation cycle make it a promising platform for the synthesis of longer-chain (C≥4) products. While the pathway has recently been exploited for the production of n-alcohols and carboxylic acids, fully capitalizing on its potential for the synthesis of a diverse set of product families requires a system-level assessment of its biosynthetic capabilities. To this end, we utilized a genome scale model of Escherichia coli, in combination with Flux Balance Analysis and Flux Variability Analysis, to determine the key characteristics and constraints of this pathway for the production of a variety of product families under fermentative conditions. This analysis revealed that the production of n-alcohols, alkanes, and fatty acids of lengths C3-C18 could be coupled to cell growth in a strain lacking native fermentative pathways, a characteristic enabling product synthesis at maximum rates, titers, and yields. While energetic and redox constraints limit the production of target compounds from alternative platforms such as the fatty acid biosynthesis and α-ketoacid pathways, the metabolic efficiency of a β-oxidation reversal allows the production of a wide range of products of varying length and functionality. The versatility of this platform was investigated through the simulation of various termination pathways for product synthesis along with the use of different priming molecules, demonstrating its potential for the efficient synthesis of a wide variety of functionalized compounds. Overall, specific metabolic manipulations suggested by this systems-level analysis include deletion of native fermentation pathways, the choice of priming molecules and specific routes for their synthesis, proper choice of termination enzymes, control of flux partitioning at the pyruvate node and the pentose phosphate pathway, and the use of an NADH-dependent trans-enoyl-CoA reductase instead of a ferredoxin-dependent enzyme.
Collapse
Affiliation(s)
- Angela Cintolesi
- Department of Chemical and Biomolecular Engineering, Rice University, USA
| | - James M Clomburg
- Department of Chemical and Biomolecular Engineering, Rice University, USA
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, USA; Department of Bioengineering, Rice University, USA.
| |
Collapse
|
24
|
|
25
|
Lan EI, Liao JC. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. BIORESOURCE TECHNOLOGY 2013. [PMID: 23186690 DOI: 10.1016/j.biortech.2012.09.104] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Microbial production of fuel and chemical feedstock is a promising approach to solving energy and environmental problems. n-Butanol, isobutanol and other higher alcohols are of particular interest because they can serve as both fuel and chemical feedstock. Alternative resources such as CO2, syngas, waste protein, and lignocellulose are currently being investigated for their potential to produce these compounds. Except for lignocellulose, utilization of such alternative resource has not been examined extensively. This review aims to summarize the development of metabolic pathways for efficient synthesis of these higher alcohols and the current status of microbial strain development for the conversion of diverse resources into higher alcohols.
Collapse
Affiliation(s)
- Ethan I Lan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
26
|
Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S. Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 2013; 113:4611-32. [PMID: 23488968 DOI: 10.1021/cr300361t] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Clomburg JM, Vick JE, Blankschien MD, Rodríguez-Moyá M, Gonzalez R. A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle. ACS Synth Biol 2012; 1:541-54. [PMID: 23656231 DOI: 10.1021/sb3000782] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While we have recently constructed a functional reversal of the β-oxidation cycle as a platform for the production of fuels and chemicals by engineering global regulators and eliminating native fermentative pathways, the system-level approach used makes it difficult to determine which of the many deregulated enzymes are responsible for product synthesis. This, in turn, limits efforts to fine-tune the synthesis of specific products and prevents the transfer of the engineered pathway to other organisms. In the work reported here, we overcome the aforementioned limitations by using a synthetic biology approach to construct and functionally characterize a reversal of the β-oxidation cycle. This was achieved through the in vitro kinetic characterization of each functional unit of the core and termination pathways, followed by their in vivo assembly and functional characterization. With this approach, the four functional units of the core pathway, thiolase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydratase, and acyl-CoA dehydrogenase/trans-enoyl-CoA reductase, were purified and kinetically characterized in vitro. When these four functional units were assembled in vivo in combination with thioesterases as the termination pathway, the synthesis of a variety of 4-C carboxylic acids from a one-turn functional reversal of the β-oxidation cycle was realized. The individual expression and modular construction of these well-defined core components exerted the majority of control over product formation, with only highly selective termination pathways resulting in shifts in product formation. Further control over product synthesis was demonstrated by overexpressing a long-chain thiolase that enables the operation of multiple turns of the reversal of the β-oxidation cycle and hence the synthesis of longer-chain carboxylic acids. The well-defined and self-contained nature of each functional unit makes the engineered reversal of the β-oxidation cycle "chassis neutral" and hence transferrable to the host of choice for efficient fuel or chemical production.
Collapse
Affiliation(s)
- James M. Clomburg
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - Jacob E. Vick
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - Matthew D. Blankschien
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - María Rodríguez-Moyá
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering and ‡Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005, United States
| |
Collapse
|
28
|
Gulevich AY, Skorokhodova AY, Morzhakova AA, Antonova SV, Sukhozhenko AV, Shakulov RS, Debabov VG. 1-Butanol synthesis by Escherichia coli cells through butyryl-CoA formation by heterologous enzymes of clostridia and native enzymes of fatty acid β-oxidation. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812040060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Lamsen EN, Atsumi S. Recent progress in synthetic biology for microbial production of C3-C10 alcohols. Front Microbiol 2012; 3:196. [PMID: 22701113 PMCID: PMC3370425 DOI: 10.3389/fmicb.2012.00196] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/14/2012] [Indexed: 01/17/2023] Open
Abstract
The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher-chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol) are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.
Collapse
Affiliation(s)
- Edna N Lamsen
- Department of Chemistry, University of California, Davis, CA, USA
| | | |
Collapse
|
30
|
Chatsurachai S, Furusawa C, Shimizu H. An in silico platform for the design of heterologous pathways in nonnative metabolite production. BMC Bioinformatics 2012; 13:93. [PMID: 22578364 PMCID: PMC3506926 DOI: 10.1186/1471-2105-13-93] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/24/2012] [Indexed: 02/04/2023] Open
Abstract
Background Microorganisms are used as cell factories to produce valuable compounds in pharmaceuticals, biofuels, and other industrial processes. Incorporating heterologous metabolic pathways into well-characterized hosts is a major strategy for obtaining these target metabolites and improving productivity. However, selecting appropriate heterologous metabolic pathways for a host microorganism remains difficult owing to the complexity of metabolic networks. Hence, metabolic network design could benefit greatly from the availability of an in silico platform for heterologous pathway searching. Results We developed an algorithm for finding feasible heterologous pathways by which nonnative target metabolites are produced by host microorganisms, using Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae as templates. Using this algorithm, we screened heterologous pathways for the production of all possible nonnative target metabolites contained within databases. We then assessed the feasibility of the target productions using flux balance analysis, by which we could identify target metabolites associated with maximum cellular growth rate. Conclusions This in silico platform, designed for targeted searching of heterologous metabolic reactions, provides essential information for cell factory improvement.
Collapse
Affiliation(s)
- Sunisa Chatsurachai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | |
Collapse
|